
CODI - A System for Cooperative 3D Design
R. Galli*, P. Palmer*, M. Mascaro*, M. Dias**, Y. Luo*

* Departamento de Matemáticas e Informática
Universitat de Les Illes Balears

070701 Palma de Mallorca, Spain
e-mail: {gallir, pere, mascport, yuhua}@anim.uib.es

** ADETTI/ISCTE, Av. das Forças Armadas 1600 Lisboa, Portugal
e-mail:jmd@adetti.iscte.pt

Abstract

A system that integrates 3D virtual scene
generation tools and data communication
techniques for 3D cooperative design work is
presented in the paper. The named system
CODI (sistema COoperativo de DIseño3D)
supports two major functions: 3D
cooperative design and multiple client distant
access. The system is implemented using
Open Inventor Toolkit in C++ with VRML
compatibility.

Keywords 3D Interactive Graphics,
CSCW, Cooperative 3D design

1. Introduction

This paper presents a CSCW system for cooperative 3D
object design. Each of the designers can perform the design
work in his own location together with other designers for
a common virtual 3D world at the same time. The graphics
workstations used in the design work will be connected
together by communication network. The system has two
major functions. The first is to support the real time
cooperative working session for 3D design and the second
is to support the multiple client distant access to the
system.

The application of the system can be very wide such as
in virtual studio, cooperative-CAD/CAM etc. The system
will allow several system users to add, modify, or delete
objects, change environment attributes, traverse the
common environment remotely and interactively. The
change by any user would be visible to other distant users
in the group. They may obtain a 3D virtual scene, an
architecture design or their elements from remote locations
just as if they were local. The clients of the system can

access the system from multiple locations remotely and
interactively.

The system presented here is named CODI (sistema
COoperativo de DIseño3D). When stands alone, the system
has all the major functions for single user 3D design work
such as authoring, editing and visualization. When a
cooperative working session is called, the system turns to
a real time co-working mode for a group of users to work
at different locations together. Video and audio
conferencing facilities will also be available for the
cooperative working session.

There are two major blocks in the system. One is the
application block and the other is the network
communication and cooperative support block. The
application block hosts the current major application -the
3D design tool. The network communication and
cooperative support block provides the session control and
the communication between cooperative working
machines.

The paper is organized as follows. Section 2 discusses
the CODI system design consideration. Section 3 describes
the network communication and cooperative support
platform. Section 4 introduces the 3D design block
supported by the service provided by the communication
block. Section 5 concludes the paper.

2. System Consideration
In general, the design of multi-user collaborative

environment is based on two main approaches. One is
based on dedicated groupware system which only supports
a particular application or a set of particular applications.
The other provides generic support services for a wide
range of distributed applications. The latter provides more
flexibility to create shared environments with distinguished
applications using the same support platform. The
advantage of separating the application semantics from the
communication platform is that any additional control and
service functions to cope with future network technologies
will not affect the application themselves. The design of

IEEE Conference on Information Visualization (IV '97)
1093-9547/97 $10.00 © 1997 IEEE

our network communication and cooperative support block
is based on the second approach.

2.1 The Communication Support

Two different types of services are provided by the
network communication and cooperative support block:
Session Control and Communication. These services are
available to the applications (here the 3D design system)
through a common service interface.

Cooperative support platforms may rely on centralized
or distributed configurations [1]. Hybrid schemes may also
be used. A fully distributed configuration[2] is accepted in
our system with application resources available on all the
sites. In this context, an application entity exists in each
site. The platform supports the distributed interaction
among all application instances. The messages generated
by one application replica are transmitted to other sites
sharing the same application environment. In most of the
transactions the messages have the same semantic
contents. Cooperative applications usually have a
consistency requirement, i.e. all the sites must have the
same data state. The multi-user 3D design system in our
case has a strong requirement on the consistency. The
messages exchanged among the sites must arrive at each
end-point with the same order as they are produced. This
implies a synchronous data exchange requirement. Event-
driven synchronization sheme is used in our system for
consistency keeping instead of using globalsystem time.

In addition to communication service multiplexing, the
platform should also have session control mechanisms for
the supported client applications. The relevant issues
include the QoS provision (Quality of Service),
consistency control, new member admission into a running
session, new distributed application invocation,
exceptional event and failures handling, definition of roles
within the group etc.

Different types of access control over shared objects
should be established according to the set of consistency
mechanisms,. For example, during a joint 3D navigation
session, the users may change a conservative locking
policy into a more open one or may desire to re-define the
policy[4].

The member admission into a running session requires
the availability of session control and communication
resources on the new user's site. At the application level,
the integration of a new member requires additional
application resources and a state update procedure for each
shared application. Specific tasks include the exchange of
files and other shared data structures and also changes in the
visualization process on each site.

2.2 The System Overview

The 3D design application is currently the major
application in the application block. As a 3D design tool,
it should provide all the editing, visualization capability to
the 3D scene and its elements, the environment attributes
for both single user mode and the cooperative sharing
mode. The communication mechanism underneath should
be hidden from the users.

As a result, a full distributed architecture has been
designed for the system. The functional modules of the
CODI system are shown in figure 1 which is a group of
member workstations connected by the network.

 The Session
 Manager Module

 The 3D Design Tool
Sharing Module

 Audio/Video
Coference Module

 Shared Single User
3D Design Tool

 The Group
Communication

Module

The Communication and
Cooperative Support Block

CONTROL
PROTOCOLS

The Application Block

The User Interface

…

…

NETWORK

 The Session
 Manager Module

 The 3D Design Tool
Sharing Module

 Audio/Video
Coference Module

 Shared Single User
3D Design Tool

 The Group
Communication

Module

The Communication and
Cooperative Support Block

The Application Block

The User Interface

…

CODI Workstation 1 CODI Workstation 2

Figure 1: Global structure of CODI system.

The Network Communication and Cooperative Support
block provides the cooperative working session control and
the communication between cooperative working
machines.

3. The Network Communication and
Cooperative Support Block

From the point of view of communication and
cooperative support, the CODI system is a layered
structure as shown in figure 2. This is the structure in one
member workstation. The whole configuration is a group
of such workstations connected by the network.

3.1 The layered architecture.

As shown in figure 2, there are basically three layers for
communication and control: The Application Environment
Layer, Session Manager Layer and the Group

IEEE Conference on Information Visualization (IV '97)
1093-9547/97 $10.00 © 1997 IEEE

Communication Layer. The highest layer, the application
layer holds the cooperative application programs for the
cooperative 3D design and belong in our explanation to the
Application Block.

Session Manager
SM

Group Communication
GC

Replica of
application 1

NETWORK

The Audio Video
Conference Interface

SMIAVI UI

Replica of
application N

SMI
…

SAP

SAP

UI

SAP

OPERATING SYSTEM

Real Time
Communication

RTC

Figure 2. The layered structure from the communication
point of view

The Session Manager (SM) layer is responsible for the
cooperative working session control tasks. The Group
Communication (GC) layer is responsible for point-to-
multipoint or point-to-point communication functions,
with a specific quality of service (QoS). These two entities
are the building modules of the communication and
cooperative support block. In a more general case, the
application environment layer encompasses several
distributed applications that act as clients requesting service
to the platform through the Service Access Points (SAPs)
created on top of the SM service interface. What the
communication and cooperative support block can see in
the application block are only two kinds of elements: the
user interface (UI) and the session manager interface (SMI)
of the replica of an application. Notice that, such platform
can support more than one applications on each site so
long as each has its own UI and SMI. The structure in
figure 3 on each site is replicated. Session control is
achieved by a distributed protocol executed among all the
SM entities with the same capabilities. Some specific
attributes may be given to just one of the session
managers, to perform special control tasks such as the
inclusion of users or applications.

A distributed application performs a specific protocol in
order to exchange messages. Most of the messages contain
user events produced through one or more input devices.
These local events are encapsulated in messages and sent to
the other sites through a service request made to the SM
entity. The model in figure 2 contains two I/O logical
entities located at the application layer environment. One
of them is the User Interface (UI), which is responsible for
collecting local events in the context of a particular

application (audio and video devices generate events with
real-time requirements). The Session Manager Interface
(SMI) structures the communication between the
application layer and the SM layer. It is the interface
between applications and the support platform.

3.2 Layered Control Protocols

The major functions to support the cooperative design
are realized by implementing a set of protocols at each
layer, as shown in figure 3. The same layers at different
participant's machines will communicate with each other
by the same protocol.

At the highest layer, the application layer, the Session
Manager Interfaces (SMI) in the application block in each
replica of the participant machines perform a specific
application layer protocol, the SMI protocol. They use the
service supplied by their Session Manager in the
communication block. Messages created at this layer are
tele-events which require a reliable network service, and
real-time events such as tele-virtual-cameras which require
a best effort connection.

The Session Managers SM at all participant sites
exchange messages through a SM layer protocol. The
messages at this layer contain either application layer
messages (to be delivered at the destination to the SMI
entities), or session control messages whose destination is
the set of other peer SM entities at the same layer. The
SM layer uses the services provided by the GC layer
interface.

Group Communication (GC) is achieved by a
distributed GC protocol executed by all the GC entities at
each distributed site. This layer hides the multipoint
configuration from the SM layer including the set of
network or transport protocols used and specific network
technology. The messages exchanged among the GC
entities contain either SM data or specific protocol
messages whose destination is the set of peer GC entities
itself. The GC layer uses the available network and/or
transport protocols.

Appl i cat i on

UI SMI

SM

GC

Appl ic at ion

UI SMI

S M

GC

Appl i cat i on

UI SMI

SM

GC

SMI Protoc ol

GC Protoco l

SMI Protocol

SM ProtocolSM Protoc ol

GC Protoc ol

NETWORK

Figure 3 Protocols for layered distributed interactions.

IEEE Conference on Information Visualization (IV '97)
1093-9547/97 $10.00 © 1997 IEEE

3.3 Consistency control
Consistency control of synchronous events in our

system is based on a token passing mechanism. An
application replica is able to generate and send events to
the peers only if it has a logical token provided by the
platform. This is the default status for the cooperative 3D
design application. If the replica is not the token owner, it
can only receive events from the platform. However, this
consistency control rule only applies to synchronous
events. Isochronous events requiring real-time
transmission, for example tele-virtual-cameras or audio
data, can be generated and sent with no restriction.

The control mechanisms can either be transparent to the
users and negotiated only between the application layer and
the SM layer. Or, they may depend on the users'
willingness regarding to the token passing. In our 3D
cooperative design system an explicit token request,
explicit token grant policy has been designed. Some other
policies are under consideration for further development,
such as providing several granularity levels within the
same shared object or possibility of re-definition of
different levels of optimism for a given interaction. For
example, in a shared 3D workspace, some users may be
interested in the creation of several locks for different 3D
objects, allowing several users working and editing on the
same shared environment. The platform is flexible enough
for the inclusion of these policies, as they are simply a
generalization of the existing mechanisms.

In summary, each replica of the 3D design system is, at
any moment, in one of three possible states: passive (P),
active (A) and intermediate (I). In the P state, it simply
receives messages for local processing. In general, these
messages contain user events. In the A state, the design
program at one site can generate and send events to the
peers. The I state represents the intermediate situation of a
3D design program that has requested the token but it has
not yet been granted by the platform. During this period,
the SM layer entities negotiate the exchange of states in
the relative design context.

3.4 Service interfaces

When a cooperative working section is called, the
cooperative platform is initialized by a cooperative
working session initiator. The connections between all the
cooperative working sites follow a client-server paradigm.
The first phase is to establish a multipoint configuration.
Either several point-to-point connections or multicast
network protocols will be used among all the Group
Communication (GC) entities. An algorithm between the
initiator and all the other GC's will then be executed.

Following this procedure, the Session Managers initialize
themselves in a similar way [5].

A set of service primitives with the standard OSI
structure are provided between layers for service request and
supply. They are: srv.REQUEST, srv.RESPONSE,
srv.INDICATION and srv.CONFIRM. These services may
be confirmed, not confirmed or generated within a layer as
a response to an internal condition.

I CI SDUPCI

ICI_L EN ICI_TYPE ICI_SUBTYPE I CI_DATA

PCI_LEN PCI_TYPE PCI_SUBTYPE PCI_DATA

SDU_LEN SDU_DATA

Figure 4. Structure of the Interface Data Unit for inter-
process messages exchange

Figure 4 shows the structure of the data units that are
transmitted between layers in each replica of the system
and between cooperative working sites. They are the
essential mechanism to request services and carry the
exchanged data. These data units are called Interface Data
Units (IDUs). They contain three components: Interface
Control Information (ICI) component, Protocol Control
Information (PCI) component and Service Data Unit
(SDU) component.

The Interface Control Information component (ICI)
represents the type of primitive being invoked by the
application layer, including any additional parameters. This
component has several parts: the type, subtype and
optional data concerning the service being requested.

The primitives used for application data transfer (the
data transfer for the 3D design system) include:
SM_DATA.REQUEST/INDICATION, SM_PP_DATA.REQUEST
/ INDICATION, SM_RT_DATA.REQUEST / INDICATION.

The Group Communication entities (the GC's) have the
corresponding services as GC service interface. They are:
GC_DATA.REQUEST / INDICATION,
GC_PP_DATA.REQUEST/INDICATION,
GC_RT_DATA.REQUEST / INDICATION, etc.

The second component PCI contains the protocol
information specific to the layer providing the service. The
protocol specifying our particular application, the 3D
design system will be defined in the Section 4 in the paper.
The third component Service Data Unit SDU contains the
data generated at the layer requesting the service. Further
description of SDU will also be described in Section 4.
The data unit is distributed to the peer entities at the same
user layer located at each site . The combination of PCI +
SDU is named a Protocol Data Unit (PDU). Some service

IEEE Conference on Information Visualization (IV '97)
1093-9547/97 $10.00 © 1997 IEEE

requests contain dummy PCI or SDU components because
they refer to session control tasks only. In this case, the
ICI component is issued with an optional set of parameters
specifying the type of session control operation being
requested.

The SM entities provide several SAPs (service access
points) to the applications through sockets created during
the connection requests. Connection establishment between
the application layer and the SM layer follows the client-
server paradigm with an additional set-up negotiation such
as type of consistency control required, or any
communication priorities.

4. The 3D Design Tool

CODI is defined as a multi-party 3D design system
supported by the communication block with the distributed
architecture.

4.1 The Scene

A CODI scene is a generic Open Inventor [6] object
hierarchy. It is designed to be compatible with VRML 2.0.
It is constructed by typical Inventor nodes and Deformable
objects

The system is oriented to real-time WYSIWYG 3D
scene edition and animation. The system provides support
for 3D scene design where 3D object models of different
formats can be inputted. To illuminate a scene the user can
locate arbitrary number of different types of lights. The
linear transformations such as rotation, scaling and
translation and many other parameters of the objects, can
be modified and viewed interactively. The parameters for
modification include material information and textures. To
help 3D scene designers to align a large number of objects,
a collision detection option is provided [7]. It can keep the
objects to touch with each other as close as possible
without penetration. To allow complex modeling, a
hierarchical system in the form of a tree has been
implemented. The nodes of the tree are references or basic
geometric objects. A reference can join different objects and
other references to define more complex objects.

Animation capabilities are also provided by the system,
allowing users to define animation parameters of moving
objects. The aim is to give the user full freedom to
animate any visible parameters of the virtual objects in the
scene, not only for motion but also for object and lighting
properties such as deformation, material, transparency,
textures, color, etc.

The user interface is programmed using X11/Motif and
Open Inventor Toolkit in C++, the system is also VRML
compatible.

4.2 The user interface

A user-friendly interface for the user is essential for a
complicated interactive system as CODI. Our user interface
is designed to have three major parts: a tool bar on the top,
an viewing area occupying most of the screen for
manipulation and visualization of the 3D scene and a
message area on the bottom for error messages or other
help messages. In most of the cases there is only one
window on the screen. When it becomes necessary, the
user can open as many window as he likes [10].

The user interface has all the commands to support the
3D scene manipulation, visualization, groupware
operation, audio-video control etc. The commands are
designed in a pop-up manner. A list of elements appear in
the tool bar on the upper part of the user interface. The
tool bar has the following elements: scene, objects, lights,
camera, windows, and groupware. When an element is
pointed by the mouse, the manual showing the related
operation buttons associated with this element will pop
up. According to different operations, some floating
window panels will appear for the user to choose the
parameters of the operation. The user interface is shown in
figure 5.

Figure 5. The user interface of the CODI system

4.3 The SMItoSMI protocol

As mentioned in Section 3, for multiple users to work
cooperatively within the context of 3D scene design, an
application specific protocol has to be defined on the
distributed architecture. Each peer 3D designer has his own
Session Manager Interface (SMI) in the CODI replica on
his own workstation as indicated in Fig. 2. [8,9]

The SMItoSMI protocol governs the group interaction
within the common 3D scene and is implemented through
the exchange of SMItoSMI Protocol Data Units (PDUs)

IEEE Conference on Information Visualization (IV '97)
1093-9547/97 $10.00 © 1997 IEEE

between the peers. The Service Access Points (SAP) are
used to access the groupware delivery service of the
platform.

These PDUs encapsulate all the available cooperative
3D design functionality: multi-user application
initialization, set-up of a common new 3D scenario,
consistent multicasting of 3D object, light, virtual camera
operations with 3D navigation capabilities.

The format of SMItoSMI PDUs comprises an integrated
word that encodes the multicast event exchanged among the
peer SMI's, and an application Service Data Unit (SDU)
that encapsulates relevant parameters of the specific
multicast event.

Here is a short table that lists our definition of the
SMItoSMI PDU syntax.

Event PDU Syntax Service
Requested to

SM
USER
INIT

UserInit(<userId>, <URL: user
avatar>, <userContext>)

Reliable,
Multipoint

USER
NOTIFY

UserNotify(<userId>, <URL: user
avatar>, <userContext>)

Reliable,
Multipoint

NEW
SCENE

NewScene(<userId>, <URL: iv
scene>)

Reliable,
Multipoint

CAMERA
UPDATE

Camera_update(<userId>, <new
camera parameters>)

Best-effort,
Multipoint

ATTACH
OBJECT

AttachObject(<userId>, <URL>) Reliable,
Multipoint

DETACH
OBJECT

DetachObject(<userId>, <URL>,
<element instance nr>)

Reliable,
Multipoint

SELECT
OBJECT

SelectObject(<userId>, <URL>,
<element instance nr>)

Reliable,
Multipoint

MODIFY
SELECTED

ModifySelected(<userId>,
<element type>, <modify code>,
<new value>)

Reliable,
Multipoint

The following events refer to token control and therefore
are only relevant to the interface between the SMI and SM
adjacent layers.

Event IDU Syntax Serv i ce
Requested to

S M
TOKEN
REQUEST

TokenRequest() Reliable,
Point-to-point

TOKEN
GRANT

TokenGrant() Reliable,
Point-to-point

The following sections explain the SMI protocol syntax
by grouping the coded events into groups.

4. 3. 1 User Set-up and User Context

Each potential user that wishes to access to a multi-
party 3D virtual environment (also named as a CODI
working session), has to be previously registered in an
authentication file. It is unique to all hosts of the CODI

system. The register procedure creates a new entry in the
authentication file:

<host ip name> <user name> <user id>
<reserved parameter> <APPtoSM port nr> <SMtoGC
port nr> <GCtoGC port nr>

where:
• The <host ip name> is the internet IP name of the

host
• <user name> the name of the user
• <user id> is a unique identifier id number of a user
• <reserved parameter> specifies the type of host (0:

Ordinary Host; 1: High Performance CPU Host)
• <APPtoSM port nr> is the SAP port number for full-

duplex communication between its SMI element and
the SM element

• <SMtoGC port nr> is the SAP port number for full-
duplex communication between the local SM element
and the local GC element

• <GCtoGC port nr> is the SAP port number the local
GC element for a full-duplex communication with all
the remote peer GC elements.

Any user registered in the CODIMembers authentication
file may participate in a multi-party working design
session. The initiative, the initiator to start such a session
can be any registered user. It issues an initialization
multicast event, USER_INIT to send to all other chosen
peers. In response to the received USER_INIT event, each
peer sends its own USER_NOTIFY event. After this
handshaking that requires a reliable communication service,
each replica of the CODI application is started in each
participant's host.

Both type of initialization messages sent and received
by peer users (USER_INIT and USER_NOTIFY), will
include parameters specially devoted to the set-up of a
multi-user space. They will enable each replica of CODI to
build a dynamic list of remote users. This list creates the
basic tool to support an abstraction of several users to
interact synchronously or in real time.

Each entry of the list includes the remote user unique id
number (taken from the CODIMembers file) and an
application specific user context. It includes:
• A pointer to a SoSeparator node describing this remote

user's active virtual camera.
• A personal “avatar” of the remote user. It is identified

by his internet URL with a reference to an Open
Inventor file containing the geometry description of
the avatar. A pointer to the SoSeparator node of the
local scene hierarchy is also contained pointing to the
local copy of the avatar geometry.

IEEE Conference on Information Visualization (IV '97)
1093-9547/97 $10.00 © 1997 IEEE

• The indication of the CPU performance status of the
remote user's host: a High Performance CPU Host
(HPCH) or an Ordinary Host (OH),

• Other implementation specific information.

4. 3. 2 Scene Initialization and Token Control

When a working session begins, the initiator issues a
multipoint NEW_SCENE event. The scene is identified by
an internet URL. After the receipt of a NEW_SCENE
message, each replica of CODI retrieves the scene from the
specified URL using a dedicated point-to-point file transfer
service. The object descriptions in the scene are then
retrieved from the object URL’s by the same sort of
transfer service.

By the token control policy the system ensures that any
modifications made by the token owner in the 3D scene,
are coded and transmitted to all the peer participants. If
other users desire to modify the 3D scene in any means,
they need to request the token explicitly by issuing the
TOKEN_REQUEST event. One of the users can do so
only after the token is explicitly granted by receiving the
TOKEN_GRANT event issued by the current token owner.

4. 3. 3 Scene Modification Messages

Possible operations to manipulate or modify a scene are
to attach, detach, select and modify an object. Here the
object is an Inventor object. It can be a geometrical object,
a light source or a camera. Therefore, the possible
modification to a 3D scene can be its illumination light
sources, the parameters of the virtual camera to view the
scene, the geometrical objects and their attributes etc.

Concerning scene illumination, the token owner can
locate an arbitrary number of different types of lights by
issuing the ATTACH_OBJECT event with the object type
to be a light source. Default values of each type of light
source will be stored and retrieved when an
ATTACH_OBJECT event is issued. To change their
intensity, color, lighting area etc., a
MODIFY_SELECT_OBJECT event will be issued with an
object type light source. A floating panel window will
appear on the token holder's viewing area of his user
interface. The modified light parameters will then be
multicast to the peer session participants.

Primitive objects can be added to a scene at any time.
Generic objects can also be retrieved from an Inventor file.
In both cases a multicast ATTACH_OBJECT event will
be issued by the token holder. When this type of events are
generated, the SMItoSMI protocol works in a similar way
as in the case of the NEW_SCENE event. Upon the receipt
of an ATTACH_OBJECT event by the peers. the Inventor

definition of the object itself, is later retrieved from the
URL specified in the parameters of the
ATTACH_OBJECT PDU.

While in the 3D scene, objects can be picked (creating
SELECT_OBJECT events), deleted (generating
DETACH_OBJECT events) and modified by linear
transformations, such as rotation, scaling and translation,
producing MODIFY events. In general, objects are
recognized by a URL, locating an Inventor file with the
object description, and an instance number.

Scene lighting properties for rendering of selected
objects as well as the colors of lights, can be modified
interactively, generating MODIFY_SELECTED multicast
events. The parameters for object modification include
material information, such as diffuse, specular and
emissive colors, transparency, specular shininess and
textures. For texture definition, the token owner can
choose the texture parameters from a floating window
panel. The texture coordinates can be plane, environment,
cube, sphere or cylinder. He can also choose the way to
combine the texture image and object color as modulation,
blending, decal etc.

5. Conclusions

We have presented a collaborative 3D design system
with the capability of synchronous multi-user, multi
location 3D interaction in a common 3D virtual
environment. The system is compliant with the Open
Inventor and VRML 2.0 formats. It is a general system
that can be applied to different scenarios where real time
group interaction with 3D objects and spaces are necessary.
Examples of such applications are collaborative product
design, group development of urban planning and architect
projects, or virtual studios for television program
production.

This design system uses the services provided by a
generic platform that is implemented on top of existing
network and transport protocols. This layered approach
separates the application and communication functions,
hiding the underlying configurations from the user
application. Different network technologies and protocols
may be used without changing the service primitives at the
application level. At the moment, real-time services are
provided on top of best-effort transport and/or network
protocols, due to the characteristics of the internetworking
environment tested so far. This means that some QoS
specifications may not be guaranteed under heavy network
conditions. The system has been designed and partially
implemented. It will take more time to complete all the
functions of the system.

IEEE Conference on Information Visualization (IV '97)
1093-9547/97 $10.00 © 1997 IEEE

Acknowledgment

The work is supported by the CICYT funding TEL 96-
0544 and IN 96-0151. It is also a close cooperation
between the UIB in Spain and ADETTI in Portugal.

References

[1] T. Crowley et al., “MMConf: An infrastructure for
building shared multimedia applications,” Proc. CSCW
90, ACM Press, New York, 1990, pp. 329-342.

[2] Yavatkar, R. and Lakshman, K., “Communication
support for distributed collaborative applications,”
Multimedia Systems, 2: 74-88, Springer-Verlag.

[3] Mills, D. L., “Improved Algorithms for
Synchronizing Computer Network Clocks,” ACM
SIGCOMM´94 Conf. Proceedings, Oct/94.

[4] Greenberg, S. and Marwood, D. (1994): “Real Time
Groupware as a Distributed System: Concurrency Control
and its Effect on the Interface,” ACM CSCW´94 Conf.
Proceedings, Chapel Hill, North Carolina, Oct/94, USA.

[5] Almeida, A. and Belo, C. A., “Support for
Multimedia Co-Operative Sessions over Distributed
Environments", Proc. MEDIACOMM'95, SCS (Society
for Computer Simulation), Southampton, April/1995

[6] Werneck, J., “The Inventor Mentor, Programming
Object-Oriented 3D Graphics with Open Inventor Release
2,” Open Inventor Architecture Group, Addison-Wesley
1994.

[7] Galli, R., et. al., “Real-time Collision Checking for
3D Objects Positioning in Sparse Environments,”
Proceedings of the European Workshop on Combined Real
and Synthetic Image Processing for Broadcast and Video
Production, Hamburg, 23-24 November 1994.

[8] J. M. Dias, R. Galli, A. C. Almeida, C. A. C.
Belo, J. M. Rebordao. “mWorld: A Multi-user 3D Virtual
Environment with Synchronous Communication
Support.” IEEE Computer Graphics and Applications,
March-April 1997.

[9] Dias, J. M., Fallon, N., Almeida, A. C.,
McGuinness, F., Hofmann, J. and Belo, C. A. (1994),
“FASHION-NET, A Collaborative Multimedia Design
System for the Apparel Industry,” in W. Bauerfeld, O.
Spaniol and F. Williams (eds.): Broadband Islands '94:
Connecting with the End-User, Elsevier Science B. V.

[10] M. Mascaró, P. Palmer, Y. Luo, “Generación de
entornos virtuales para fusión de imagen real y sintética,”
CEIG´96, junio, 1996, Valencia, España.

IEEE Conference on Information Visualization (IV '97)
1093-9547/97 $10.00 © 1997 IEEE

