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Abstract. Animation and Realistic Simulation of a 3D object’s elastic
deformation is actually an important and challenging feature in applica-
tions where three-dimensional object interaction and behaviour is consid-
ered or explored. Also, in interactive environments we need a rapid com-
putation of deformations. In this paper we present a prototype of a sys-
tem for the animation and simulation of elastic objects in an interactive
system and under real-time conditions. The approach makes use of the
finite elements method (F.E.M) and Elasticity Theory. The simulation is
interactively visualized in an Open Inventor environment. Using picking
node selection the user can interactively apply forces to objects causing
their deformation. The deformations computed with our approach have
a physical interpretation based on the mathematical model defined. Fur-
thermore, our algorithms perform with either 2D or 3D problems. Finally,
a set of results are presented which demonstrate performance of the pro-
posed system. All programs are written in C++ using POO, VRML and
Open Invertor tools. Real time videos can be visualized on web site:
http://dmi.uib.es/people/mascport/defweb/dd.html

Keywords: Elastic Deformation, Finite Elements Method, Elasticity
Theory, Computer Animation, Physical Models, VRML.

1 Introduction and Related Work

Obviously, flexible and deformable objects are inherently more difficult to model
and animate in computer graphics than rigid objects. Until recent years, the
computer graphic methods proposed were limited to modelling rigid objects.
However, recent advances in algorithms and computer graphics hardware sup-
port the processing of flexible objects. Today, there is a great need in many
engineering and medical applications to be able to simulate the material and
geometrical behaviour of 3D objects under real forces. In general, different mod-
elling techniques are usually classified into three categories: geometrical, physical
and hybrid:
� This work is partially subsidized by CICYT under grant TIC2001-0931 and by UE

under grant Humodan-IST.
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Geometrical techniques. Geometrical models do not consider the physical
properties of objects. They focus on appearance and the deformation is rep-
resented by geometrical equations. This means that the user has a high
degree of intervention and they are computationally faster than other ap-
proaches.

Physical techniques. In this group of techniques, the objects are modelled as
a triangular or rectangular grid in 2D or voxeled volumed in 3D. Each joint
or node in the grid can be affected by forces and the global grid is governed
by the interaction of physical forces on each node considered. This kind of
methods are more realistic from the mathematical and physical viewpoint
and the user only defines the initial conditions and the system can simulate
a real physical simulation over time. Unfortunately, they are more compu-
tationally expensive than geometrical techniques.

Hybrid techniques. Finally, we can combine physical and geometrical meth-
ods to avoid problems and improve efficiency.

In particular, the growth in hardware graphics can overcome the time-con-
suming restrictions of physically based methods. So in this paper we present
our system called P3DMA. It is based on Finite Element Methods (F.E.M)
and uses the Elasticity Theory. As we know, the solid theory used guarantees
the robustness of the system and is actually widely used by other researchers
[NNP02]. Thus, we are principally interested in designing a system that can run
in real or near real time systems. We believe that in Virtual Reality systems
the time in interaction and feedback is very critical. In this case, the efficiency
of implementation is very important and results must be checked to reach this
condition. In some cases, an initial off-line process can be introduced to improve
efficiency.

This paper is organized in several sections. The second section includes the
mathematical model proposed. The third section is dedicated to presenting the
F.E.M implemented. The fourth section includes the algorithm designed to re-
solve the dynamical system. Finally, we conclude with some considerations about
parallelization, efficiency and computational cost. The paper also includes the
conclusions, future work and related bibliography.

2 Mathematical Model Proposed

Let Ω be an enclosed and connected solid in IR3. Let us assume that the boundary
of Ω, Γ , is type C1 in parts. We divide Γ into two parts, Γ0 and Γ1, where Γ1
is the part of the boundary which receives external forces and Γ0 is the fixed
part of the boundary whose size we assume to be strictly positive. Note that
boundary Γ does not necessarily need to be connected, which will enable us to
simulate deformations of objects with holes.

The aim of this work is to study and analyse the computational cost of the
evolution of Ω under the action of external forces f on the inside and external
sources g on the boundary Γ1.
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The position of the object is defined by the function u(t,x). Our problem
is, therefore, reduced, given the functions u0 (initial position of the object) and
u1 (initial speed), to finding the position u(t,x) = (u1, . . . , u3) of these in the
domain QT = Ω × (0 × T ) which will verify the following evolution system in
time: 



ρδ2ui

∂t2 −∑3
j=1

∂
∂xj

σij = fi, i = 1, 2, 3 en QT ,

ui = 0, i = 1, 2, 3 en Γ0 × (0, T ) ,∑3
j=1 σijnj = gi, i = 1, 2, 3 en Γ1 × (0, T ) ,

ui (·, 0) = u0,i, i = 1, 2, 3 en Ω ,

∂ui

∂t (·, 0) = u1,i, i = 1, 2, 3 en Ω .

(1)

where functions σij are the components of the tension tensor, nj are the com-
ponents of the normal vector at a point on the surface of the domain Γ1 × (0, T )
and ρ is the density of the object.

The resolution of the above problem is carried out by variational formulation.
The solution of a discrete approximation uh of the above formulation gives us
the approximate solution to our problem.

Specifically, we consider a subspace Vh with a finite dimension I = I(h) of
Hilbert’s space H defined by H =

{
v ∈ (H1 (Ω)

)3
, tal quev = 0 sobreΓ0

}
.

Our problem is reduced to finding a function uh defined in QT solution to
the following differential system:


∀vh ∈ Vh, ρ d2

dt2 (uh (t) ,vh) + a (uh (t) ,vh) = L(vh) ,

uh (0) = u0,h ,

duh

dt (0) = u1,h ,

(2)

where a (·, ·) is the bilinear continous form defined by a (u,v) =
∑3

i,j=1

∫
Ω

σi,j (u)
× εij (v) dx , (·, ·) is the following scale product defined for functions defined in
QT : (u,v) =

∑3
i=1

∫
Ω

ui (x) vi (x) dx and L(v) is the following continuous linear
form on Vh: L(v) =

∑3
i=1

∫
Ω

fividx+
∫

∂Ω
gividσ.

Let ϕi be a Vh base of functions. If we write the solution to look for uh as,
uh (t) =

∑I
i=1 ξi (t)ϕi , the components ξi verify the above differential system.

ρ

I∑
i=1

ξ′′
i (t) (ϕi,ϕj) + γ

I∑
i=1

ξ′
i (t) (ϕi,ϕj) +

I∑
i=1

a (ϕi,ϕj) ξi (t) = L (ϕj) . (3)

In the above system we have added a new term (γ
∑I

i=1 ξ′ (t) (ϕi,ϕj)) to simu-
late a damping effect of the object. The above system, written in a matrix form,
is:

ρMξ′′ + γMξ′ + Kξ = L , (4)
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with M and K as the mass and tension matrixes respectively:

M = ((ϕi,ϕj)) i, j = 1, . . . , I

K = (a (ϕi,ϕj)) i, j = 1, . . . , I
.

By dscretizing, in time, this last equation:

M ( ρ
∆t2 + γ

2∆t) ξ (t + ∆t) =

= L+ ρM
∆t2 (2ξ (t) − ξ (t − ∆t)) + γM

2∆tξ(t − ∆t) − Kξ (t)
(5)

The simulation of different physical phenomena such as instantaneous blows,
constant forces, waves, etc. are implicit in the expression of vector L.

3 F.E.M and K,M,L. Definition

In order to choose the type of finite elements to use we will base our decision on
two basic criteria:

The type of finite element to be used must correctly transmit the propagation
of the tensions in the direction perpendicular to each face of the finite element.
The type of finite elements to be used must possibility a real time computational
process. This is why finite elements of a rectangular prism type will be chosen.
This kind of finite element makes a right transmition of the propagation of the
tensions in the direction perpendicular to each face of the finite element and gets
a low computational cost.

Note that by means of the type of finite elements chosen it is possible to
define uniform grids (grids which possess all the finite elements of an identical
length), and non-uniform grids. This second type of grid let us make an approach
of the boundary of Ω.

First of all, we will define the fundamental tool which will not allow us to
work with the finite elements: domain with a pair of points.

Let i and j be two arbitrary nodes of the grid of finite elements of the object.
Let sup ϕi be the set IR3 where ϕi �= 0.

Ωi,j is defined as the integration domain of a pair of points (i, j) such as

Ωi,j = sup ϕi ∩ sup ϕi .

3.1 Base Functions

In the three-dimensional model, there are three types of base functions:

ϕ
(1)
i = (ϕi, 0, 0) ,ϕ

(2)
i = (0, ϕi, 0) ,ϕ

(3)
i = (0, 0, ϕi) . (6)

The expression of ϕi is the same in each base function: it is that function
which has a value of 1 in the i-th vertex and 0 in the other vertices.
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3.2 Deformations Tensor

The deformations tensor is defined by the following expression:

εij (v) =
1
2

(
∂vi

∂xj
+

∂vj

∂xi

)
, 1 ≤ i , j ≤ n . (7)

3.3 The Tension Matrix K

The internal bonds of the object can be seen in tension matrix K.
The components of matrix K are: Kij = K(ψi,ψj), where ψi and ψj are

the base functions defined in (6) and the expression of K(u,v) is the following
where u and v are any H functions:

K (u,v) = λ

∫
Ω

(
n∑

k=1

∂uk

∂xk

)(
n∑

k=1

∂vk

∂xk

)
dx1dx2dx3

+2µ

n∑
i,j=1

∫
Ω

εij (u) εij (v) dx1dx2dx3 , ∀u,v ∈ H.

(8)

The expression of matrix K is the following:

K =




K
(
ϕ

(1)
i ,ϕ

(1)
j

)
K
(
ϕ

(1)
i ,ϕ

(2)
j

)
K
(
ϕ

(1)
i ,ϕ

(3)
j

)
K
(
ϕ

(2)
i ,ϕ

(1)
j

)
K
(
ϕ

(2)
i ,ϕ

(2)
j

)
K
(
ϕ

(2)
i ,ϕ

(3)
j

)
K
(
ϕ

(3)
i ,ϕ

(1)
j

)
K
(
ϕ

(3)
i ,ϕ

(2)
j

)
K
(
ϕ

(3)
i ,ϕ

(3)
j

)

 . (9)

The space of functions we consider is that generated by the polynomes IR3

< 1, x1, x2, x3, x1 ·x2, x1 ·x3, x2 ·x3, x1 ·x2 ·x3 >. Therefore, the function ϕi will
have a linial combination of theese polynomes.

In order to find Kij := K(ϕi,ϕj) for instance, we must carry out two inte-
grals on the domain of the pair of points Ωij . Below, we write Ωij = ∪Qk, where
Qk is a square prism type finite element which forms part of Ωij .

Therefore, we can calculate Kij in the following way: Kij =
∑

k K
(k)
ij , where

K
(k)
ij corresponding to K (ϕi,ϕj), for instance, would have the expression:

K
(k)
ij = (λ + 2µ)

∫
Qk

∂ϕi

∂x1

∂ϕj

∂x1
dx1dx2dx3+µ

∫
Qk

∂ϕi

∂x2

∂ϕj

∂x2
+

∂ϕi

∂x3

∂ϕj

∂x3
dx1dx2dx3.

With k fixed, there will be 64 = 8× 8 different K
(k)
ij values since each square

prism Qk has a total of 8 vertices.
Let Qs = [0, 1] × [0, 1] × [0, 1]. The calculation of each of the integrals that

appear in the expression K
(k)
ij can be carried out in the following way:∫ ∫ ∫

Qk

∂ϕi

∂xi

∂ϕj

∂xj
dx1dx2dx3 = Vk

∫ ∫ ∫
Qs

∂ϕ,
i

∂x,
i

∂ϕ,
j

∂x,
j

dx,
1dx,

2dx,
3 ,

where Vk is the volume of Qk, ∂ϕi

∂xi
=
∑

j
∂ϕ,

i

∂x,
j

∂x,
j

∂xi
= ai

∂ϕ
′

∂x
′
i

and the variable
change of Qk a Qs is x,

i = bi + aixi, i = 1, 2, 3.



P3DMA: A Physical 3D Deformable Modelling and Animation System 73

The calculation of
∫ ∫ ∫

Qs

∂ϕ,
i

∂x,
i

∂ϕ,
j

∂x,
j

dx,
1 dx,

2 dx,
3 is quite simple as we are work-

ing with a standard cube.
In this way, the 64 possible values K

(k)
ij can be obtained. It can be seen that

there are only 8 different values.

3.4 The Mass Matrix M

The mass matrix M will be made up of nine sub-matrixes whose expression is
the following:

M =



(
ϕ

(1)
i ,ϕ

(1)
j

)
0 0

0
(
ϕ

(2)
i ,ϕ

(2)
j

)
0

0 0
(
ϕ

(3)
i ,ϕ

(3)
j

)

 , where:

(
ϕ

(1)
i ,ϕ

(1)
j

)
=
(
ϕ

(2)
i ,ϕ

(2)
j

)
=
(
ϕ

(3)
i ,ϕ

(3)
j

)
�= 0 si Ωij �= ∅.

In order to calculate (ϕi,ϕj) in an effective way, we will use a method of
approximate integration using the vertices of the finite elements as nodes. That
is, using:

(
ϕ

(1)
i ,ϕ

(1)
j

)
=
∑

k|Qk⊂Ωij

∫
Qk

ϕi(x)ϕj(x)dx, we approximate the in-
tegration as: ∫

Qk

ϕi(x)ϕj(x)dx ≈
8∑

l=1

Aiϕi(Pl)ϕj(Pl), (10)

where Pl are the vertices of the finite element Qk and Ai are the coefficients of
the approximate integration formula.

In this way, we manage to make the mass matrix M diagonal since ϕi(Pl) =
δil. Furthermore, since the numerical integration error is less than the error we
make in the variational approximation of the problem which is in the order of
h3 where h is the maximum length of the sides Qk (see appendix and [Cia80]),
the use of the integration method does not increase the overall error in the
approximation.

In order to find
∫

Qk
ϕi(x)ϕj(x)dx, we will move onto a standard cube Qs =

[0, 1]× [0, 1]× [0, 1] by the adequate change in variable and there we will use the
expression (10). In this way coefficients Ai will not depend on the finite element
Qk chosen. In the standard cube, coefficients Ai equal: Ai = 1

8 .
By the way,∫

Qk
ϕi(x)ϕj(x)dx = δijVk

8 .

3.5 The External Force Vector L

The external force vector L will be of the type:

L =
(
L
(
ϕ

(1)
i

)
, L
(
ϕ

(2)
i

)
, L
(
ϕ

(3)
i

))�
, where L

(
ϕ

(k)
i

)
, k = 1, 2, 3, are dimen-

sion vectors N with N as the number of nodes of the grid of finite elements
which does not belong to Γ0, that is, non fixed nodes.
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The expressions of the vectors L(ϕi), L(ϕ′
i) and L(ϕ′′

i) are the following:

L
(
ϕ

(k)
i

)
=
∫

sup ϕi

fk(x)ϕi(x)dx+
∫

∂Ω∩sup ϕi

gk(x)ϕi(x)dσ,

where k = 1, 2, 3.
In all the experiments carried out, we have assumed that f = 0. Therefore,

the first addends in the above expressions will be null.
If the external forces g applied on the boundary are constant, the above

expressions are reduced to: L
(
ϕ

(k)
i

)
= gk

∫
∂Ω∩sup ϕi

ϕi(x)dσ.

Our problem is, therefore, reduced to finding
∫

∂Ω∩sup ϕi
ϕi(x)dσ.

We will assume that the boundary of Ω is approximated by square prism
type finite elements. Therefore, we have the case in which the integration domain
∂Ω ∩ sup ϕi will be: ∂Ω ∩ sup ϕi = ∪Πik, where Πik are flat rectangles situated
on a plane x =constant.

We have, therefore, the case in which the value of the above integral can be
calculated as:

∫
∂Ω∩sup ϕi

ϕi(x)dσ =
∑

k

∫
Πik

ϕi(x)dσ

The above integral
∫

Πik
ϕi(x)dσ can be reduced by the variable change

adapted to a double integral on the standard square [0, 1] × [0, 1].

4 Dynamic Solution System, Parallelization
and Computational Cost

The matrix of the system (5) is diagonal, so the i-th component of the value
ξ(t + ∆t) can be obtained as:

ξ (t + ∆t) (i) =
L(i) + ξ1(i) + ξ2(i) − ξ3(i)

M1(i, i)
, i ∈ {0, . . . , 3N} ,

where

M1 := M( ρ
∆t2 + γ

2∆t), ξ1 := ρM
∆t2 (2ξ (t) − ξ (t − ∆t)) ,

ξ2 := γM
2∆tξ (t − ∆t) , ξ3 := Kξ (t) .

4.1 Parallel Computation of the Tension Matrix K

Using the fact that component ij of matrix K can be calculated as Kij =∑
Qk⊂Ωij

K
(k)
ij , we can parallelize the computation of Kij by assigning the calcu-

lation of K
(k)
ij to each CPU.

4.2 Parallel Computation of the Solution of the Problem

If the external forces are variable during the deformation process the calculation
of vector L will be depending of the time parameter.
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If these forces are constant or constant in parts, we can calculate the value
of the L vector in a parallel process. We assign to each CPU the compute of∫

∂Ω∩sup ϕi
ϕi(x)dσ.

In the figure 1 the calculation process of the deformation is outlined, where
the system, from the conditions of the material to be deformed and the applica-
tion of the external forces in time, is capable of launching a totally parallelizable
calculation process.

M

K
...

...

...

ξ(         )t+    t∆

ξ(         )t+    t∆

K M

K M

K M

(1)

,
Compute

(i)
Compute

(n)

,

ξ(         )t+    t∆
Compute

Components process

Components process

Components process

finite element n

finite element n

finite element n

External forces in time

Positions of the vertex of the object in t time

Initial state

Fig. 1. Outline of the parallel calculation process of the dynamic solution system of
deformations.

4.3 Computational Cost of the Calculation
of the Matrixes K and M

The computational cost of the tension and mass matrixes will be a function of
the number of simultaneous processes that the system can bear, and a function
of the quantity of finite elements of the object to be deformed.

Let ne the number of the finite elements of the object. Let np the number of
simultaneous processes the computerized system can bear. Let Ql an arbitrary
finite element.

Let CMKl
the computational cost associated to calculate

∑
i,j(K

(l)
ij ) + δijVl

8
and the additions to reach the final values of the matrixes M and K associated
to each independent process. Then we can define:

CMK = max
1<=l<=ne

CMKl
.

Finaly, we obtain the computational cost to calculate the matrixes M ,K:

CostMK <=
CMK ∗ ne

np
− − >

O(ne)
np

.
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Fig. 2. Initial forces conditions of the simulation and 2 sec. time of the deformation
process.

Fig. 3. Left to right 13, 24 and 26 seconds time of the simulation process.

Computational Cost of the Calculation of an Iteration of the Solution.
The computational cost of the solution of one iteration step in the dynamic
system is linear O(n) where n is the number of nodes in the grid of finite elements
such that the matrix of the system is diagonal.

5 An Elastic Simulation Example

In figures 2, 3, 4 we can see the simulation process of a 60 seconds elastic de-
formation. We apply some forces in a kind of a latex square tube of dimensions
0.028×0.028×0.224 meters. We apply some Fx newton forces in the upper and
lower marks during the first 24 seconds (left, figure 2). Between 12-24 seconds we
apply some Fz newton forces in right and left marks (middle, figure 2). In two
seconds time of the simulation process we can observe a little tube expansión
and rotation (right, figure 2).

At 13 seconds time we can note the efect of the Fx forces result, a greather
expansion and anti-clock wise rotation of the latex tube (left, figure 3). At 24
seconds time we can see the final state of the object after the Fx znd Fz forces
action (middle, figure 3). At 26 seconds the action forces have been stoped an
the object is returning to its initial state (right, figure 3).

At 27 seconds time the elastic energy of the tube has made a clock-wise
rotation (left, figure 4). Here to the final state of the simulation process the
object makes an armonic rotation balance to reach its initial state (middle-right,
figure 4).
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Fig. 4. Left to right 27, 30 and 60 seconds time of the simulation process.

6 Conclusions and Future Work

In this work we have presented a 3D deformation model based on the Theory of
Elasticity. This model uses a rectangular parallepiped grid of finite elements that
let us make a pre-computation values of the matrixes M & K. That cause possi-
bility a real time simulation of the deformation process. The main contributions
can be summed up in the following points:

– The calculation of deformations is totally parallelizable. We assign the com-
putation process for the finite elements grid matrix values to several CPU’s.
Values acording to one voxel of the finite elements grid are assigned to one
CPU. The final values for the tension and mass matrixes are the additions
of the partial results computed for each parallel process. The solution of the
dynamic system can be parallelizated too cause the system is diagonal.

– The chosen finite elements correctly transmit the tensions in a direction
perpendicular to the boundary of the same. Therefore, the deformations
presented are quite realistic. Whatever quadrangular parallelepiped voxel
can be used in this deformation model to makes the finite elements grid of
the object.

– The computational cost has been reduced so that the deformations can be
represented in real time. Experiments have been realized using an ATHLON
900 CPU with 512 MB of RAM memory. The model supports real time
process in an objetc with 12000 voxels.

– A study of the computational cost of the algorithm has been carried out. We
reach a lineal computational cost deppending on the number of voxels of the
object and the quantity of simultaneous processes that the system can bear

In the context of future work, we would like to highlight the following:

– A study of the deformations of two-dimensional varieties such as the study
of clothes deformations or the deformation of the human skin.

– A study of deformations when internal forces are not null, f �= 0.
– A study of deformations when the external force g depends on the speed

of the object. Integrating inertial forces to the model and collision checking
techniques.
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versité Pierre et Marie Curie, Paŕıs. North-Holland Publishing Com-
pany, Amsterdam-New York, Oxford. 1980.

CohC91. Cohen, L. D., Cohen, I. Finite Element Methods for Active Contour
Models and Ballons for 2D and 3D Images. CEREMADE, France.
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