J Multimodal User Interfaces (2018) 12:125-143
https://doi.org/10.1007/s12193-017-0253-z

@ CrossMark

ORIGINAL PAPER

Multimodal human-machine interface devices in the cloud

B. Estrany!

. C.Marin! . M. Mascaré! - A. Bibiloni! - Y. Luo!

Received: 27 April 2017 / Accepted: 6 November 2017 / Published online: 14 November 2017

© The Author(s) 2017. This article is an open access publication

Abstract In an increasingly connected and multidisci-
plinary world, we propose a new paradigm of web application
development. It makes the whatever modal input to use the
same interface to connect to the applications. It can essen-
tially free the web application programmers and the end
users from the need of physically handling the data input
devices when they are building a multimodal system. The
same application can be used for a whole range of physically
different peripherals, but similar from the logical point of
view of data entry. This paper discusses the implementation
of a pilot project, currently in a local network environment,
where all the devices in the LAN are identified and described
in an interface server. Users in the local network may, upon
request, make use of such devices. The communication of
these peripherals with the web applications will be carried
out by a network of modules that run under the websocket
technology. The whole process of communication and con-
nection establishment is automatic and guided by the existing
configurations in the interface server. The entire platform
runs under SOA strategy and is fully scalable and config-
urable. Its use is not limited to games because it has much
wider possibilities, interactivity in teaching, accessibility for

B< B. Estrany
tomeu.estrany @uib.es

C. Marin
carlosmarinfernandez @ gmail.com

M. Mascar6
mascport@uib.es

A. Bibiloni
toni.bibiloni @uib.es

Y. Luo
y.luo@uib.es

Universitat de les Illes Balears, Palma de Mallorca, Balears,
Spain

people with special needs, adaptation of web applications to
the use of uninitiated, etc.

Keywords Multimodal - Interface - SOA - Websocket -
Virtual interface - Accessibility - MVCI

1 Introduction

In this article, we propose a new paradigm of interaction in
the cloud based on a new design pattern that extends the
MVC. The Internet of interfaces (I-o-I).

In the last decade, we have witnessed a spectacular devel-
opment of the web favored and enhanced by improvements in
the communications sector and mobile terminals. We started
migrating applications from the desktop to the cloud, and
then, even the physical storage media. Today, it is possible to
configure a virtual computing system with its virtual CPUs,
its virtual memory and its applications and services all in the
cloud.

Important advances have been made in computer systems
since the presentation of Douglas C. Engelbart in 1968 [3].
Despite these achievements in such aspects of computer sys-
tems, we are still using the input devices (basically mouse,
keyboard and lately touchpad) that, although full of tech-
nology, they still are highly primitive for many purposes of
interaction. For other devices, they may be configured only
for a particular operating system or even a single application.

In addition, these interaction devices are firmly linked to
the operating system of the machine running the applications
(yes, even being wireless), so that it might become difficult to
control them from a web application and gain access to them
directly as, for security reasons, the proprietary resources of
the OS are still protected by the system. To overcome all
these difficulties, this article details the proposal of a new

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s12193-017-0253-z&domain=pdf
http://orcid.org/0000-0002-2880-4567

126

J Multimodal User Interfaces (2018) 12:125-143

paradigm, with the aim of facilitating how to connect and
use the interaction devices and facilitate a more ubiquitous
and versatile interaction with them.

To this end, we have designed an architecture that takes the
advantage of some of the new features of HTMLS, such as
websockets and uses Service Oriented Architecture—SOA
concepts for a simple and highly modular and completely
reusable implementation. For now, it is a proof of the design
concept with a set of implemented examples.

Using these new application development tools, we will
be able to deal with the emergence of countless multimodal
sensors and low cost devices connected to the cloud by
the evolution of IOT. For the versatile connections of input
devices and the possibility to interact with them, we pro-
pose a new concept: The Internet of Interfaces, or I-o-I (as a
memory of those first computer games).

It is possible to object that the interaction devices are
already part of the cloud, which are already connected to
the internet. This is true in part, but as a negative aspect most
of them still need drivers for each of the operating systems
that drives them. In addition, they must be directly supported
by browsers for their potential use.

Throughout this article, the reader will be able to observe
that the fact of disconnecting the interaction devices or any
type of sensor from the operating system supporting them,
has important advantages in the reuse of code and in the
incorporation and adaptation of new interfaces to the existing
web applications.

1.1 State of the art

Some protocols have been developed that help to control
remote devices and to interact among them such as OSC
[1] and TUI/ OSC [11] and lately powerful frameworks like
Spacebrew [10], although they are specific for very particular
applications. These works in open source, are of an extraordi-
nary quality and are in a state of very advanced development.
But they do not cover, or only partially cover, the aspects
exposed in our article.

In fact, we could certainly use them in the architecture we
describe. On the other hand, there is an attempt to describe
what has been called the Full Device API, but it is in an
embryonic state, each company seems to opt for its own solu-
tion.

Of course, a lot of effort is being made to integrate vari-
ous elements of interaction and develop new protocols and
architectures that allow their use [2,5,8]. In fact, the W3C
has a specific group for this work [7,12]. In this context,
we want to contribute with our grain of sand. For this, we
have developed a proof of concept that allows the creation,
access and use of different devices of multimodal interaction
giving preference to, above all, simplicity, ease of use and
possibility of growth with a SOA model.

@ Springer

2 The scenario

To develop the proof of concept of this architecture, we have
designed a scenario where to apply this system. The initial
application environment would be a family home with its
local router and internet access, with various nodes (desk-
top computers) connected through this local network and
input devices or sensors connected by Bluetooth, Wi-Fi, USB
and/or serial connection. There could be devices that allow
browsing the network (web clients) including smartTV tv
screens, video game consoles, mobiles, tablets, etc...

Our purpose is to use these devices as ubiquitously as
possible from web pages or from applications that can use
these services in a local network environment. That is, the
connections to the interaction devices will always be within
the local scope in this first interaction scenario. However,
using a remote interface in this context does not make much
sense. That does not mean that architecture does not allow it,
surely you can design scenarios in which this scheme could
be useful with remote interfaces.

2.1 Architecture

Analyzing the different possibilities of implementation with
the test examples that we developed for the design of the
architecture and that will be explained further on, it is inter-
esting to distinguish between different connection modules
according to the functionalities offered by these.

Thus, we will have a collection of modules that can be
executed independently of their location in some cases and,
in others, they are anchored to an operating system, although
accessible by any device within the local network. The differ-
ent modules that our architecture contains according to their
function are the following:

Source module: This module is responsible for activating
or reading directly from the sensor or interaction device
(Arduino, webcam, etc...) and offer its information through
a websocket to the web client application that requests it.
Arduino is an open hardware initiative that unifies and facil-
itates the programming of microcontrollers [16].

Processing module: This module can be connected to any
other module either source or processing. Its function is to
adapt the information of the source to the information accept-
able by the client module. It connects to an input websocket
and offers an output websocket. Another important function
is to perform the processing of information (in some cases
it may require a lot of CPU) in specialized or specific nodes
of the network to take advantage of their computing power
(deep learning, vision analysis, etc.). If this is the case, the
module will run on a node with the necessary calculation
capabilities. Note that in this way, it is possible to perform
different parts of the input processing in different nodes of
the network. They could also be external to the local network.

J Multimodal User Interfaces (2018) 12:125-143

127

Unification or grouping module: In case of needing more than
one interaction device, either multimodal or multiple inter-
action users, this module will be responsible for grouping
information from different sources. It connects to different
websockets and offers a single output websocket with unified
information. In this way, a mouse could be simulated from
three different inputs, two dimensional and one of the button
type, located in the local network.

The virtual interface server module: This is another special
module that allows multiple virtual interaction devices to be
connected to it and offer these elements through a single
websocket. In general, web pages designed as virtual inter-
action devices will be connected to this module and for the
purpose of connecting through this module to the client web
pages. In principle, a single virtual interface module is used
for all interface clients and virtual interface pages. Although
it would be possible to use several if necessary.

In Figs. 1 and 2 you can see the graphs with the functional
information of the different modules.

In Fig. 1, there are two possible connection schemes. In
the upper part a webcam and an Arduino are used for the
interaction. For this, two source modules are used to control
each device and later two processing modules will calculate
positions or mouse clicks that are grouped in one end module
that provides the interaction information to the client page.
The second scheme is simpler, the information of the device
is collected and adapted to be presented to the client page.

Figure 2 illustrates different virtual interface connections
with their respective pages or client applications. The virtual
interfaces are web pages that collect actions on buttons or
sensors of the devices executing them. These pages send the
interaction information to the virtual interface server which,
in turn, is responsible for distributing this information to the
pages or web client applications.

2.2 Websockets servers

Most modules in the system as a whole are located on the
websockets servers. A websockets server is a local network
node that contains one more global system modules. These
modules either contain one or more interaction devices con-
nected to it, or perform a calculation or processing on other
websockets servers in such a way that the end clients or other
websockets servers connect to them. Websockets servers,
normally, contain various system modules.

It can also be a standalone device that already has in its
firmware the possibility of serving information through web-
sockets. The Arduino Yun [15] or the ESP32 microcontroller
[17] are examples of this case.

A special websockets server is the virtual interface server.
This performs the functions of bridge between all the virtual
interfaces connected to the system and all the client applica-
tions connected to them.

2.3 Client applications

Client applications are those that incorporate a small piece of
code, which allows them to access the Web Interface Address
Server (WIAS) and then, from this information, to connect
to the appropriate websockets server. Once the connection is
made, they obviously interpret this information to give it an
appropriate use.

In general, they will be web pages that want to use the
interaction devices but they can also be applications installed
in a specific system as it is the case of one of the examples
that are exposed in the article. They can also handle virtual
mice and keyboards on a conventional computer with some
added software.

Input devices Client web page
00—
WebSocket g—
'ebSocke! i
Arduino |« » Source module |« > Pmﬁleng
A
WebSocket Processing WebSocket unification
@ Source module |« g module module
A wes
WebSocket i A
<«——>» Source module |« > Pmﬁleng > g —
0 ——
Client web page

Fig. 1 General functionality scheme of different modules in the system

@ Springer

128

J Multimodal User Interfaces (2018) 12:125-143

Virtual interface

server module

A

0 —— Virtual Interface 0 —— Virtual Interface
g — Webpage o— Webpage
o— 0 —

A

____________________________ og—|: Client
D e *lg— Webpage
u et [
\ 4
v
___ o—| Client
D D i R — Webpage
[=

Fig. 2 Different virtual interface connections

A special case is those web pages acting as virtual inter-
faces and that, in essence, are the interaction servers. But
in our architecture, they are treated in the same way except
that when being connected to the websockets server, they
will indicate their own function and the client page to which
they would send their interaction data. The virtual interfaces
module will perform the data sending action.

2.4 Implementation of websockets servers and their
modules

For the implementation of websockets servers, we have used
an open source tool that, although simple in its implementa-
tion, solves many of our problems in an elegant way. This is
websocketd [13]. Websocketd is an implementation of web-
sockets in the style of the old CGI that were used in the first
web servers, developed by Joe Walnes. This tool allows to
implement, in a very simple way, the different websockets
servers that our architecture needs as well as to be able to
provide basic services of http and CGI’s.

Websocketd allows to establish a websockets server for
each of the nodes that have anchored physical devices (either
USB, Bluetooth, webcams, audio, microcontrollers with sen-
sors, etc...) or processing or clustering modules, in addition
to the Virtual interface server as follows.

The websocketd has a directory assigned with the code
(scripts or executable programs) corresponding to each of
the modules that this particular node can activate. The code,
as in the old CGI’s, can be written in any language that the
operating system of the node can execute. According to the
occasion, we have used shell, node.js and python although
any other language can be used. The use of scripting lan-

@ Springer

guages can help with maintenance and unification tasks,
although in some specific cases, if a high CPU is required, it
may be advisable to use compiled code directly for the native
OS of the websockets server node.

The code of each module is programmed using I/O as
the standard inputs and outputs of the system, that is input
output by console and admitting input arguments. Then the
websocket will redirect you to the client’s connected web-
socket just as you did with the old CGlIs.

To illustrate the concepts, imagine that in one of the nodes
we have an IR camera connected by USB and also an Arduino
device that has in turn two potentiometers also connected by
USB.

On the other hand, we want to play a two-player pong
game. This game only needs two variables corresponding to
the position of each of the blades of each player. In short,
two variables that control the position of the paddle of each
player. We want to play either with the potentiometers or with
two infrared pointers in front of a webcam.

In order for the processing modules to activate these source
modules (webcam or Arduino) and make use of the informa-
tion they provide, the processing modules must know the
following:

The IP address or DNS of the server node that contains
them.

The name of the module that manages them.

— The address of the device associated with the node.
Other values necessary for the activation of the devices

So to activate the Arduino device connected to the serial port
COMS3 of a computer with windows can write:

J Multimodal User Interfaces (2018) 12:125-143

129

Fig. 3 Connection between an
Arduino unit with two
potentiometers and the
two-player pong game web page

arduino
COM3

ws://192.168.1.1:8080/arduino? COM3,9600

The Arduino module code simply consists of the instruc-
tions needed to open the given serial port, at the specified
speed, and then print values by the standard output. It should
be noted that the addresses change depending on the oper-
ating system of the node but the same code can be used to
activate more than one device with similar characteristics.

In the case of the Arduino source module, it is possible
that with the values of the potentiometers readings that are
sent through the websocket it would be sufficient to han-
dle the client web page. For example, our two-player pong
game each of them driving one of the two potentiometers
connected to the Arduino. In this way, the client web page
can be connected directly to the source module, if it knows
all the parameters for the invocation of this particular mod-
ule, and interpret each plot as the position of the paddle of
each of the players, completely independent to the hardware
features of the original source (see Fig. 3).

In the case of a source module that controls a webcam or
audio, we use internally for its control FFmpeg [18] (FFmpeg
is an open source software for the management and treatment
of audio and video streams as well as their formats among
other things) which allows us a great variety of formats and
options for each occasion. For activation of the module, we
will also need some parameters to identify the device to use
and its frame rate, size, etc.

Thus, in order to obtain images of the first camera con-
nected to the node, we could use a module called webcam
and write the following:

ws://192.168.1.1:8080/webcam?0,1024,768,20

Where, the parameters 0,1024,768.20 correspond to camera
number, horizontal size, vertical size and frame rate, assum-
ing that it was housed in the same node as the previous
example. Of course, in the actual implementation some more
parameters are needed but for clarity we have decided to omit
it here.

Note that the information provided by the source mod-
ule, in the case of a webcam, is not enough to control the
same pong game that we used in the Arduino unit connec-
tion example with the two potentiometers. Now we need to
have two variables that give us the position of the infrared
pointers and what the module provides is a video stream that,

WEB PAGE

| | lecture values SOURCE *
MODULE .
arduino information frame

yes, contains the information of the infrared lights detected
through the video images of the Webcam in question.

In order to extract this information from the images it is
necessary to perform a process on each of the frames of the
images to extract the position of each of the points appearing
in each frame.

So as to carry out this process, a processing module is
needed that is capable of extracting the coordinates (x, y) of
each of the points that appear in each of the images. With the
help of OpenCV [14] (a powerful open source package for
image processing and processing), it is possible to perform
this operation in a simple way. Our treatment module will
read the images of the camera from the input and print out
the detected points in each frame.

It seems a good idea to have this module isolated and
available for point detection in our system, but the output is
not suitable for controlling two-player pong. We will call it
pointsdetector.

We need a single variable for each player and now we
have two for each one so we would add another processing
module connected to the latter that would simply treat each
point and assign the position to each of the players taking
into account the position of the points detected. The y of the
minor component X, corresponds to the player of the left and
the other and, with the component x greater, to the player of
the right. We call this module webpong2p.

In short, in the case of playing pong with an infrared detec-
tive webcam, you need the following:

— Two LED pointers, one for each player.

— A webcam.

— The address, name and connection parameters of the
source module.

— The address and name of the processing module that
detects the points.

— The address and the name of the final processing module
that extracts the components for each player.

Thus, the module that will connect the pong client is as
what we have described, the webpong2:

ws://192.168.1.1:8080/webpong2

This, in turn, must be connected to

@ Springer

130

J Multimodal User Interfaces (2018) 12:125-143

ws://192.168.1.1:8080/pointsdetector
And finally, this will connect to the webcam with
ws://192.168.1.1:8080/webcam?0,1024,768,20

It happens that who initiates the request of service of
websockets is the client page, whereas the functional mod-
ules really do not know the connection chain between the
parts because they have the possibility to connect in multiple
schemes of connection and between multiple devices. For
this reason, the client web page must know in advance the
connection chain of all the modules involved in this service.
Therefore, we decided that the connection string will be made
through the passage of parameters to the modules. Thus, the
connection with the final processing module (always being
backwards) will be

ws://192.168.1.1:8080/webpong2?
ws://192.168.1.1:8080/pointsdetector
ws://192.168.1.1:8080/webcam?0,1024,768,20

For clarity, we have separated each expression in a line
but the strings are only separated by a space between them.

Each module, upon receiving the parameter, removes its
connection part and invokes the next string, so webpong2
will invoke pointsdetector with

ws://192.168.1.1:8080/pointsdetector?
ws://192.168.1.1:8080/webcam?0,1024,768,20

And finally, pointsdetector will invoke webcam with
ws://192.168.1.1:8080/webcam?0,1024,768,20

Note thatin Fig. 4, in the case shown, an already developed
module is used which is the point detector POINTSDETEC-
TOR. The WEBPONG?2 only extracts the y positions of the
detected points.

There are alternatives to make the connection string that do
not need to pass the entire connection string as a parameter,
for example, by defining a unique identifier for each connec-
tion scheme that is actually contained in the WIAS server

webcam

% ‘_@ ‘
\/ \\ / video steam
‘/ o

— N\

POINTSDETECTOR

N §

that is explained below. But this complicates the program-
ming of the different modules because it involves an extra
connection of each module with the WIAS with the conse-
quent increase of code and complexity for each processing
module. Another option is to include the whole process in
the source module but it does not seem to us an alternative
that promotes modularity. Although, sometimes, if there is a
lot of information, it may be an option.

In a second example, we will illustrate the use of two
mobile phones for a two-player pong game using the virtual
interfaces module. All client web pages wishing to use the
virtual interfaces must first connect to the virtual interfaces
server, indicating the number of virtual interfaces they accept
(number of players in our case) and a unique identifier sup-
plied by the WIAS that will serve to address the Interfaces to
their respective client applications. Thus, in the two-player
pong game, once a virtual interface is selected suitable for
the game through the WIAS, it will have a unique identifi-
cation code which performs a service request on the virtual
interfaces module:

ws://192.168.1.1:8080/virtualmodule?c2034,2

So the virtual interfaces module will recognize that a client
application (client ¢ and identified by 2034) has been con-
nected, waiting for the connection of two virtual interfaces.

In turn, the virtual page informs the devices acting as
virtual devices of the page http that performs this function
adding also the corresponding unique identifier as follows

http://192.168.1.1/virtualinterfacel?virtualmodule,
202034

The virtualinterfacel web page will be uploaded and this,
in turn, will be connected to the virtual interface server
through a websocket identifying itself as the server of the
client page 2034. It will make the connection:

ws: //192.168.1.1: 8080/virtualmodule? S2034

In our example, the web page that is loaded on mobile
phones only registers the position of the phone on one of its
axes and transmits it through the websocket. Each of the vir-
tual interfaces sends the information to the virtual interfaces

WEBPAGE

—_—

| WEBPONG2

points detected

P

<

—
player components

Fig. 4 Connection between a webcam with two IR pointers and the two-player pong game

@ Springer

J Multimodal User Interfaces (2018) 12:125-143

131

VIRTUAL INTERFACE SERVER

Fig. 5 Connection of two
virtual devices for the
two-player pong game

VIRTUAL INTERFACE MODULE

WEB PAGE

module which, in turn, distributes the information between
the different connected client applications.

In the case shown in Fig. 5, the client page requests two
virtual interfaces to the WIAS, this gives an identifier and
tells the users of the mobile which virtual page to connect in
order to interact.

2.5 Connecting the interaction devices

There are several ways to connect physical and virtual inter-
action devices to a local network depending on the type of
device.

Most of the existing ones need to be connected to a
computer if they are not already connected to them. As an
example, a web camera connected by USB or integrated
directly to a computer that is part of the local network. The
same goes for Arduino sensors or other microcontrollers.
They are in general connected by USB or, in their case, by
Bluetooth. By Bluetooth, the problem is conceptually the
same, but without cables. The device is paired to one of the
computers and only accessible from the computer.

A different case is a device that has a Wi-Fi integrated in it
(for example an IOT). In this case, the device can be accessed
directly by the local Wi-Fi network. There is no need to have a
websocket server on one of the nodes. We hope that in general
the IOT devices tend to be this type of connections. With the
current developments in Open Hardware, it is possible to use
devices of this type for a reasonably low price (ex. ESP32).

Thus, we will have a set of interaction devices or sen-
sors that are anchored to the different nodes of the network
and that need specific source modules for each specific OS.
Therefore, as already mentioned above, each of these nodes
will necessarily need a websockets server to store these mod-
ules. On the other hand, there will be the devices that already
manage websockets to be used in the local network and, these,

VIRTUAL
INTERFACE

VIRTUAL
MODULE

VIRTUAL
INTERFACE

do not need to be housed in any of the nodes although it is
necessary to have the meta-information of their capabilities.

Anyway, in all cases, we need to know in which direc-
tion it is and its port (your websocket) in order to access the
interaction information that can generate us.

This is one of the most important functions of WIAS, this
server is responsible for maintaining the information of the
devices available for interaction and the modules accessible
on the network as well as their connections.

It is important to have a fixed domain name as web pages
are not allowed by default to access the local network in
which they are running although it can make requests to
servers that are on it.

2.6 The WIAS server (Web Interface Address Server)

The WIAS server (our I-o-I server) keeps remote peripheral
information available at all times. It is a concept similar to the
cloud butin alocal environment, on a LAN. When a user (web
client) wishes to use a remote peripheral, it consults WIAS
about the actual availability. It answers the user with all the
features of such peripheral and cluster processing modules, or
also the virtual interfaces necessary to establish and maintain
a connection. With them, the client simply has to connect and
start using the device, as seen in the Fig. 6.

In terms of architecture there are two logical levels: the
level of maintenance and exploitation of the availability infor-
mation of peripherals and, the level of real connections to
different peripherals.

The WIAS server, therefore, is responsible for performing
the directory tasks of the interfaces that are available and
already installed on the local network (LAN).

The main task of WIAS is to provide client web appli-
cations with the information they need to get in touch (ie
create the communication link) with the desired peripherals

@ Springer

132

J Multimodal User Interfaces (2018) 12:125-143

WEB
PAGE

UNIFICATION
MODULE

PROCESS

SOURCE
MODULE MODULE

.

List of modules
ordered by appearance

Calls to modules

opening its WebSockets at

(address:port)

Fig. 6 The connection information provided by WAIS to a client page and the activation of the modules

that are distributed in the LAN. It is equivalent to a DNS in
the network, which is able to associate names with physi-
cal addresses. The following is how Web applications create
links to peripherals via WIAS addressing.

2.7 Creating the peripheral-web client link

When a web application starts, it can be in two possible situa-
tions from the point of view of the knowledge of the interface
devices to use.

1. Neverrun before: in this case the web application does not
have the necessary information to connect to the periph-
erals, so you must obtain it by making a request to WIAS.

2. The application has already been executed other times:
in this second scenario the client application already has
the connection information to the peripherals, so it can
choose to use this or request new data from WIAS. In
this case the client application makes use of the new fea-
tures of HTMLS5 that allow to save information in a local
repository of the client machine.

2.8 Request information from WIAS

The WIAS server located in the same LAN has a fixed name
in the local network which is accessible and known by any
client of the LAN that wants to use its services.

When a web application starts up and is in the “1” situation
described in the previous point, or if it is in the “2” situation
and you want to change physical (peripheral) devices, you
must make a request for information about available devices
through a SOAP query. The WIAS responds with a list of
available web peripherals that are compatible with the fea-
tures that the client will have specified in the query. These
characteristics specify the client’s requirements regarding the
interfaces. For example, when the client queries the avail-
ability it will indicate that it needs two devices type range of
values and a button.

Once the client receives the list of peripherals of the
WIAS, it selects the ones that you want to use and establish
with them a communication via websocket (Socket-D), that

@ Springer

is to say, a direct link with them where they will receive the
information of the use of the peripheral. From that moment,
the peripherals can already be used by the client application.
All this protocol can be seen graphically in Fig. 7 or more
simplified in Fig. 8.

It does not matter where hardware devices are physically
installed. The only requirement is that they are accessible on
the local network and registered with both their characteris-
tics and their connection information in the WIAS database.

2.9 The MVCI design pattern

The development described in this article actually represents
a new gear in the Model-view—controller, MVC design pat-
tern.

What is proposed in this work is to free the programmer
and the user of web applications from all the details concern-
ing the physical aspects of the peripherals and configurations
of the operating system, so that it only has to pay attention
to the possibilities that it offers the established standard.

For instance, if a web client running an Arkanoid type
game (The Wall) wants to use an interface-type peripheral
to govern X-axis motion, it will simply ask for the devices
available to the server (range type) and once one is chosen, a
connection will be established between the two of them via
websocket. In this way, from the point of view of the web
application, all the peripherals of the same type are the same,
whereas from the physical point of view, a peripheral that
provides values for a displacement in x can be a keyboard, a
mouse, a joystick, a motion detection camera, etc.

We believe that our work presented here is placing a new
branch in the MVC model, the concept I (Interface). A new
world of possibilities in the field of interaction of users with
web applications is opened with this new paradigm.

2.10 Implementing the WIAS server

To carry out the development of the WIAS server we have
chosen to make use of a service-oriented architecture (SOA).

The server is in an application container, capable of per-
forming the functions of web server which will enable the

J Multimodal User Interfaces (2018) 12:125-143

133

WEB

PAGE |-0-| SERVER

‘ WEB PROTOCOL ESTABLISHMENT

4. USER OF WEB PAGE CHOOSES Yn INTERAFACE

1. WEB PAGE HAS X REQUIREMENTS
2. SERVER FILTERS INTERFACES USING X
3. SEVER RESPONDS WITH Y INTERFACES

5. WEB PAGE SENDS Yn INTERAFACE
6. SERVER LOADS INTERFACE Yn AND
INTERMEDIATE MODULES
7. SERVER SENDS [6] TO WEB PAGE
8. WEB PAGE LOADS FIRST MODULE

Fig. 7 Process of a client page requesting an interface

Ask disponibility

WEB browser

APACHE

TOMCAT

wis

MYSQL

Hi

///—* List

x Item 3

ftem 1

Item 2

List of ready devices
and their addresses

Fig. 8 Sequence of an availability request to WIAS

creation of an intranet that will facilitate the maintenance of
the database of the WIAS server, and on the other hand, to
provide information by making available of the LAN a series
of web services.

The database, situated in a MySQL DBMS, contains the
necessary information to carry out the deployment of the new
defined development pattern MVCI. This database is acces-
sible via Java links for the purposes of the server itself and
via web services for potential clients who request it from the
local network. Such clients can be both web applications and
interface control modules. It is possible to use other servers
although in the initial prototype we use this one. See Fig. 9
for more details.

2.11 Logical interface layer

The I of the new MVCI pattern takes shape from the creation
of alogical scheme of types of interface information that the
user can receive. This set of inputs is sufficiently formable
so that, in the future, it could allow new extensions of new
types of information. In the beginning, the following types
of interface inputs are established:

e range: returns the value of a dimensional component,
which can vary between a maximum value and a min-
imum value (min and max attributes).

@ Springer

134

J Multimodal User Interfaces (2018) 12:125-143

WEB PAGE

'WEB SERVICES

INTRENET

APACHE TOMCAT

JAVA, JSON, JSP, SOAP

WEB SERVICE

HTTP RESPONSE HTTP REQUEST

Fig. 9 General scheme of WAIS

e streaming: informs about the address from which audio

and/or video transmission data are obtained (URL attribute).

e img: sending image type information (null attribute).

e keyboard: string information (null attribute).

e button: discrete type information set capable of sending
the following events: press, release, click, double-click.

e time: timestamp.

According to this set of definitions of information types
we establish the following types of virtual interfaces:

rangel: provides a range-type value.

range2: provides two range type values.

range3: provides three range type values.

img: provides image information.

streaming: provides audio information.

streamingv: provides video information.

keyboard: provides character frames (string).

button1: provides button type information.

button2: provides information for two buttons.

mousel: provides the information corresponding to a

button and two ranges of values.

. mouse-wheel: provides the information corresponding
to three buttons and three ranges.

. time: timestamp.

COXTIAAN A DN =

[y [
—_

—_
[\

@ Springer

According to the above, you can check the ease with which
you can declare new types of inputs and combine these into
new definitions of web interfaces. Thus, we can define a
Database schema that can persistently contain and maintain
a malleable structure of sets of interfaces and their charac-
teristics.

The final DATABASE contains much more information,
but in terms of the logical layer of web interface manage-
ment two “infotype” and “device” tables are defined. The
first one contains everything necessary to satisfy the require-
ments of the web clients that want to use the peripherals of
the LAN, such as their access address, interaction charac-
teristics offered (button, range, ...) and their current status
(busy/available).

All this information will serve to offer a collection of
skillful peripherals when the user requests a type of inter-
action device. In the second of these tables is the information
regarding the connection parameters needed by the differ-
ent logic modules. These parameters are used to establish
the physical link and the processes that control the input of
data and direct it from the physical peripheral to the web
application.

In addition to these two tables, other tables for the man-
agement of connections are in the database, since at all times
the system must know the actual state of the connections,
who uses each physical peripheral and what modules are
connected and with whom it is connected. In addition, it also
has information in a history log, as well as the interaction
data with the device type, in order to collect statistical and
control data.

The process for requesting a LAN device is as follows:
when a web application requests information from WIAS
about the availability of a series of devices that meet its needs,
it responds with a list of available devices that conform to
those requirements. Thus, in this scenario we can establish
the communication protocol that will be explained in the
following session.

In Fig. 10, the client webpage can perform page requests
over the entire web. If it is in the local mode, it can only ask
for the devices defined in the local environment.

2.12 WIAS HTTP protocol

There are two states in the HTTP protocol that can be estab-
lished which are “Request” and “Response” according to the
state. There are two different information frames correspond-
ing to these two states.

“Request” operation launches the client web to the WIAS
through a soap request to a Web Service:

J Multimodal User Interfaces (2018) 12:125-143

135

LOCAL NETWORK
3
Modules list Modules REQ =
interface0 % -
interface1 Modules RESP
interfaceN 4

INTERNET

HTTP REQ

HTTP RESP

i

Webclient

Fig. 10 Overview of the system taking into account the local network with the WWW

{
"REQUEST" : {
"ASK-FOR" : {
"RANGE" : 2,
"BUTTON" : 1
}
}
}

Corresponding to this request the WIAS server responds
with the following JSON frame:

{
"RESPONSE" : {
"I-HAVE" : {
“"DEVICE" : {
“Ip"™ 1'
"URL" : "SOCKET URL",
“"DEF" : “DEFINCION JSON"
},
“"DEVICE" : {
IIIDII : N’
"URL" : "SOCKET URL",
“"DEF" : "DEFINCION JSON"
}
}
}
}

When a page needs to connect to a server, it first queries
the WIAS to know which ones are available and chooses the
one the user needs. Then, the chosen server will give the

service address and the page access to the socket server that
connects to the desired device.

The server maintains the meta information of all the inter-
face servers scattered over the local network.

2.13 Overview of the system

Figure 11 shows a global view of how the system works in
an sample process. It passes all the major components and
the connection processes from step 1 to 4.

Step 1.- A web page is loaded. It requests a list of available
physical and virtual interfaces.

Step 2.- The user chooses an interface. The WIAS returns
the entire path of the websockets.

Step 3.- The client page activates the process module A
which in turn, activates the source module B.

Step 4.- The process of sending information from the WEB-
CAMT to the application web is started through all
the intermediate modules.

2.14 Examples for the proof of the design concept

This section presents some of the interaction interfaces we
implemented through the websockets that illustrate the feasi-
bility and potential of our framework. Except for the control
example of an operating system, all the others are web pages
that code the games in JS. These games were picked up from
the internet and adapted to our interface via websockets using
our concept.

2.14.1 First example: Pong set with analog potentiometers

Using our user interface concept, this example shows much
more precise action than the mouse or keyboard with a

@ Springer

136

J Multimodal User Interfaces (2018) 12:125-143

Fig. 11 A global view of the
system process with all its
components and the connection

=

HTTP REQ and RESP

Application
Web

4. Data flow

SOURCE
MODULE A

CAMERA 13

(]
=
-
=S
°
8
<

RX N

Fig. 12 Connection of the potentiometers with the Arduino unit

smoother response. The game consists of a webpage to play
the old and well-known pong game. When loading the game
page in the browser, the page is connected to the given web-
socket and interaction occurs through the potentiometers. In
the server interface system there is an open websocket that
supplies the position information of each potentiometer. The
connection scheme of the websockets can be seen in Fig. 3.
The sensor module is an Arduino unit connected by USB to
the system that sends the position of each potentiometer at
regular intervals. The position information is then offered to
the websocket clients. The connection diagram of the poten-
tiometers with the Arduino unit is illustrated in Fig. 12.

@ Springer

LIST OF INTERFACES
AND MODULES

PUBLIC
1. Camera 13
2. Wecam 7
3. Potentiometer 1

Interfaces 2-5-7 INTERN

2 4. Source Module A
5. Source Module B
6. Source Module C

7. Process Module A

PROCESS
MODULE A

©

3. Activates WebSockets
SOURCE
SOURCE MODULE C
MODULE B

POTENTIOMETER 1

WEBCAM 7

In Fig. 12, the analog values AO and A1 are read, with a
range of 0-1024 that are sent in pairs via the serial port to the
source module.

2.14.2 Second example: the balance game

The game was adapted from a web page to play with the scale.
An old scale was used taking advantage of its sensors. We
designed a small signal conditioning module for the ampli-
fication of the signal in the platform before connecting with
the Arduino unit. In this case, the Arduino unit sends 4 values
corresponding to the weight readings of each of the sensors.
And, through these four values, the user’s center of gravity
used by the game can be successfully calculated as shown in
Fig. 13.

2.14.3 Third example: Pong game using the center of
gravity of a player

To control this pong game we use the interaction device that
we developed in example 2 with four weight sensors. It uses
the same client page as example 2 to play, but connecting to
another service of the same server which shows the reusabil-
ity of the interface concept. In this case, it measures the center
of gravity of the player to move the paddle in the game. To
make this pong game works, it requires an intermediate pro-
cessing module that translates the information to a single
vertical variable. This corresponds to the vertical center of
gravity of the player (see Fig. 14).

J Multimodal User Interfaces (2018) 12:125-143 137

QUALIFYING LEVEL
59.6FPS

&3

== Punto de equilibrio

SPEED
350

Fig. 13 Components of the balance game using the center of gravity of a player

Fig. 14 Components of the pong game using the center of gravity of a player

2.14.4 Fourth example: Pong game with mobile phones for together using their mobile phones as the paddles in front of
4 players a projector screen. The web page corresponding to the game
requests a virtual interface for four players and connects to the

This is a game scheme which was illustrated earlier in this virtual interface server. In addition, it shows the address in the
article and corresponds to Fig. 3. Four players can play = web page of the virtual interface for the mobile phones that

@ Springer

138

J Multimodal User Interfaces (2018) 12:125-143

Puntuaciones

BLANCO: 0

AMARILLO: 0

Virtual interface
module

Fig. 15 The connection between the virtual interfaces hosted in the 4 mobile phones and the four-player pong game snapshot on a large screen

is nothing more than some Java Script code. The code reads
one of the orientation axes of the mobile phone and sends
the information to the virtual interface server. Finally, the
virtual interface server sends the parameters of the 4 players
to the four-player pong game customer pages. A complicated
4 player game becomes so easy to be implemented and the
players enjoyed playing the game together. A screenshot of
the game can be seen in Fig. 15.

As shown in Fig. 15, the web pages housed in the mobile
phones read from their sensor one of the components of
the position sensor and send this value through the web-
socket to the virtual interface module. After that, the virtual
interface module groups the four read values to the pong
game of pong that translates the values to paddle move-
ments.

@ Springer

2.14.5 Fifth example: Pong game with infrared light

This is an illustrative example of using input devices con-
verted into interaction devices. In this case, we use a
computer’s camera to turn it into an interaction device. We
limit the light entering the camera by blocking it using the
surface of a used 3.5” floppy disk. This facilitates the pro-
cessing for computers with little power. We built a pointer
with a button and an infrared led on the tip. The acquisition
module takes control of the computer’s camera and ana-
lyzes each image for bright points generated by the infrared
pointers in each player’s hands. Players move the paddle
with the movement of the pencil and the button pressed.
The connection diagram is very similar to that of Fig. 4,
only one coordinate point corresponding to the x of the

J Multimodal User Interfaces (2018) 12:125-143

139

Fig. 16 The pong game with infrared light

detected point is sent. Figure 16 shows the components of
the game.

The two images in Fig. 16 taken from the back and front
illustrating the components involved in the pong game with
infrared light. The computer on the left shows the image that
the module receives from the computation of its position.
On the right, the player holding the infrared pencil. In the
bottom left of the image you can see the webcam that detects
the infrared light.

2.14.6 Sixth example: using smart phone to control the
mouse and keyboard of a computer

This example is mainly oriented to the field of teaching, with
which a teacher can give a class from any point of the class-
room using only his smartphone without having to be in front
of his computer. However, it is not only tied to that use since
the remote use of the computer favors the accessibility of
the systems. There are similar applications already available
today [6], but we were interested in having control of the
system in order to easily adapt it to our framework.

At the time of writing the article, it had not yet been fully
integrated into our framework since the server used was run-
ning on the client computer and the mobile was connected to
it. But, we have proved that it can be transformed into a web
client.

It should be noted, however, the great flexibility of having
aterminal client (it can also be a service, or a graphical appli-
cation) that is coupled to the guest operating system. Since
it works with node.js and robot.js [9], any OS that supports
them is plausible to be fully integrated in our framework and
any interface or combination of them can interact directly
with the operating system. It currently works with Mac OS
X, Windows, Linux, BSD, Unix, ChromeOS. It will be true
for other devices such as smartv, etc. This opens the door
to the use of interfaces easily elaborated and adapted to the
people with special needs at the price of a conventional inter-

action device (our previous examples already confirmed it).
Interfaces can be generated as easily as web pages without a
great knowledge of their internal operation.

The current operating mode of this example has been
implemented. Using the same WebSocket infrastructure
within a local network, the instructor’s smartphone (also
called VIRTUAL INTERFACE in our system) will connect
to the computer you want to control, allowing you to carry out
any action you could perform using your mouse or keyboard.
Any action performed on the smartphone will communi-
cate with the open service on the computer, which will act
accordingly to the message received. See Fig. 17 for how the
interaction works.

In the Fig. 17 you can see the process of connecting the
virtual interface to the virtual interface server. In the image
on the right the user has the screen for the introduction of
their credentials. Once validated and authenticated, access to
the home screen in the left image is established. In the home
screen the user has the possibility to adjust some interaction
parameters if the default ones are not to his liking and, most
importantly, reset the position of the mobile to the relative
position of the projector to maintain an ergonomic position
in the interaction. This is done by clicking on the icon of the
mobile that is represented in the virtual page.

In Fig. 18. the two images are the two interaction screens
with the virtual web interfaces on the computer (it is a
web page). In the image on the left, the user interacts with
the operating system in a pointer mode. The mobile phone
movements are interpreted as the cursor movement for the
computer. In the image on the right, the user inputs commands
in the mobile phone as if it is a unix terminal. The system
also supports control commands ctrl-c, ctrl-z, etc...also for
Windows system.

On the other hand, the computer will start the process of
listening for connection requests. Once the request is heard
the new client will be accepted and will wait for messages.
For each message received, this service will receive corre-

@ Springer

140

J Multimodal User Interfaces (2018) 12:125-143

Fig. 17 The process of connecting the virtual interface (smart phones) to the virtual interface server

Fig. 18 The two interaction screens with the computer virtual web interfaces

CLICK
SWIPE
INPUT TEXT

D%—J

WebSocket ACTIONS.

APPLY ACTIONS
node.js SERVER
WebSocket

Fig. 19 Interaction between the virtual interface hosted on the mobile phone and the operating system

sponding type of action and execute it, using a library called
Robot]JS that has facilitated direct interaction with the OS.

Figure 19 shows the interaction between the virtual inter-
face which is hosted on the mobile and the operating system.
The virtual interface server and the webmouse system are
hosted in the operating system.

@ Springer

2.14.7 Seventh example: the MagiCap

This is an example to illustrate the potential use of this
technology in the development of interfaces adapted to peo-
ple with special needs. We call it the MagiCap. Its aim is
to control the mouse pointer by moving the head. For its

J Multimodal User Interfaces (2018) 12:125-143

141

Fig. 20 It shows all the components of the MagiCap. At the front, we
can observe the ir led, it is covered by a small piece of a red balloon (in
order to dim the ir light). On the right, both the battery and the switch
have been affixed. A piece of the negative film shown at the top right
corner must be adhered to the laptop webcam

implementation we have needed a cap, a 1.5 volts battery, a
commutator (for on/off), an infrared led, and a piece of neg-
ative film (as light filter). The total amount of the required
material was less than €5. In Fig. 20, we illustrate all the
components assembled.

L e s oI gme

It is important to use the negative film for the proper func-
tioning of the system. The film acts as a filter blocking the
normal light and letting the ir light pass so that the webcam
is able to capture mainly the ir light.

Assembling the components to the cap is very simple we
just have to insert the ir led in the front part of the visor and
solder two wires which are connected to the battery and the
commutator, being these affixed on the right side of the cap,
as it is shown in Fig. 20.

Now that the physical part of the system has already been
described, we are proceeding to explain the software com-
ponents.

As in the fifth example, we make use of a webcam as an
input device and we use the same software module to detect
the brightest point in every image, the pointsdetector. The
point detected in every image is sent to the client applica-
tion by means of a websocket. This module in action can be
observed in Fig. 21.

The client application (developed in nodejs with RobotJS),
simply connects to the websocket, reads the point sequence,
applies a smoothing filter, converts it into screen coordinates
and moves the cursor to that particular position.

The magiCap has been tested successfully on different
laptops (MacBookPro 2012, Acer Aspire E5) and operating
systems such as Windows 10, Mac OS X and Linux.

o tomeu@tomeu-Aspire-ES-575G: ~/websocketd-0.2.11-linu:

Fig. 21 Shows a screenshot of the system in action. On the right, we can see a terminal printing the detected points. In the background, for
illustrative purposes, we see the image detected by the camera and a blue circle marking the detected point. In the foreground, we show the user

with the magiCap

@ Springer

142

J Multimodal User Interfaces (2018) 12:125-143

Certainly, the precision of the movement depends on the
webcam features, such as the image resolution or the ir sensi-
tivity (the better resolution, the better movement precision).
Concerning the ir sensitivity, we observed that we are able to
adapt the system to the ir sensitivity of the camera removing
the piece of the red balloon from the ir led on the MacBook
or placing it on the Acer. Anyway, it is always possible to
improve the movements precision by reducing the screen res-
olution.

Although an accurate study of this interface on users hasn’t
been carried out, the tests on ourselves have allowed us to
interact successfully with the already mentioned operating
systems.

2.15 Potential applications

In this pilot project, the development has been focused on the
use of virtual devices located in a local network to games,
but the applications offered by the model can be very diverse.
Above all, it gives the idea of how open and scalable the
model is, as well as the multimodal use of any type of devices
(for example, a simple ring with a red ball, a Wi-Fi camera
and a projector connected to the MVCI model can be easily
converted into a virtual whiteboard):

e Support for teaching. It can be easily implemented
environments supporting the teaching task, such as vir-
tual pointers, interactive whiteboards, collective rapid
response tests where each user can, for instance, make
use of his mobile (previous registration in the classroom
LAN), tests of accessibility, etc.

e Systems accessible to people with special needs. It is
also possible to adapt the same application to differ-
ent individuals, each of them with their own mobility
characteristics and their corresponding hardware periph-
erals. For example, you can play a game of pong using a
microphone and two paddles manipulated by two players
respectively.

e Dataflow control. Flow and presence control sensor envi-
ronments can be easily assembled. To control the traffic,
the noise level, the amount of use of areas in shops, etc.

3 Conclusions and future work

We believe that the framework has achieved its objectives,
that is, with few changes, the client web pages are able to
handle different interaction devices regardless of the type of
information they initially provide.

With our model, web pages do not need to worry about
managing different interfaces with their mode of information.
We proved this both by playing pong with gestures, poten-

@ Springer

tiometers and virtual interfaces. This works well thanks to the
fact of disconnecting the interaction devices from the system
and putting them in the cloud. Even they are anchored in a
concrete system, through the websockets we can make them
transparent to the client applications that can use them. In
our scheme, except for the source module, the type of infor-
mation they provide (video, audio, biosignals, etc.) is not
important, it is processed before reaching the client applica-
tion and adapts to the needs of each client application.

In addition, the architecture works well because of the
processing modules which are the ones that actually perform
the transformation process of the interaction information. By
using an SOA model for implementation and with the help of
websockets, the development of new modules and the reuse
of them in other schemes is realized in a simple and orderly
way. Modules are simple programs that read from stdin and
write to stdout in any language available on the node.

With this paradigm, you can open a new development field
in the cloud. Just as there are thousands of developers work-
ing on web development today, it is also possible to work
on web interfaces. Creating an interaction interface becomes
a matter of design and imagination. In fact, with the vir-
tual interfaces is already blurred the concept of web page or
interface because some are the interaction devices of others.
But we must say that the merit is not our framework but the
possibilities offered by HTMLS with the use of websockets,
access to sensors, WebRTC, WebGL, etc.

With the examples proved, we have seen how easy it is
to integrate a new interface into our framework, which, with
the development of the webmouse, also allows to interact
with almost any operating system. In fact, we are working
on the integration of a device that we developed in the past
and because of the cumbersome work of developing drivers
and adapting it to different operating systems, we had to put
it aside [4].

Another important aspect to note is the possibility of
relocating the modules according to the calculation power
requirements.

In addition to analyzing the functionality of the modules,
we can understand the connection schemas as functional pro-
gramming schemas, where each module represents a function
applied to the previous module and the source module is a
time function of type f(t). A connection scheme is then of the
form h(g(f(t))), so one could probably explore the possibility
of programs in cloud.

We believe that a great deal of development work is still
necessary in order to adapt this simple prototype to a real
application situation. But it is also true that, since the scheme
is simple, it is easy for a large community of users to carry
solutions that in the beginning had not been tried. Therefore,
one of our first objectives in the future work will be to provide

J Multimodal User Interfaces (2018) 12:125-143

143

a version available to the community of users of the network
in the form of open source.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

References

1. opensoundcontrol.org an enabling encoding for media appli-
cations. In: opensoundcontrol.org an enabling encoding for
media applications. http://opensoundcontrol.org/introduction-osc.
Accessed 29 Mar 2017

2. Axenopoulos A, Daras P, Malassiotis S et al. (2012) I-SEARCH: a
unified framework for multimodal search and retrieval. The future
internet lecture notes in computer science 130—141. https://doi.org/
10.1007/978-3-642-30241-1_12

3. Doug Engelbart 1968 Demo. In: Doug Engelbart 1968
Demo. http://web.stanford.edu/dept/SUL/library/extra4/sloan/
MouseSite/1968Demo.html. Accessed 29 Mar 2017

4. Estrany B, Fuster P, Garcia A, Luo Y (2008) Human com-
puter interface by EOG tracking. In: Proceedings of the Ist
ACM international conference on PErvasive technologies related
to assistive environments—PETRA ’08. https://doi.org/10.1145/
1389586.1389694

5. Etzold J, Brousseau A, Grimm P, Steiner T (2012) Context-aware
querying for multimodal search engines. Lecture notes in computer
science advances in multimedia modeling 728-739. https://doi.org/
10.1007/978-3-642-27355-1_77

10.

11.
12.

13.

14.

15.

16.

17.

18.

. Keyboard, Mouse and Touchpad. In: Turn iPhone, iPad and

Android into wireless mobile mouse/trackpad/keyboard with
Remote Mouse. http://www.remotemouse.net/. Accessed 29 Mar
2017

. Multimodal Interaction Working Group Charter. In: Multi-

modal interaction working group. https://www.w3.0rg/2013/10/
mmi-charter.html. Accessed 29 Mar 2017

. Reithinger N, Streit M, Tschernomas V, et al. (2003) SmartKom.

In: Proceedings of the 5th international conference on Multimodal
interfaces—ICMI *03. https://doi.org/10.1145/958432.958454

. RobotJS-Node.js desktop automation. In: RobotJS - Node.js desk-

top automation. http://robotjs.io/. Accessed 29 Mar 2017
Spacebrew. In: Spacebrew. http://docs.spacebrew.cc/. Accessed 29
Mar 2017

TUIO.org. In: TUIO. http://www.tuio.org/. Accessed 29 Mar 2017
W3C. In: W3C multimodal interaction working group. https:/
www.w3.0rg/2002/mmi/. Accessed 29 Mar 2017

WebSocketsthe UNIX way. In: websocketd. http://websocketd.
com/. Accessed 29 Mar 2017

OpenCV library. In: OpenCV library. http://opencv.org/. Accessed
29 Mar 2017

Arduino-ArduinoYun. In: Arduino-ArduinoYun. https://www.
arduino.cc/en/Guide/ Arduino Yun. Accessed 29 Mar 2017
Arduino.org. In: Arduino open source hardware and software for
electronic projects. http://www.arduino.org/. Accessed 29 Mar
2017

The Internet of Things with ESP32. In: The Internet of Things with
ESP32. http://esp32.net/. Accessed 29 Mar 2017

FFmpeg. In: FFmpeg. http://ffmpeg.org/. Accessed 29 Mar 2017

@ Springer

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://opensoundcontrol.org/introduction-osc
https://doi.org/10.1007/978-3-642-30241-1_12
https://doi.org/10.1007/978-3-642-30241-1_12
http://web.stanford.edu/dept/SUL/library/extra4/sloan/MouseSite/1968Demo.html
http://web.stanford.edu/dept/SUL/library/extra4/sloan/MouseSite/1968Demo.html
https://doi.org/10.1145/1389586.1389694
https://doi.org/10.1145/1389586.1389694
https://doi.org/10.1007/978-3-642-27355-1_77
https://doi.org/10.1007/978-3-642-27355-1_77
http://www.remotemouse.net/
https://www.w3.org/2013/10/mmi-charter.html
https://www.w3.org/2013/10/mmi-charter.html
https://doi.org/10.1145/958432.958454
http://robotjs.io/
http://docs.spacebrew.cc/
http://www.tuio.org/
https://www.w3.org/2002/mmi/
https://www.w3.org/2002/mmi/
http://websocketd.com/
http://websocketd.com/
http://opencv.org/
https://www.arduino.cc/en/Guide/ArduinoYun
https://www.arduino.cc/en/Guide/ArduinoYun
http://www.arduino.org/
http://esp32.net/
http://ffmpeg.org/

	Multimodal human-machine interface devices in the cloud
	Abstract
	1 Introduction
	1.1 State of the art

	2 The scenario
	2.1 Architecture
	2.2 Websockets servers
	2.3 Client applications
	2.4 Implementation of websockets servers and their modules
	2.5 Connecting the interaction devices
	2.6 The WIAS server (Web Interface Address Server)
	2.7 Creating the peripheral-web client link
	2.8 Request information from WIAS
	2.9 The MVCI design pattern
	2.10 Implementing the WIAS server
	2.11 Logical interface layer
	2.12 WIAS HTTP protocol
	2.13 Overview of the system
	2.14 Examples for the proof of the design concept
	2.14.1 First example: Pong set with analog potentiometers
	2.14.2 Second example: the balance game
	2.14.3 Third example: Pong game using the center of gravity of a player
	2.14.4 Fourth example: Pong game with mobile phones for 4 players
	2.14.5 Fifth example: Pong game with infrared light
	2.14.6 Sixth example: using smart phone to control the mouse and keyboard of a computer
	2.14.7 Seventh example: the MagiCap

	2.15 Potential applications

	3 Conclusions and future work
	References

