LNCS 2652

Francisco Jose Perales
Aurélio J.C. Campilho
Nicolds Pérez de la Blanca
Alberto Sanfeliu (Eds.)

Pattern Recognition
and Image Analysis

First Iberian Conference, IbPRIA 2003
Puerto de Andratx, Mallorca, Spain, June 2003
Proceedings

&)
i :
@ Sprmger

X




Lecture Notes in Computer Science 2652
Edited by G. Goos, J. Hartmanis, and J. van Leeuwen



Springer
Berlin
Heidelberg
New York
Hong Kong
London
Milan

Paris

Tokyo



Francisco José Perales
Aurélio J. C. Campilho
Nicolas Pérez de la Blanca
Alberto Sanfeliu (Eds.)

Pattern Recognition
and Image Analysis

First Iberian Conference, IbPRIA 2003
Puerto de Andratx, Mallorca, Spain, June 4-6, 2003
Proceedings

Springer




Volume Editors

Francisco José Perales

Department of Mathematics and Computer Science
C/Valldemossa km 7.5, PC 07122, Palma de Mallorca, Spain
E-mail: paco.perales @uib.es

Aurélio J. C. Campilho

Universidade do Porto, Faculdade de Engenharia
INEB - Instituto de Engenharia Biomédica

Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
E-mail: campilho@fe.up.pt

Nicolas Pérez

Universidad de Granada, E.T. S. Ing. Informaética
Departamento de Ciencias da la Computacion e I.A.
18071 Granada, Spain

E-mail: nicolas @decsai.ugr.es

Alberto Sanfeliu

IRI, Institut de Robotica i Informatida Industrial
Technological Park of Barcelona, U. Building

St. LLorens i Artigas 4-6 2nd Floor, 08028 Barcelona, Spain
E-mail: asanfeliu@iri.upc.es

Cataloging-in-Publication Data applied for

A catalog record for this book is available from the Library of Congress

Bibliographic information published by Die Deutsche Bibliothek
Die Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliographie;
detailed bibliographic data is available in the Internet at <http://dnb.ddb.de>.

CR Subject Classification (1998): 1.4, 1.5, 1.7, 1.2.7, 1.2.10

ISSN 0302-9743
ISBN 3-540-40217-9 Springer-Verlag Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are
liable for prosecution under the German Copyright Law.

Springer-Verlag Berlin Heidelberg New York
a member of BertelsmannSpringer Science+Business Media GmbH

http://www.springer.de

© Springer-Verlag Berlin Heidelberg 2003
Printed in Germany

Typesetting: Camera-ready by author, data conversion by DA-TeX Gerd Blumenstein
Printed on acid-free paper SPIN: 10933381 06/3142 543210



Preface

IbPRIA 2003 (Iberian Conference on Pattern Recognition and Image Analysis)
was the first of a series of similar events organized every two years, by AER-
FAT (Asociacién Espanola de Reconocimento de Formas y Anélisis de Imédgenes)
and APRP (Associagdo Portuguesa de Reconhecimento de Padrdes). In 2003
it was hosted by the Universitat de les Illes Balears, Departament de Ciencies
Matematiques i Informatica. It provides an international forum for presentation
of ongoing research in computer vision, image analysis, pattern recognition and
speech recognition. Taking into account the new frontiers of information soci-
ety programs where images and audio are fundamental in the communication
process, new applications are also being addressed, namely videoconferencing,
motion detection, human tracking and speech applications. The response to the
call for papers for this conference was very good. From 185 full papers submitted,
130 were accepted, 72 being presented as oral presentations and 58 as posters.
The review process was carried out by the Program Committee, each being pa-
per assessed by at least two reviewers. We are specially indebted to the Program
Committee and the reviewers for the effort and the high quality of the reviews,
which allowed us to prepare this book. An acknowledgement is also due to the
authors for responding to our call and for sharing with us their work, their views
and enthusiasm.

The conference benefited from the collaboration of the invited speakers Prof.
J. Aggarwal from the Computer & Vision Research Center University of Texas
at Austin (USA), Prof. L.I. Kuncheva from the School of Informatics, University
of Wale at Bangor (UK), and Prof. A. Zisserman, Department of Engineering
Science, University of Oxford (UK). We also would like to express to the invited
speakers our sincere gratitude.

We are very grateful to all the members of the organizing committee. Their
intensive work allowed a smooth organization of the conference and of this pro-
ceedings. Finally, we are very pleased to welcome all the delegates who attended
in the conference. For those did not attend, we hope this book provides a broad
but detailed view of the research presented during the conference. Looking for-
ward to meeting you at the next IbPRIA conference, in Portugal, 2005.

June 2003 F.J. Perales and A.J.C. Campilho



Organization

IbPRIA 2003 was organized by AERFAI (Spanish Association for Pattern Recog-
nition and Image Analysis) and APRP (Associagdo Portuguesa de Reconheci-
mento de Padroes), and, as the local organizer of this edition, the department
of Mathematics and Computer Science, Universitat de les Illes Balears (UIB).

General Conference Co-chairs:

Organizing Chairs:

F.J. Perales Lopez, Computer Graphics and Vi-
sion Group, Mathematics and Computer Sci-
ence Department, UIB (Spain)

Aurelio J.C. Campilho, INEB, Instituto de En-
genharia Biomédica, Faculdade de Engenharia
Universidade do Porto (Portugal)

A.  Amengual, J.M. Buades, G. Fontanet,
M. Gonzélez, A. Igelmo, A. Juanico,
C.S. Manresa, R. Mas, M. Mascaré Portells,
A. Mir, G. Oliver, A. Ortiz, P. Palmer (UIB,
Spain), J. Marti (U. Girona, Spain), F. Pla
(U. Jaime I, Spain)



Aggarwal, J.K.
Alvarez, L.M.
Aratjo, H.
Ayache, A.
Bioucas, J.
Bunke, H.
Campilho, A.J.C.
Casacuberta, F.
Del Bimbo, A.
Deriche, R.
Figueiredo, M.
ter Har Romeny, B.
Kamel, M.
Katsaggelos, A.
Kittler, J.
Maravall, D.
Medioni, G.
Ney, H.

Oja, E.
Padilha, A.J.
Perales, F.J.
Pérez de la Blanca, N.
Petrou, M.

Pla, F.
Principe, J.C.
Reid, I.
Sanfeliu, A.
Shirai, Y.
Smeulders, A.
Triggs, B.
Trucco, E.
Verri, A.

Vidal, E.
Viergever, M.
Villanueva, J.J.
Zisserman, A.

Organization VII

Program Committee

University of Texas, USA

University Las Palmas de GC, Spain
University of Coimbra, Portugal
IRIT-ENSEEIHT, Toulouse, France

Tech. University of Lisbon, Portugal
University of Berne, Switzerland
Universidade do Porto, Portugal
Polytechnical University of Valencia, Spain
University di Firenze, Italy

INRIA, France

Technical University of Lisbon

University of Utrecht, The Netherlands
University of Waterloo, Ontario, Canada
Northwestern University, USA

University of Surrey, UK

Polytechnical University of Madrid, Spain
University of Southern California, USA
RWTH Aachen, Germany

Helsinki University of Technology, Finland
Universidade do Porto, Portugal
Universitat de les Illes Balears, Spain
University of Granada, Spain

University of Surrey, UK

University of Jaime I, Spain

University of Florida, USA

Oxford University, UK

Polytechnical University of Catalunya, Spain
Osaka University, Japan

University of Amsterdam, The Netherlands
INRIA Rhoéne-Alpes, France

Heriot-Watt University, UK

Universita di Genova, Italy

Polytechnical University of Valencia, Spain
University of Utrecht, The Netherlands
Universitat Autonoma de Barcelona, Spain
Oxford University, UK



VIII  Organization

Abésolo, M.J.
Alves, J.
Baldrich, R.
Barbosa, J.
Baumela, L.
Benedi, J.M.
Corte, L.
El-Sakka, M.
Garrido, A.
Gonzalez, M.
Gonzalez, Y.
Igelmo, A.
Juan, A
Lopez, M.A.
Marti, E.
Marti, J.
Mas, R.
Mendonga, A.
Monteiro, J.
Oliver, G.
Otazu, X.
Peinado, A.M.
Pimenta, A.
Pina, P.
Pinho, A.
Radeva, P.
Roca, X.
Rubio, A.J.
Salvador, J.
Sanchiz, J.M.
Segura, J.C.
Sequeira, J.
Serrat, J.
Sotoca, J.M.
Sousa, B.
Traver, V.J.
Vanrell, M.
Varona, X.
Velhote, M.

Reviewers

Universitat de les Illes Balears, Spain
APRP, Portugal

Univ. Autonoma de Barcelona-CVC, Spain
FEUP, Portugal

AERFAI, Spain

AERFAI, Spain

APRP, Portugal

University of Western Ontario, Canada
University of Granada, Spain

Universitat de les Illes Balears, Spain
Universitat de les Illes Balears, Spain
Universitat de les Illes Balears, Spain
Polytechnical University of Valencia, Spain
University of Jaime I, Spain

Univ. Autonoma de Barcelona-CVC, Spain
University of Girona, Spain

Universitat de les Illes Balears, Spain
APRP, Portugal

APRP, Portugal

Universitat de les Illes Balears, Spain
Univ. Autonoma de Barcelona-CVC, Spain
University of Granada, Spain

APRP, Portugal

CVRM/IST, Portugal

APRP, Portugal

Univ. Autonoma de Barcelona-CVC, Spain
Univ. Autonoma de Barcelona-CVC, Spain
University of Granada, Spain

APRP, Portugal

University of Jaime I, Spain

University of Granada, Spain

APRP, Portugal

Univ. Autonoma de Barcelona-CVC, Spain
University of Jaime I, Spain

APRP, Portugal

University of Jaime I, Spain

Univ. Autonoma de Barcelona-CVC, Spain
Univ. Autonoma de Barcelona-CVC, Spain
FEUP, Portugal



Organization IX

Sponsoring Institutions

MCyT (Ministerio de Ciencia y Tecnologia, Spanish Goverment),
TIC2002-10616-E

Mathematics and Computer Science Department, Universitat de les Illes Balears
(UIB)

TAPR (International Association for Pattern Recognition)

Conselleria d’Innovacié i Energia (Govern de les Illes Balears)

European Union (Human Potential Programme)



Table of Contents

First Iberian Conference on Pattern Recognition and Image Analysis
IbPRIA’2003

Solids Characterization Using Modeling Wave Structures .................... 1
Miguel Adan and Antonio Adan
A Probabilistic Model for the Cooperative Modular Neural Network ........ 11

Luis A. Alexandre, Aurélio Campilho, and Mohamed Kamel

Robust Learning Algorithm for the Mixture of Experts ..................... 19
Héctor Allende, Romina Torres, Rodrigo Salas, and Claudio Moraga

A Robust and Effective Learning Algorithm
for Feedforward Neural Networks Based on the Influence Function ......... 28
Héctor Allende, Rodrigo Salas, and Claudio Moraga

Regularization of 3D Cylindrical Surfaces ............ ..ot 37
Luis Alvarez, Carmelo Cuenca, and Javier Sdnchez

Non-rigid Registration of Vessel Structures in IVUS Images ................ 45
Jaume Amores and Petia Radeva

Underwater Cable Tracking by Visual Feedback ....................... ... 53

Javier Antich and Alberto Ortiz

A Hierarchical Clustering Strategy and Its Application
to Proteomic Interaction Data ....... ... ... i 62
Vicente Arnau and Ignacio Marin

A New Optimal Classifier Architecture
to Aviod the Dimensionality Curse .............coooiiiiiiiiiiiiiiinenenn.. 70
Paul M. Baggenstoss

Learning from Imbalanced Sets through Resampling and Weighting ........ 80
R. Barandela, J.S. Sanchez, V. Garcia, and F.J. Ferri

Morphological Recognition of Olive Grove Patterns ........................ 89
Teresa Barata and Pedro Pina

Combining Multi-variate Statistics and Dempster-Shafer Theory
for Edge Detection in Multi-channel SAR Images .......................... 97
D. Borghys and C. Perneel

High-Level Clothes Description Based on Colour-Texture
and Structural Features ... 108
Agnés Borras, Francesc Tous, Josep Lladds, and Maria Vanrell



XII Table of Contents

A New Method for Detection and Initial Pose Estimation

Based on Mumford-Shah Segmentation Functional ........................
Jose Maria Buades Rubio, Manuel Gonzdlez Hidalgo,

and Francisco José Perales Lopez

Tracking Heads Using Piecewise Planar Models ...........................
José M. Buenaposada, Enrique Munoz, and Luis Baumela

Support Vector Machines for Crop Classification

Using Hyperspectral Data ........ . .. i
G. Camps-Valls, L. Gémez-Chova, J. Calpe-Maravilla, E. Soria-Olivas,

J. D. Martin-Guerrero, and J. Moreno

Vehicle License Plate Segmentation in Natural Images ....................
Javier Cano and Juan-Carlos Pérez-Cortés

High-Accuracy Localization of an Underwater Robot
in a Structured Environment Using Computer Vision .....................
Marc Carreras, Pere Ridao, Joan Batlle, and David Ribas

Determine the Composition of Honeybee Pollen
by Texture Classification ........ ... .. . i i
Pilar Carrion, Eva Cernadas, Juan F. Gdlvez, and Emilia Diaz-Losada

Automatic Word Codification
for the RECONTRA Connectionist Translator ...................cccu...
Gustavo A. Casan and M. Asuncion Castano

The ENCARA System for Face Detection and Normalization .............
M. Castrillon, O. Déniz, and M. Herndndez

Prediction and Discrimination of Pharmacological Activity
by Using Artificial Neural Networks .......... ... ... ..
M. J. Castro, W. Diaz, P. Aibar, and J. L. Dominguez

A Spatio-temporal Filtering Approach to Motion Segmentation ...........
Jesis Chamorro-Martinez, J. Fdez-Valdivia, and Javier Martinez-Baena

Annotated Image Retrieval System Based on Concepts
and Visual Property ... ... .
Junho Choi, Miyoung Cho, Mijin Yoon, Kyungsu Kim, and Pankoo Kim

Multimodal Attention System for an Interactive Robot ...................
Oscar Déniz, Modesto Castrillon, Javier Lorenzo, Mario Herndndez,
and Juan Méndez

New Wavelet-Based Invariant Shape Representation Functions ............
Ibrahim El Rube, Maher Ahmed, and Mohamed Kamel

A Feature Selection Wrapper for Mixtures ...............cccoiiiiiian ..
Mario A. T. Figueiredo, Anil K. Jain, and Martin H. Law

Tracking People for Automatic Surveillance Applications ..................
Luis M. Fuentes and Sergio A. Velastin



Table of Contents XIIT

A User Authentication Technic
Using a Web Interaction Monitoring System ............... ..., 246
Hugo Gamboa and Ana Fred

Recovering Camera Motion in a Sequence of Underwater Images
through Mosaicking .......... ..o 255
Rafael Garcia, Xevi Cufi, and Viorela Ila

Best Achievable Compression Ratio for Lossy Image Coding .............. 263
Jose A. Garcia, Joaquin Fdez-Valdivia, Rosa Rodriguez-Sdnchez,
and Xose R. Fdez-Vidal

Performance and Improvements of a Language Model
Based on Stochastic Context-Free Grammars ............................. 271
José Garcia-Hernandez, Joan Andreu Sdanchez, and José Miguel Benedi

Segmentation of Curvilinear Objects
Using a Watershed-Based Curve Adjacency Graph ........................ 279
Thierry Géraud

Automatic Keyframing of Human Actions for Computer Animation ....... 287
Jordi Gonzalez, Javier Varona, F.Xavier Roca,
and Juan José Villanueva

Robust Line Matching and Estimate of Homographies Simultaneously ... .. 297
José J. Guerrero and Carlos Sagiiés

Modeling High-Order Dependencies in Local Appearance Models .......... 308
David Guillamet, Baback Moghaddam, and Jordi Vitria

An Experimental Evaluation of K-nn for Linear Transforms
of Positive Data ........ouiiii 317
David Guillamet and Jordi Vitria

Wavelet Packet Image Coder Using Coeflicients Partitioning
for Remote Sensing Images ....... ... 326
Su-Young Han and Seong-Yun Cho

Generation and Use of Synthetic Training Data
in Cursive Handwriting Recognition ......... ... . ..o, 336
Muriel Helmers and Horst Bunke

Video-Sensor for Detection and Tracking of Moving Objects .............. 346
Elias Herrero, C. Orrite, A. Alcolea, A. Roy, José J. Guerrero,
and Carlos Sagiiés

Estimation of Anti-bacterial Culture Activity from Digital Images ........ 354
José Jasnau Caeiro and Armando Ventura

Robust Extraction of Vertices in Range Images
by Constraining the Hough Transform ............ .. .. .. .. ... . ... 360
Dimatrios Katsoulas



XIV Table of Contents

Comparison of Log-linear Models and Weighted Dissimilarity Measures ... 370
Daniel Keysers, Roberto Paredes, Enrique Vidal, and Hermann Ney

Motion Segmentation Using Distributed Genetic Algorithms .............. 378
Eun Yi Kim and Se Hyun Park

Supervised Locally Linear Embedding Algorithm
for Pattern Recognition ......... .. . 386
Olga Kouropteva, Oleg Okun, and Matti Pietikdinen

Hash—Like Fractal Image Compression with Linear Execution Time ....... 395
Kostadin Koroutchev and José R. Dorronsoro

Learning of Stochastic Context-Free Grammars

by Means of Estimation Algorithms and Initial Treebank Grammars ...... 403
Diego Linares, Joan-Andreu Sdnchez, José-Miguel Benedt,

and Francisco Torres

Computer-Aided Prostate Cancer Detection

in Ultrasonographic Images ........ ... . .. i 411
Rafael Llobet, Alejandro H. Toselli, Juan C. Perez-Cortes,

and Alfons Juan

Ultrasound to Magnetic Resonance Volume Registration
for Brain Sinking Measurement ........... ... ... i 420
David Lloret, Joan Serrat, Antonio M. Lépez, and Juan J. Villanueva

Segmentation of Range Images in a Quadtree ............................. 428
Robert E. Loke and Hans du Buf

Associative Memory for Early Detection of Breast Cancer ................. 437
Francisco J. Lépez Aligué, Isabel Acevedo, Carlos G* Orellana,
Miguel Macias, and Horacio G. Velasco

Bayesian SPECT Image Reconstruction
with Scale Hyperparameter Estimation for Scalable Prior ................. 445
Antonio Lépez, Rafael Molina, and Aggelos K. Katsaggelos

Reducing Training Sets by NCN-based Exploratory Procedures ........... 453
M. Lozano, José S. Sdnchez, and Filiberto Pla
Probabilistic Observation Models for Tracking Based on Optical Flow ..... 462

Manuel J. Lucena, José M. Fuertes, Nicolas Perez de la Blanca,
Antonio Garrido, and Nicolds Ruiz

Simplified Texture Unit: A New Descriptor of the Local Texture

in Gray-Level Images ...... ... 470
Francisco J. Madrid—Cuevas, R. Medina Carnicer, M. Prieto Villegas,

N. L. Ferndndez Garcia, and A. Carmona Poyato

Active Region Segmentation of Mammographic Masses
Based on Texture, Contour and Shape Features ........................... 478
Joan Marti, Jordi Freizenet, Xavier Munoz, and Arnau Oliver



Table of Contents XV

Refining 3D Recovering by Carving through View Interpolation
and SEEreOVISION .. ... ...t 486
Enric Martin, Joan Aranda, and Antonio Martinez

Chromosome Classification Using Continuous Hidden Markov Models .. ... 494
César Martinez, Héctor Garcia, Alfons Juan, and Francisco Casacuberta

Generalized k-Medians Clustering for Strings ............ ... .. ... ... 502
Carlos D. Martinez-Hinarejos, Alfons Juan, and Francisco Casacuberta

A Quadtree-Based Unsupervised Segmentation Algorithm
for Fruit Visual Inspection .......... ..., 510
Adolfo Martinez Uso

Shape Deformation Models Using Non-uniform Objects
in Multimedia Applications ...............o i 518
Miquel Mascard Portells, Arnau Mir, and Francisco Perales

An Experimental Comparison of Dimensionality Reduction
for Face Verification Methods ........ ..., 530
David Masip and Jordi Vitria

Bayesian Image Estimation from an Incomplete Set
of Blurred, Undersampled Low Resolution Images ......................... 538
Javier Mateos, Miguel Vega, Rafael Molina, and Aggelos K. Katsaggelos

A Procedure for Biological Sensitive Pattern Matching
in Protein Sequences . ....... ... 547
Juan Méndez, Antonio Falcon, and Javier Lorenzo

An Algebra for the Treatment of Multivalued Information Systems ........ 556
Margaret Mird-Julia and Gabriel Fiol-Roig

Adaptive Learning for String Classification ............... ... ..., 564
Ramoén A. Mollineda, Enrique Vidal, and Carlos Martinez-Hinarejos

Multiple Segmentation of Moving Objects
by Quasi-simultaneous Parametric Motion Estimation ..................... 572
Radul Montoliu and Filiberto Pla

Fusion of Color and Shape for Object Tracking
under Varying Illumination ........ ... .. . o i i i 580
Francesc Moreno-Noguer, Juan Andrade-Cetto, and Alberto Sanfeliu

Extending Fast Nearest Neighbour Search Algorithms

for Approximate k-NN Classification ... ... 589
Francisco Moreno-Seco, Luisa Mico, and Jose Oncina
ART-VENA: Retinal Vaseular Caliber Measurement ...................... 598

Antonio Mosquera, Raquel Dosil, Victor Lebordn, Fernando Pardo,
Francisco Gémez-Ulla, Bashir Hayik, Antonio Pose, and Marta Rodriguez

Use of Band Ratioing for Color Texture Classification ..................... 606
Rubén Muniz and José Antonio Corrales



XVI Table of Contents

Does Independent Component Analysis Play a Role
in Unmixing Hyperspectral Data? ....... .. .. . .. 616
José M. P. Nascimento and José M. B. Dias

Vertex Component Analysis: A Fast Algorithm
to Extract Endmembers Spectra from Hyperspectral Data ................ 626
José M. P. Nascimento and José M. B. Dias

On the Relationship between Classification Error Bounds
and Training Criteria in Statistical Pattern Recognition ................... 636
Hermann Ney

Application of Multinomial Mixture Model to Text Classification ......... 646
Jana Novovicovd and Antonin Malik

An Empirical Comparison of Stack-Based Decoding Algorithms
for Statistical Machine Translation .............. ... .. ... 654
Daniel Ortiz, Ismael Garcia Varea, and Francisco Casacuberta

Detection of Colour Channels Uncoupling
for Curvature-Insensitive Segmentation ............ .. ... ... il 664
Alberto Ortiz and Gabriel Oliver

Analyzing Periodic Motion Classification ............. ..., 673
Xavier Orriols and Xavier Binefa

Finding Breaking Curves in 3D Surfaces ........... .. .. ... 681
Xavier Orriols and Xavier Binefa

Robust Segmentation and Decoding of a Grid Pattern
for Structured Light .. ... 689
Jordi Pagées, Joaquim Salvi, and Carles Matabosch

A New Reference Point Detection Algorithm Based

on Orientation Pattern Labeling in Fingerprint Images .................... 697
Chul-Hyun Park, Sang-Keun Oh, Dong-Min Kwak, Bum-Soo Kim,

Young-Chul Song, and Kil-Houm Park

Global Motion Estimation in Sprite Generation
by Eliminating Local Object Motions ........ ... ..ot 704
Sungchan Park, Miyoung Kim, and Gueesang Lee

Automatic Inspection of Wooden Pallets
Using Contextual Segmentation Methods ............ .. ... 712
Miguel Angel Patricio and Dario Maravall

Gabor Wavelets and Auto-organised Structures
for Directional Primitive Extraction ............ ... ..., 722
Marta Penas, Maria J. Carreira, and Manuel G. Penedo

A Colour Tracking Procedure for Low-Cost Face Desktop Applications ....733
F.J. Perales, R. Mas, M. Mascard, P. Palmer, A. Igelmo,
and A. Ramirez



Table of Contents  XVII

Local Motion Estimation from Stereo Image Sequences .................... 740
N. Pérez de la Blanca, J.M. Fuertes, M. Lucena, and A. Garrido

A Change Validation System for Aerial Images
Based on a Probabilistic Latent Variable Model ........................... 748
Fernando Pérez Nava

Petrographic Classification at the Macroscopic Scale
Using a Mathematical Morphology Based Approach ....................... 758
Pedro Pina and Teresa Barata

On the Efficiency of Luminance-Based Palette Reordering
of Color-Quantized Images ... 766
Armando J. Pinho and Anténio J. R. Neves

Feature-Driven Recognition of Music Styles ........... . ..., 773
Pedro J. Ponce de Ledn and José M. Inesta
Multiple Model Approach to Deformable Shape Tracking ................. 782

Daniel Ponsa and Xavier Roca

Pixel-Based Texture Classification by Integration
of Multiple Texture Feature Evaluation Windows ......................... 793
Doménec Puig and Miguel Angel Garcia

Vessel Segmentation and Branching Detection

Using an Adaptive Profile Kalman Filter

in Retinal Blood Vessel Structure Analysis ........ ..., 802
Pedro Quelhas and James Boyce

Reconstruction of Quadrics from Two Polarization Views ................. 810
Stefan Rahmann

Some Results about the Use of Tree/String Edit Distances
in a Nearest Neighbour Classification Task ........... .. .. .. .. .. . ... 821
Juan Ramdn Rico-Juan and Luisa Mico

Line Detection Using Ridgelets Transform
for Graphic Symbol Representation ............. ... ... ... ... ... 829
Oriol Ramos Terrades and Ernest Valveny

Tree-Structured Representation of Musical Information ................... 838
David Rizo, José Manuel Inesta, and Francisco Moreno-Seco

Comparative Study of the Baum-Welch and Viterbi Training Algorithms
Applied to Read and Spontaneous Speech Recognition .................... 847
Luis Javier Rodriguez and Inés Torres

Skin Lesions Diagnosis Based on Fluorescence Image Processing:

Simple Parameters Scanning ................oiiiiiiiiiiiiiii i 858
E. Ros, M.M. Rodriguez, S. Mota, J.L. Bernier, I.Rojas, C.G. Puntonet,

and E. W. Lang



XVIII Table of Contents

Incrementally Assessing Cluster Tendencies
with a Maximum Variance Cluster Algorithm ............... .. .. .. .... 868
Krzysztof Rzadca and Francesc J. Ferri

Musical Style Recognition by Detection of Compass ....................... 876
F.J. Salcedo, J.E. Diaz-Verdejo, and J.C. Sequra

Subtexture Components for Texture Description .......................... 884
Anna Salvatella, Maria Vanrell, and Ramon Baldrich

A 3D Ultrasound System for Medical Diagnosis ........................... 893

Joao Sanches, Jorge S. Marques, Fausto Pinto, and Paulo J. Ferreira

Shot Segmentation Using a Coupled Markov Chains Representation
of Video Contents . ....... ..ot 902
Juan M. Sdnchez and Xavier Binefa

Estimating Confidence Measures for Speech Recognition Verification

Using a Smoothed Naive Bayes Model ........... .. .. ..o .. 910
Alberto Sanchis, Alfons Juan, and Enrique Vidal
A New Wavelets Image Fusion Strategy ......... ..., 919

M. Santos, G. Pajares, M. Portela, and J.M de la Cruz
Quality Assessment of Manufactured Roof-Tiles

Using Digital Sound Processing ..., 927
Vasco C. F. Santos, Miguel F. M. Sousa, and Anibal J. S. Ferreira
Graph Representations for Web Document Clustering ..................... 935

Adam Schenker, Mark Last, Horst Bunke, and Abraham Kandel

Learning Decision Trees and Tree Automata
for a Syntactic Pattern Recognition Task ........... ... . ... oL, 943
José M. Sempere and Damidn Ldpez

MOTRICO Project — Geometric Construction and Mesh Generation
of Blood Vessels by Means of the Fusion of Angiograms and IVUS ........ 951
Francisco J. Seron, Elsa Garcia, and Jorge del Pico

Skipping Fisher’s Criterion ............. ..o, 962
A. Sierra and A. Echeverria

New Class of Filters for Impulsive Noise Removal in Color Images ........ 970
Bogdan Smolka

On the Nonparametric Impulsive Noise Reduction
in Multichannel Images ......... . . i 979
Bogdan Smolka

Robust Hash Functions for Visual Data:

An Experimental CompariSon .............cooiiiiiiiiiniiiiinan.. 986
Champskud J. Skrepth and Andreas Uhl
Error Concealment Using Discontinuity Features ........... .. .. .. .. ... 994

NamRye Son and GueeSang Lee



Table of Contents XIX

Geometric Properties of the 3D Spine Curve ................cooiiii... 1003
J. M. Sotoca, M. Buendia, J. M. Inesta, and F. J. Ferri
Oriented Matroids for Shape Representation and Indexing ............... 1012

E. Staffetti, A. Grau, F. Serratosa, and A. Sanfeliu

Combining Phrase-Based and Template-Based Alignment Models
in Statistical Translation .............oo i i 1020
Jests Tomds and Francisco Casacuberta

The Log-polar Image Representation in Pattern Recognition Tasks ....... 1032
V. Javier Traver and Filiberto Pla

Appearance Tracking for Video Surveillance ............................. 1041
Javier Varona, Jordi Gonzalez, F. Xavier Roca,
and J. J. Villanueva

Sinusoidal Modelling with Complex Exponentials

for Speech and Audio Signals ....... .. ... 1049
P. Vera-Candeas, N. Ruiz-Reyes, D. Martinez-Murnioz,

J. Curpian-Alonso, M. Rosa-Zurera, and M. J. Lucena-Lopez

Smoothing Techniques
for Tree-k-Grammar-Based Natural Language Modeling .................. 1057
Jose L. Verdu-Mas, Jorge Calera-Rubio, and Rafael C. Carrasco

Colour Constancy Algorithm Based on the Minimization
of the Distance between Colour Histograms ............... ... ..., 1066
Jaume Vergés-Llahi and Alberto Sanfeliu

Video Segmentation for Traffic Monitoring Tasks

Based on Pixel-Level Snakes .......... ... 1074
D. L Vilarino, D. Cabello, X. M. Pardo, and V. M. Brea
Optimal Detection of Symmetry Axis in Digital Chest X-ray Images ..... 1082

Carlos Vinhais and Aurélio Campilho

Low Complexity Motion Estimation
Based on Spatio-temporal Correlations ............. ..., 1090
Hyo Sun Yoon and Guee Sang Lee

Set-Permutation-Occurrence Matrix Based Texture Segmentation ........ 1099
Reyer Zwiggelaar, Lilian Blot, David Raba, and Erika R.E. Denton

Semi-automatic Segmentation of the Prostate ............................ 1108
Reyer Zwiggelaar, Yanong Zhu, and Stuart Williams
Entropy Vector Median Filter ......... ... i 1117

Rastislav Lukac, Bogdan Smolka, Konstantinos N. Plataniotis,
and Anastasios N. Venetsanopoulos

That Elusive Diversity in Classifier Ensembles ........................... 1126
Ludmila I. Kuncheva

Author Index ... .. 1139



Solids Characterization Using Modeling Wave Structures

Miguel Adan' and Antonio Adan®

'E.U.L.T.Agricola, UCLM
Miguel.Adan@uclm.es

ZES. Informatica, UCLM

Paseo de la Universidad 4, 13071 Ciudad Real, Spain
Antonio.Adan@uclm.es

Abstract. This paper introduces a characterization study on solid and
3D shapes based-on the recent Modeling Wave (MW) topological or-
ganization. The MW establishes a whole n-connectivity relationship in
3D objects modeling meshes. Now an extended use of MW is carried
out. Through a new feature called Cone-Curvature, which originates
from the MW concept, a flexible and extended surroundings geometry
knowledge for every point of the solid surface is given. No-local nor no-
global but a half-connectivity has been used for defining a robust 3D
similarity measure. The method presented has been successfully tested
in our lab over range data in a wide variety of shapes. Consequently,
extended research on 3D objects clustering will be accomplished in the
near future.

1 Introduction

Similarity and recognition are two words that frequently appear in papers devoted to
Computer Vision research. To tell the truth, similarity studies are less frequent than
recognition ones. In fact ‘recognition’ is a word excessively used for talking about
pattern, pose, matching, identification or objects discrimination. Nevertheless an effi-
cient way of dealing with recognition/similarity is through an efficient representation
model.

One of the keys in this environment is the search for invariant features to scale,
translation and rotation. At this point, both, local and global strategies can be found.
In local approaches, every point of the surface of the object has knowledge of the
features of its immediate neighbours. For mesh representation, this means that a given
node is handled as a single item isolated from the complete mesh and without any
relationship to the remaining nodes. Local invariants like Gaussian and mean curva-
tures are widely used. Analytic expressions, curvature estimations [1] or local para-
metric representations [2] that use raw data have appeared in the last years. In [3] a
representation which captures surface curvature information from certain points pro-
duces images, called “surface signatures”, at these points. For mesh models_represen-
tations several geometrical features have been also defined such as the simplex angle

F.J. Perales et al. (Eds.): IbPRIA 2003, LNCS 2652, pp. 1-10, 2003.
© Springer-Verlag Berlin Heidelberg 2003
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([4], [5]), curvature index [6] and integral Gaussian curvature ([7], [8]). Despite their
utility, local features curvatures are very sensible to noise. In these methods, keeping
local and unlinked information could be insufficient for efficiently characterizing an
object and carrying out a similarity procedure. In Shum et al. [9] the correspondence
between two original shapes can be obtained by minimizing a specific distance based-
on spherical representations.

On the contrary, global approaches consider features that define the whole shape
and not correlated with the observer viewpoint. So, avoiding the use of local strate-
gies, new directions have been accomplished through global invariant features. In [10]
Canonical Length and Weighted Principal Directions features give a solution for 3D
free-form object discrimination/identification problem whereas random measures
between points are presented in [11]. There are also several studies which consider
both local-global strategies [12]. Therefore global features can be efficiently used as
discriminant parameters, but it would be a weak procedure to analyze similarity when
a partial view of the object is handled.

No-local no-global strategies are rarely considered in literature. In this case, every
point of the object surface has an extended knowledge of its surroundings and it is
possible to define extended-local invariants. The main difficulty in using that idea in a
solid modeling environment is to define a model with an appropriated topology and
connectivity. MWS structure [13] has been designed to maintain new and wider rela-
tionships among subsets of mesh nodes. In this sense, typical 3-connectivity is just
another relationship.

This paper is devoted to showing a new 3D shape characterization study based on
extended knowledge that goes from local to global knowledge using MWS. In Sec-
tion 2, MWS is briefly defined whereas Section 3 is devoted to defining and analysing
Cone-Curvature as an extended-local invariant. Experimentation and future works are
shown in the last section.

2 MWS Concept

The Modeling Wave Set (MWS) concept has been published lately as a new topologi-
cal organization where an n-connectivity relationship is established [13]. With MWS,
an object is simultaneously modeled in » subspaces of features, corresponding to »
different viewing directions of the object. In this section a brief explanation of MWS
is carried out.

Our solid representation model is defined on a mesh of » nodes from the tessella-
tion of the unit sphere. Let T be this initial tessellation that can be considered stan-
dard and includes an implicit coordinate system. In practice, one way to obtain T is by
projecting the vertices of regular polyhedral over the unit sphere. So it is possible to
obtain a three-neighbour relationship as a local topology.

The procedure for building a model Ty through T; is as follows: first Ty is de-
formed to fit the normalized surface of the object; then several geometric features can
be extracted from the deformed mesh and finally, these features are mapped into Tj.
So, Tj is implemented as a valid data structure for representing 3D objects in a simpli-



Solids Characterization Using Modeling Wave Structures 3

fied and normalized manner. Additionally, it is used for mapping some features of the
same object on it.

From the initial tessellation Ty, a new topological structure called Modeling Wave
(MW) and a more complex multidimensional data structure MWS will be defined
next.

MW structure organizes the nodes of T in disjoint subsets following a new rela-
tionship. Each subset contains a group of nodes spatially disposed over the sphere as a
closed quasi-circle, resulting in subsets that look like concentric rings on the sphere.
Since this organization resembles the shape of a wave, this has been called Modeling
Wave (MW). Consequently each of the disjoint subsets is known as Wave Front (WF).
Of course, MW structure remains after the modeling process has finished. In others
words, the WF structures are in Ty (see Figure 1).

To build a MW, a first node of the tessellated sphere must be chosen as the origin
of the structure. This node, called /nitial Focus, constitutes the first Wave Front, _Fl,
and identifies the MW. Consequently, F' is the j-th WF that will be contiguous to F/*".
Thus, two new relationships are established for the nodes: a neighbourhood relation-
ship defined among WFs, and a belonging relationship of each node to one, and only
one, WF.

From the previous definition it can be deduced that any node of T; may be Initial
Focus and, therefore, it can generate its MW. In that case, ORD(T;) different MWs
can be generated. Let us call all the possible MWs that can be generated over a given
tessellated sphere T; Modeling Wave Set (MWS).

Due to the multidimensional nature of our MWS structure, when we map any local
or global feature onto T we obtain #» different feature subspaces for the same object,
i.e. one subspace for each MW. Each subspace supplies a feature map of the object
arranged by the corresponding Wave Fronts. Details about the MW and MWS con-
cepts can be seen in [13]

Fig. 1. MW drawn over T; (left) and an example of representation model using MWs. On the
right, the first WFs are plotted over the model mesh

3 Cone-Curvature

3.1 Definition

Cone-Curvature (CC) is defined as a new and intuitive feature based on MW structure
taking into account the location of the WFs inside the model. We will start talking
about the jth CC which will mean CC of the jth WF, F’.
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Let N be the Initial Focus of a particular MW. In order to define jth CC of the node
N, we consider firstly two elements: the barycentre of the nodes of the jth WF, C”, and

the least squares fitted plane to the jth WF, R/, 1 J being its associate normal vector.
Let us consider, for every trio {(Cj,N,N,-),Ni € Fj}, C’eR’/, the angle
y/i = ZC/NN ; € [O, 7[] and finally the average of these angles, 3’ .

The geometric meaning of 37 can be considered as the angle of the cone which is
closed to the jth WF, N being the vertex, and NC being the cone axis. Values next to
/2 correspond to low curvature zones whereas values next to 0 or m, correspond to
high curvature zones. Note that the set of values {3, &, . .../} gives an extended
curvature information around N until the jth WF, where the word ‘curvature’ has a no-
local meaning. Nevertheless it makes sense to consider only the first WFs around N

which will be seen joined to N from a specific viewpoint. This concept is illustrated in
Figure 2.

Fig. 2. Definition of jth CC

In order to distinguish convex and concave values it is necessary to define a sign
for each WF. This is assigned taking into account the relative location of O, R), and N,
where O is the origin of the coordinate system fixed to the object. In other words, if O
and N are in the same side of Rj there exist concavity and the opposite case corre-
sponds to convexity. The last idea can be formally defined as:

‘ . .
sign(F7) = sign {ﬁ] 'C’NJ*{W 'OC’]
Finally we take the formal definition of jth Cone-Curvature of a node N as:

o’ =sign(F7)#* %—ﬂj

where the term ‘7[/ py ‘ allows to fix o’ € [—ﬂ'/ 2,7/ 2] . Therefore, negative val-

ues are for concave zones, values next to zero correspond to flat areas and positive
values correspond to convex zones. Obviously, the CC concept gives a kind of signed
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curvature measure for specific areas, growing around the node chosen from the /st to
the jth WF.
Coming back to the whole representation in the sphere T, it can be said that a set of

correspondences ¢’ T, — [—7[/2,71'/2] j=1..9, q being the number of Wave

Front considered, is established for all the nodes of T;. So for each node N a set of ¢
values {0/, o/, ...ac%} could be used for exploring its surroundings (see Figure 3).
Next, some examples are included to explain in more detail the last concepts.

Fig. 3. CCs Mapping Set of over T (left) and visualization of CCs for a node N

3.2 Analysing an Example

Figure 4 plots 2nd to /8th CCs for three different nodes of the mesh. As it can be seen
the location of N(612), N(370) and N(344) in the mesh correspond to different areas.
Note that their CC distributions are very distant. Nevertheless if the nodes are in the
same zone, the corresponding CC distributions are nearer, except in the 2nd and 3rd
order. Obviously this is due to the fact that for the first WFs the measure of CC is
more sensible to errors. Therefore, small variations in the location of the nodes in-
volves high variations in first orders of CC whereas for upper orders such variations
do not meaningfully affect it. Errors are mainly due to the 3D sensor resolution, the
modeling process and the effects of mesh discretization/resolution.

Keeping this in mind, local features are not suitable enough for characterizing an
object unless errors are minimum. Therefore we will characterize objects taking half-
order CCs.

Figure 5 shows the set of correspondences ¢ for j=2...18. In this case, for each jth
CC their values are plotted in an ordered manner. So, a whole representation of the
object can be seen. Note that label A corresponds to several concave zones, label B to
low values of CC and C to convex zones.

Another visualization of the jth CC can be appreciated in the next figure (Figure 6)
where the CC value is plotted over the own mesh as a specific grey level. The colour
is assigned to the patch through the CC’s average of their nodes. Several coloured
meshes corresponding to several CC orders are plotted. At this point it is necessary to
remark on how a consistent representation of the object implies low frequency com-
ponents or colour continuity in a mathematical sense. In other words, high frequency
implies that some kind of error is present in the 3D image. This circumstance can be
seen especially for ¢ where the discontinuity is evident whereas for upper orders no
high frequency components are appreciated.
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Fig. 4. CjCs for scattered (left) and near (right) nodes. The X-axis and Y-axis correspond to
CC-order and CC value respectively.

o 200 a0 a0 200 1000 1200 1400

Fig. 5. Set of correspondences ¢ for j=2...18 plotted in a sorted manner
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Fig. 6. Illustration of 2nd, 8th, /4th and /6th CCs. Note the discontinuity in 2nd CC and the
continuity for the rest

4 Experimentation and Future Works

Our solid characterization method has been tested on database of around 100 real
items including both polyhedral and curve-shaped objects. The object database has
been created using a Gray Range Finder sensor though several synthetic objects have
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been used. The system has worked with objects of small dimensions (5 to 15 cm)
located in front of the sensor, over a controlled device which allows us to take differ-
ent poses of the object. The average error of the acquired range information is around
1 mm.

In order to prove the invariance of the CC feature we have checked this representa-
tion for the database at different poses and we have compared them taking a WF range
from 2nd to /8th orders. It can be said that the procedure works in all the cases in that,
for each object, similar jth CC’s distributions have been obtained when j>3. For 2nd
and 3rd orders, CC’s distributions for the same object present an irregular disparity.
As it has been said before, this is due to CC of N is highly sensible to the noise in the
neighbourhood of N.

Figure 7-left shows the 8th CC distributions for five objects when four pose are
taken for each one. A detail is included on the right. The X-axis and Y-axis corre-
spond to node number and CC value respectively. In this figure two things can be
obviously appreciated. Firstly, the nearness of the four plots for each object which
proves the invariance of CC in our spherical model. Secondly the disparity between
the distributions corresponding to different objects, which means that through CCs it
is possible to accomplish an efficient solid similarity study.

12 - —

a 200 400 500 00 1000 1200 140

Fig. 7. Modeling meshes (above) and their corresponding 8th CC distributions for four poses
(below)



8  Miguel Adan and Antonio Adan
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Fig. 8. CC models for several orders. The continuity of CC for each patch of the mesh when the
order grows can be appreciated
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In fact, we have defined a distance based on CC concept which allows us to meas-
ure how much an object is similar to another one. Since the present paper is devoted to
defining the characterization through CC it is not possible to explain in detail this
similarity measure, its consequent analysis and experimentation. Briefly, we will say
that, for two objects A and B, it is possible to define a jth distance, d, for their corre-
sponding jth CCs. The expression is the following

d’(4,B) = \/ kz (e (k) =} (K))
=l

Note that the sum is extended to all the nodes of the mesh. With this expression it is
possible to analyse the efficiency of using CCs for low and high values of j, in other
words the suitability of considering near or far information.

Finally, there is another detail which requires attention. Although a reference about

the continuity of the correspondence ¢’/ : T It —>[—7z/ 2,7/ 2] j=1..g has been

made before (see Fig 6), it can be said that there is also continuity in the set of ¢ val-
ues {c/, o, ...a"} for each node N of the model. In Fig 8 a sequence of models for
several orders is presented. It can be appreciated that every patch of the mesh
smoothly changes its grey level when j grows.

This kind of representation, based on the MW structure with CC as a feature, is
being used for carrying out 3D shapes similarity studies and new solid classification
algorithms.
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Abstract. This paper presents a model for the probability of correct
classification for the Cooperative Modular Neural Network (CMNN).
The model enables the estimation of the performance of the CMNN
using parameters obtained from the data set. The performance estimates
for the experiments presented are quite accurate (less than 1% relative
difference). We compare the CMNN with a multi-layer perceptron with
equal number of weights and conclude that the CMNN is preferred for
complex problems. We also investigate the error introduced by one of
the CMNN voting strategies.

1 Introduction

The basic idea behind a modular neural network (MNN) architecture [1,2,3,4,5]
is the combination of several small networks that are trained to solve a spe-
cific part of the full problem. The output of these networks can be combined
using, amongst others, rules such as the simple and weighted averages or the
product [6,7,8] or alternatively, one of the outputs can be selected as the correct
result.

Intuitively, a MNN architecture should perform better than a single network
for problems that can be separated into several subproblems. In this case, there
is a decoupling of the neurons (and weights) used for learning each subproblem
when compared to the case of using a single network to solve the entire problem.

* We acknowledge the support of project number POSI/35590/SRI/2000 approved by
the Portuguese ‘Fundagcao para a Ciéncia e Tecnologia’(FCT) and POSI and partially
financed by FEDER.
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This paper introduces a model for the probability of correct classification for
the cooperative MNN (CMNN) [1,9,10]. This model enables a better understand-
ing of the way this MNN works. It also enables the estimation of the performance
of the CMNN using parameters estimated from the data set. We show empirically
that these estimates are accurate. We compare the CMNN with a multi-layer
perceptron (MLP) with equal number of weights and conclude that the CMNN
is preferred for complex problems. We also investigate the error introduced by
one of the voting strategies.

Section 2 introduces the CMNN architecture and the model for the probabil-
ity of correct classification (PCC). Section 3 includes the several voting strategies
that can be associated with the CMNN. Section 4 contains experiments, illus-
trating the ideas presented in the previous sections and confirming the validity
of the developed model. In the last section, the results are discussed and the
conclusions posted.

2 CMNN Architecture

In this section we describe the CMNN architecture. Consider a classification
problem with L classes. C), represents class n. The input feature vector is X.
The CMNN consists of k expert NNs, ¢;(X), ¢ = 1,...,k, that are trained to
solve a particular subproblem of the total problem, and also to recognize when
the input data does not belong to its own subproblem. A classifier g; outputs
a vector of estimates of the posterior probabilities, p;(X € Cp|X),

9i(X) = (pi(X € Co|X), ..., pi(X € Crmrygr, | X))y my oo on— 1+ 41 € I; (1)

with I; being the set of indexes that correspond to the classes that classifier g;
can deal with and #1; the number of corresponding classes.
We define the set containing the indexes of all the experts as

H=1{1,... k (2)

and also
H;=H\{j}, jeH (3)

Each expert g; has also a set of k — 1 outputs, 0; ;, j € H;, corresponding
to the other experts in the architecture. These outputs have values in [0,1].
A higher value represents more confidence on the fact that the classifier g; should
be selected to produce the final decision.

For each input X, each expert NN produces a vector of posterior probabili-
ties on the I; outputs corresponding to the classes of its own subproblem, and
tries to guess which classifier should be used to classify this pattern, using the
remaining k — 1 outputs.

The final decision consists on the class with the largest posterior probabil-
ity from the classifier that is selected by the votes of the o;; outputs of all
classifiers. Several voting strategies can be considered.

This architecture is represented in figure 1.
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L~ aX) : A

Ok k=1 |+« - Ok,1

Voting Scheme

Fig.1. The CMNN architecture

2.1 General Case

We extend the operator ‘max’ to work with vectors: it outputs the largest com-
ponent of the vector. The set of points in which the event ‘class n has the largest
posterior probability for classifier g; * occurs will be represented as B, ;:

By ={X 1 pi(X € Cy]|X) = max g;(X)} (4)

The set of points in which the event ‘classifier g; makes a correct classification’
occurs will be represented by D;:

Di=|JBnin{X:X eCn}) (5)
nel;
To simplify, will call B,, ; an event and not the set of points where this event
takes place. This will also be done for the set D; and others to be defined below.
The event ‘classifier g; is elected as the one which will output the final deci-
sion’” will be represented by F;.
This way, the probability of correct classification for this architecture comes
as

k
PCC =P (U U Buin{xecCu}n Fi)> (6)
i=1nel;

Using expression 5 results

k
PCC =P (U (D; N Fi)> (7)

Since the events D; are disjoint, so is the intersection (D; N F;), and expression 7

can be written as
k

PCC=> P(D;NF) (8)

i=1
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To simplify the last expression we will assume that the events D; and F; are
independent. This leads to the following expression for PCC

k
PCC = P(D;)P(F)) (9)
i=1
This assumption can be justified since the fact that classifier g; is the chosen
one for classifying the input (event F;) is dependent of the majority of the
classifiers, thus not particularly dependent of classifier g; (the dependence that
may exist, since classifier g; also votes, is decreased as the total number of
experts increases). Since the event D; depends exclusively of classifier g;, it is
not a strong assumption to consider its independence from F;.
The different voting strategies will now be considered.

3 Different Voting Strategies

These are the voting strategies proposed by the original author of the CMNN
architecture [9]. We present them in a formal manner using the events defined
above and also defining new ones.

3.1 Plurality Vote

In this case, each expert g; votes only for one (other) expert: the one with the
highest value of o; ;. The expert with more votes wins.
The number of votes that classifier g; receives is T5:

Ti = Z ]I{maxneHj 0j,n=0j,i} (10)
JEH;
where Iy 43 denotes the indicator function, which gives one if the event A is
true and zero otherwise.
Using this definition, we can write F; = {T; = max;cn 1} }.

3.2 Borda Count

The o0;; are ranked and a value of k — 2 is assigned to the largest output of
classifier gj, k — 3 to the second largest and so on, such that the smallest output
receives a value of zero.

The values are summed for each classifier and the one with the largest sum
is elected.

We define the function 7(0;;) : H x H — {1,...,k — 1} that gives the rank
of 0ji-

The total value assigned to classifier g; is

BC;= > (k—1-r(0jn)) (11)
JEH;

The event F; is thus F; = {BC; = maxjeg BC}}.
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3.3 Fuzzy Vote

In this case, the elected classifier is the one with the largest summation over all
values of the votes o; ;.
We define

Si= Y o0 (12)

JEH;

In this case, the event F; comes as F; = {S; = max;en S;}.

3.4 Nash Vote

Nash vote is similar to fuzzy vote but instead of having a sum of the o;; we have
the product.
We define

sz = H 0j.i (13)

JEH;

In this case, we have F; = {Pd; = maxjcy Pd;}.

4 Experiments

4.1 A 17 Class Artificial Problem

An artificial problem with 2 features and 17 classes that are roughly clustered in
5 groups was produced. The classes were generated using Gaussian distributions.
The data is plotted in figure 2. Each class has 150 data points, hence, the data
set has 2550 data points.

The CMNN architecture consists of 5 MLPs with topologies [2:22:7] for the 3
groups with 3 classes (the other 4 outputs are for the voting scheme) and [2:20:8]
for the 2 groups with 4 classes (again using 4 outputs for the voting scheme).
The voting strategy used was the plurality vote. We trained a single multi-layer
perceptron (MLP) with the same number of weights as the CMNN architecture
(topology [2:56:17]) to give an idea of the improvement that can be obtained
with the CMNN over a single MLP. Since both the CMNN and the MLP use the
same number of weights, the differences of performance are related to the way
the weights are connected and not to their number. All networks were trained
using resilient back-propagation for 100 epochs.

Table 1 presents the average classification error and standard deviation, both
in percentage, for the 10 repetitions of the leave-k-out cross-validation, with
k = 255.

Notice that there is a third line in the table for an CMNN-IV. This is the
same as the CMNN but assuming that the voting was ideal, i.e., that the experts
always made the correct choice of the expert that should made the final decision.
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Fig.2. The data set for the artificial problem

Table 1. Average classification errors and corresponding standard deviations,
for the artificial problem

Architecture| Error [%]|St. Dev. [%]
MLP 17.61 2.95
CMNN 14.55 3.26
CMNN-IV | 13.80 3.22

It has slight better performance than the CMNN giving an idea of the error
introduced by the voting scheme, which is about 0.75%.

During testing, the values of P(D;) and P(F;) were estimated. These values
were then used with the model for the PCC, yielding the value of 86.44%. This
is equivalent to an error of 100-86.44=13.56% . This is in good agreement with
the obtained value of 14.55% error for the CMNN (the difference is 0.89% out
of 14.55%), thus asserting that the model developed is accurate.

4.2 A 2 Group, 4 Class Real Problem

To test the prediction capabilities of our bounds on real problems we used a data
set for a vowel discrimination problem. The data consists of the first and second
formants of the vowels ‘1’,T",‘a’ and ‘A’ produced by 76 speakers (33 males, 28
females and 15 children). Each vowel was repeated twice by each speaker, giving
a total number of 608 data points. It is a subset of the Peterson and Barney
data set referred in [3] and is represented in figure 3. Both features were linearly
scaled by dividing by 1000.

The CMNN architecture consists of 2 multi-layer perceptrons (MLPs) with
topologies [2:15:3] - 2 outputs for each class in each group and the other for
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Fig. 3. Data set for a 4 class, 2 group problem

Table 2. Average classification errors and corresponding standard deviations,
for the real problem

Architecture| Error [%]|St. Dev. [%]
MLP 6.41 2.04
CMNN 8.39 3.22
CMNN-IV 8.22 2.88

the output used for the voting strategy. The voting strategy used was again the
plurality vote. We trained a single multi-layer perceptron (MLP) with the same
number of weights as the CMNN architecture (topology [2:26:4]) to give an idea
of the improvement that can be obtained with the CMNN over a single MLP.
The networks were again trained using resilient back-propagation for 100 epochs.
Table 2 presents the average classification error and standard deviation, both in
percentage, for the 8 repetitions of the leave-k-out cross-validation, with k = 76.

The CMNN-IV has again, and as expected, a slight better performance than
the CMNN. In this case, the error introduced by the voting scheme against the
CMNN with the ideal voting scheme is 0.17%.

With the estimated values of P(D;) and P(F;) replaced in the model, we
obtain an estimate for the PCC of 91.64%. This is equivalent to an error of
100-91.64=8.36% . This is again in good agreement with the obtained value of
8.39% error for the CMNN. Once again the model for the PCC yields a good
estimate: the difference of the estimate to the true value is only 0.03%.

In this case the MLP outperformed the CMNN. We believe that this hap-
pened because the problem was too simple for the CMNN. Some of the weights
used in the voting scheme were better used by the MLP in approximating the
problem as a whole.
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5 Conclusions

This paper presents a model for the probability of correct classification for the
cooperative modular neural network (CMNN) architecture. The validity of the
presented model was confirmed by experiments using both artificial and real data
sets. Its predictions of the CMNN error rates, using some estimated parameters
from the data sets, were in good accordance with the empirical errors.

The error introduced by one of the voting strategies, the plurality vote, as
compared with the ideal vote was also investigated. We concluded that the error
the voting scheme introduces is small when compared with the error of the
experts in their subproblems.

Finally, a multilayer perceptron (MLP) with equal number of weights as the
CMNN was used. This makes the differences in accuracy of these two classifiers
to be only due to the way the weights are connected and not to their number. The
results suggest that the CMNN produces better results with problems involving
several groups, i.e., if the problem is simple, a simple architecture should be
used.

References

1. Auda, G., Kamel, M.: Modular neural network classifiers: A comparative study. J.
Intel. Robotic Systems (1998) 117-129 11, 12

2. De Bollivier, M., Gallinari, P., Thiria, S.: Cooperation of neural nets and task
decomposition. In: Int. Joint Conf. on Neural Networks. Volume 2., Seattle, USA
(1991) 573-576 11

3. Jacobs, R., Jordan, M., Nowlan, S., Hinton, G.: Adaptive mixtures of local experts.
Neural Computation (1991) 79-87 11, 16

4. Jacobs, R., Peng, F., Tanner, M.: A bayesian approach to model selection in
hierarchical mixtures-of-experts architectures. Neural Networks 10 (1997) 231-
241 11

5. Wanas, N., Kamel, M., Auda, G., Karray, F.: Feature-based decision aggregation
in modular neural network classifiers. Pattern Recognition Letters 20 (1999) 1353
1359 11

6. Alexandre, L., Campilho, A., Kamel, M.: Combining independent and unbiased
classifiers using weighted average. In: Proceedings of the 15th International Con-
ference on Pattern Recognition. Volume 2., Barcelona, Spain, IEEE Press (2000)
495-498 11

7. Alexandre, L., Campilho, A., Kamel, M.: On combining classifiers using sum and
product rules. Pattern Recognition Letters 22 (2001) 1283-1289 11

8. Kittler, J., Hatef, M., Duin, R., Matas, J.: On combining classifiers. IEEE Trans.
PAMI 20 (1998) 226239 11

9. Auda, G., Kamel, M.: CMNN: Cooperative modular neural networks for pattern
recognition. Pattern Recognition Letters 18 (1997) 1391-1398 12, 14

10. Auda, G., Kamel, M., Raafat, H.: Voting schemes for cooperative neural network
classifiers. In: IEEE Int. Conference on Neural Networks. Volume 3., Australia
(1995) 1240-1243 12



Robust Learning Algorithm
for the Mixture of Experts*

Héctor Allende', Romina Torres'>3, Rodrigo Salas', and Claudio Moraga?

! Universidad Técnica Federico Santa Marfa; Dept. de Informética;
Casilla 110-V; Valparaiso-Chile
{hallende,romina,rsalas}@inf.utfsm.cl
2 University of Dortmund; Department of Computer Science;
D-44221 Dortmund; Germany;
moraga@cs.uni-dortmund.de
3 Global Software Group — Chile, Motorola

Abstract. The Mixture of Experts model (ME) is a type of modular
artificial neural network (MANN) whose architecture is composed by dif-
ferent kinds of networks who compete to learn different aspects of the
problem. This model is used when the searching space is stratified. The
learning algorithm of the ME model consists in estimating the network
parameters to achieve a desired performance. To estimate the parame-
ters, some distributional assumptions are made, so the learning algorithm
and, consequently, the parameters obtained depends on the distribution.
But when the data is exposed to outliers the assumption is not longer
valid, the model is affected and is very sensible to the data as it is showed
in this work. We propose a robust learning estimator by means of the
generalization of the maximum likelihood estimator called M-estimator.
Finally a simulation study is shown, where the robust estimator presents
a better performance than the maximum likelihood estimator (MLE).

Keywords: Artificial Neural Networks, Mixtures of Experts, Robust
Learning.

1 Introduction

Artificial Neural Networks (ANN) are a very useful and important model with
many applications in a broad field, they have been very successful in areas like
classification, diagnosis, regression, compression, feature selection, time series
modeling, and others. ANN are capable of modeling many non-linear functions.
Some of the task cannot be modeled by a single network and it is very difficult
to incorporate an a priori knowledge of the problem.

The brain is formed by a collection of modules, where each one is special-
ized to an specific function. This theory has two important hypothesis: there
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exists a correspondence between structure and function, i.e., there exist diverse
structural regions in the brain, where the function takes place. The second hy-
pothesis considers that different brain regions compete for the capacity of doing
some task. So, different regions of the brain become very specialize in the task
where its structure is more adequate [5].

Based on this idea, a modular architecture known as Mixture of Experts (ME)
was developed by Jacobs, Jordan, Nowlan and Hinton [6]. This Architecture
consists of two types of neural networks with different functions, the experts and
the gating neural network. The experts networks compete for the learning of the
training data and the gating network decides which expert networks are more
capable to model the pattern. The learning process of the ME model combines
associative and competitive aspects of the learning.

The learning problem can be seen as a parameter estimation problem based
on the gradient ascent algorithms. An alternative method to estimate the max-
imum likelihood (ML-estimate) was presented by Jordan and Jacobs [3]. They
introduced an expectation maximization algorithm (EM) for the ME models.

There are several factors affecting ML-estimate. First of all, the selection of
training samples as initial estimates can affect the convergence to a great extent.
Another factor that affects the performance of the ML-estimate is the presence
of statistical outliers. Statistical outliers are defined as those observations that
are substantially different from the distributions of the mixture models. The
problem of outliers is not uncommon in practical applications. For example, in
remote sensing, a scene usually contains pixel of unknown origin which form ”in-
formation noise”, the statistical distributions of theses pixels may be significantly
different from those of training classes and constitute statistical outliers.

Unfortunately, the ME models are very sensitive to the presence of the out-
liers as it is shown in this work, motivating the research of robustness for this
models. We propose to robustify the learning process of the ME models by using
a special function that is insensible to the presence of outliers in the model’s
parameter estimation process.

In recent years there have been studies on Robustness of feedforward artificial
neural networks, [1], [2]) but the authors are unaware of the existence of any
study of the robustness of the ME models, in particular, when the estimation is
based on the M-estimators.

2 Mixture of Experts Models Architecture

The modular architecture, specified in [7], consists in K modules called ezperts
or local experts, where each one solves an approximation problem over a local
region of the input space. Each expert has a probability model that associated an
input vector x € IR" with an output vectory € R™, P(y|z,w;), j=1,2,...K,
where w; represents the parameter of the expert j.

Consider the figure 1, where each expert &; generates the output B, =
f(z,w;) with probability P(y|z,w;), where p. is the conditional expectation,
#; = Elylz, wi] under the probability model 15@@7 w;).
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Fig. 1. Mixtures of Experts Architecture (ME): This architecture consists
in a set of experts networks and a gating network. The experts compete for the
learning of the problem and the gating mediates the competence

We suppose that different kinds of neural networks are appropriate in dif-
ferent regions of the domain space, so such form that the architecture needs
a mechanism to identify for each input z which experts are more adequate to
model the desire output. This is done by a gating network, which divides the
input space in regions by a set of scalar coefficients g; (output of the gating
network) which depends on the input z, and the output is the mixture of the
contribution of each expert. There exists a probability vector [g1, ga, . . ., gx ] for
each data point of the input space. Generally, the network implements a param-
eterized function {(z,7) and a normalize function g;(§) which maps from RK

to IR, The objective is to force the probability restrictions as was presented

n [6], where a softmaxz function was used given by g; = % So, it is easy

to check that the g;’s are non-negative and their sum is one. The probabilistic
interpretation of the &; is that they are discriminant surfaces for a classification
problem and the gating network is a classification system which maps the input
z to the probabilities of some experts being able to generate the desire output
(based only on the knowledge of x), where g; > 0 and Efil gi = 1.

2.1 Mixture of Experts Model Specification

Assuming that the training set x = {(z(™,y(™)}\_, is generated by the fol-
lowing procedure: given a data point z, an expert ¢; is chosen with probability
P(e;|lz,n*), given the expert ¢; and the input z, it is assumed that the desired
output y is generated with probability P(y|z,w?). The data is assumed to be
independent and identically distributed.

The experts model different processes and the gating network models the
decision of using some of these different processes. The output y can be gener-
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ated by the total probability of y given z obtained by the sum of the weighted
contribution of all experts ¢;:

K
P(ylz,0%) = > Pleilz,n") P(yla, w}) (1)
i=1
where ©" denotes the true parameter vector (0* = [wi, w3T, ..., wil, n*"]7").

The density in the equation (1) is known as finite mizture density.

The gating network task is to model the probabilities P(e;|z, n*), constructed
as a probability class in a multi-classification problem of the input z, parame-
terizing by softmax function obtaining g* = P(e;|z, n*).

The moments of the mixture density are directly calculated. The conditional
media p* = E[y|z, ©"] is obtained by taking the expectation of the equation (1),

=Yg (2)
i
where H: is the conditional media associated to the probability distribution
P(y|z,w;) corresponding to the experts output ;. The modular architecture
output is a weighted sum of the experts output.

3 Learning Algorithm

The learning problem is treated as parameter estimation process of the ME
architecture. The parameters are chosen in the way that they maximize the
joint probability given in the equation (1). This process is known as maximum
likelihood estimation (MLE). The data of the learning set x are assumed to be
generated independently by the mixture density. The likelihood function of the
learning set for a specific sample vector xy = {(z(™,y(™)}N_, is given by

L(x,0) = P({y™ ¥ {z™}Y) =TI, P(y™]z™)

N K n n
[T 2oia gi(%ﬂ)P(y( )|£( )7wi)

The MLE consists in maximize the equation (3) or equivalently, maximize
the log-likelihood

3)

N K
(x.0) = log ¥ gilz.,n)Ply™ |z, w,) (4)
n=1 i=1

To estimate the ME model parameters ©, techniques based on gradient
ascent are applied (see [6] and [7]). An alternative method is the algorithm of
expectation maximization (EM) that was generalized to the ME architecture by
Jordan y Jacobs in [8]. This algorithm is very useful to Models where the experts

and the gating networks have a simple parametric form.
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4 Robust Learning Algorithm

The learning process of the ME model is done by means of the maximum likeli-
hood estimator (MLE) described by the equation (3).

The robust learning process based on the random sample {(z(™), y(”)) -1
with common distribution P(y|z), consists in minimizing the functional cost

given by the equation (5) to find the parameter M-estimator 9 O of the param-
eters ©* in the ME model by the equation (6).

RLN(XaQ) = 27]:]:1 p(g(”),Q|£(n))

5

= 25_1P<Z£19i(£»ﬂ)P(y‘")l " wl)) )
~ M )

Oy =arg min{RLN(x,©)} (6)
©cR?

where p is the robust function that introduces a bound to the influence due to
the presence of the outlier in the data.

Assuming that p is differentiable whose derivative is given by 9 (y, O|z) =

17} Oz . . . .
%, or, alternatively, the estimated parameter can be obtained by solving

the first order equation:

N

S G(y™, O o) = Zw(zwn W) =0 0

4.1 Selecting the Robust Function

In [4] some special functions for M-estimation are discussed. The goal is to
weight each observation according to the magnitude of likelihood evaluated at
the observation. Samples with low likelihood are likely to be regarded as outliers
and are downweighted. In particular, for the location problem, data that are
far away must have a bounded impact in the estimation algorithm, so there are
several functions that can be use, for example the Huber function given by

[ 2+ $log(2m) if 2 > §(—k* —log(2m))
pr(z) = {_k{2_2z —log(2m)}2 — k2 otherwzise ®)
(1 if 2> 2(—k? —log(2m))
Yu(z) = { k‘{—QZ _ log(zﬂ)}—% otherWQise ®)

where z is the log-likelihood given by the equation (4) evaluated at the point
(z,y).
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4.2 Robust Learning Algorithm Based on the Gradient Techniques

To obtain the neural networks parameters, the function given by the equation
(5) must be minimized through a neural network learning process. In this work
gradient descent is applied to minimize the equation (5).

Let ¢ =Y, gi(z,n)P(y™[z™, w,), so by taking derivatives of RLy(©) with
respect to p, and &;, the following expression are obtained:

{Pm1e )]
(10)
oRLy©) _ w<<>gi{P<y<">|z<n>,wi> - Sl )|

H(O) — 32, (Q)giPy ™2™ w;) 2

where ¢ = g—g, g; is the softmax function, and

exp & exp &

| ewGeps _ o o .
Ogy _ ) Ceaowtal? Ik if i
- gz—<%) =g —glifi=k

The parameter estimation problem in ME-models has been addressed in [9],
[11] and [12], in particular they considered that, the experts and the gating net-
works are linear. Furthermore the ME-models is assumed with multidimensional
Gaussian conditional densities, in this case, the conditional density satisfy:

P(ylz, w;) = grymrarsyre exp{—3 ™ — m)" 27 4™ - )},
where B, = fle,w;) = %Tg is the output of the i-th expert. The gating network

(11)

is also considered linear, ¢ = nTz, and then a softmax function is applied to
obtain the output of this network that weight the experts output. When the
covariance matrix is the identity meTLtriX Y); = I, the conditional distribution
is P(ylz,w;) = Wex {—%
in the functional cost, we obtain the parameter update of the net given by the
following expression:

}. Finally by using gradient ascent

("™ —p)" ("™ -p) n "
Aw, = Oﬂb(()glm exp{ _ Y Hi 5 Y }(y( ) __Z)JT( )T

An, = W(Ogi{P Y™z, w) = 35, ng(yWIx("),wk)}x(")T

(12)

where « is the learning rate.

5 Simulations Results Applied to the Building Data

The robust learning of the ME models where evaluated on a real life data con-
sisting on a prediction problem. The Building2 data set was obtained from the
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Table 1. Results obtained for the ME and robust ME models for the second
experiment

#experts | Train. ME | Train. robust ME | Test ME | Test robust ME
3 0.0081 0.0037 0.0082 0.0042
4 0.0069 0.0036 0.0076 0.0040
10 0.0039 0.0034 0.0043 0.0038
20 0.0036 0.0034 0.0040 0.0038
25 0.0035 0.0034 0.0039 0.0038
30 0.0034 0.0035 0.0039 0.0039

PROBEN1 benchmark set [10]. The problem is to predict the hourly consump-
tion of electrical energy, hot water, and cold water, based on the date, day of
the week, time of day, outside temperature, outside air humidity, solar radia-
tion, and wind speed. The data set is spread over six month from September to
February. So, the input vector is dimension 14 and the output vector is 3. The
data consists in 4208 samples.

The experiment consisted in that the data set was divided in three groups: the
learning set with 1462 samples, the validation set with 1464 samples and the test
set with 1282 samples. The performance of the networks obtained was evaluated
by using the mean square error (MSE). The importance of this experiment is
that the learning and the validation sets belong to different phase of the year
(Winter - Spring). The results obtained are shown in the table 1 for the ME,
using the classical MLE for the learning algorithm, and robust ME models, using
the Huber function introduced in the subsection 4.1.

As can be observed, the robust ME model outperforms the model proposed
in [11], it is shown that MELG obtained a MSE of 0.0072. The mean square
error for the ME model is correlated to the number of experts, if the number of
experts is increased, the MSE decreased. In [11] it is shown that the number of
experts can be found in an adaptive form, but this algorithm is time consuming
and depends on the initialization.

For the robust ME model, empirically can be seen that with a robust learning
the model complexity is lower, because the number of experts needed to obtain
a desire performance is much less than the classical ME model as can be appre-
ciated in the figure 2.

6 Concluding Remarks

In this work it is shown that the ME models with robust learning outperforms
the results presented in similar works where ME models based on the gradient
ascend techniques were used. On the other side, we extend our comparative study
to the localized ME model for the gating network, by showing that if the softmaz
function is used, then the function is decomposed in different soft regions in the
way that each expert network models some region. For the experiments studied
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Fig.2. Number of Experts vs. MSE

in this work, it is not necessary to introduce more complexity by using localized
model with robust learning, because less numbers of experts are required to
obtain a desired performance, and the convergence of the learning algorithm is
faster.

It may be observed that, from the point of view of Fuzzy logic, the weighted

sum (of experts outputs), if normalized, represents a form of aggregation (see
e.g. [3]). This suggest the possibility to generalize the ME model by considering
other aggregation operations and evaluating their performance.
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Abstract. The learning process of the Feedforward Artificial Neural
Networks relies on the data, though a robustness analysis of the param-
eter estimates of the model must be done due to the presence of outlying
observations in the data. In this paper we seek the robust properties in
the parameter estimates in the sense that the influence of aberrant ob-
servations or outliers in the estimate is bounded so the neural network
is able to model the bulk of data. We also seek a trade off between ro-
bustness and efficiency under a Gaussian model. An adaptive learning
procedure that seeks both aspects is developed. Finally we show some
simulations results applied to the RESEX time series.

KEYWORDS: Feedforward Artificial Neural Networks, Robust Learn-
ing, Effective parameter estimate.

1 Introduction

In the last decades there have been a widespread interest in the use of artificial
neural networks (ANN) in many different problems ranging from pattern classi-
fication to control engineering. A very important and widely applicable class of
ANN models are the feedforward artificial neural networks (FANN) because they
have been remarked as universal approximators of continous, bounded, nonlinear
functions that can be trained from examples of input-output data.

The ANN are seen by researches as either highly parameterized models or
nonparametric structures. ANN models are flexible, and have a demonstrated
success in a variety of applications in which linear models fail to perform well.
A statistical analysis has been made by considering ANN as nonlinear regres-
sion models and by casting network learning as a statistical estimation prob-
lem [6], [10].
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The learning algorithm for the parameters estimation of the neural model
relies on the data. When the data are contaminated with outliers, for example,
observations that are substantially different to the bulk of data due to gross er-
rors, they can influence badly bringing degradation in the estimates [1], [2], [5].
Full effectiveness can be achieved only when the data agree with the assump-
tions underlying the data generating process but not when deviations from them
occurs (See [8]), aspect widely investigated in statistics, but very poorly in the
ANN literature [2], [3], [4], [0]. In this work we seck a compromise in terms of
statistical efficiency and robustness of learning procedures by applying M esti-
mators introduced by Huber [3].

This paper is organized as follows. In section 2, we introduce the notation
and architecture of the feedforward neural networks (FANN). In section 3, we
develop a robust analysis of the Learning Algorithm for the FANN, and then we
propose a robust and effective estimator for the FANN parameters (weights). We
will give simulation results in section 4 where the procedure is applied to Time
Series modeling, and a comparative analysis based on the performance of the
different learning algorithms is made. Concluding remarks and future extensions
are presented in section 5.

2 Feedforward Artificial Neural Networks

A FANN consists of elementary processing elements called neurons, organized
in three type of layers, the input, the output and the hidden layers, where the
latter is located between the input and the output layers. The number of input
and output units are determined by the application. The links of the neurons are
from one layer to the successive without any type of bridge, lateral or feedback
connections. For simplicity, a single-hidden-layer architecture is considered in
this paper, consisting in only one hidden layer and one output neuron, this class
of neural models can be specified by the number of hidden neurons by S, =
{oga(z,w) € R, z € R™, w € W}, where W C RY, gx(z,w) is a non-linear
function of z with w = (wy,wo, ...,wd)T being its parameter vector, X\ is the
number of the hidden neurons and d = (m + 2)A + 1 is the number of free
parameters. The results presented in this paper can be easily extended to FANN
with a higher number of layers and output neurons.

Given the sample of observations, the task of neural learning is to construct
an estimator gy (z,w) of the unknown function p(z) by

A m
g=gnzw) =9 Y wly (Z whlz; + wlrlz]+1,j> + il (1)
j=1 i=1

where w is a parameter vector to be estimated, . are linearity or non-linearity
and A is a control parameter (number of hidden units). An important factor
in the specification of neural models is the choice of the ’activation’ function
~%, these can be any non-linearity as long as they are continuous, bounded
and differentiable. The activation function of the hidden neurons v; typically
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is a squashing or a radial basis function. A special type of squashing function is
the logistic function 71 (z) = [1 + exp{—2}]~! and is one of the most commonly
used. For the output neuron the function 75 could be a linear function f(z) = z,
or squashing function.

The estimated parameter @ﬁs is obtained from the sample {z°, y;}t=1.n of
size n by minimizing iteratively a loss function L, (w), given for example by
the ordinary least squares function (2). The loss function gives us a measure of
accuracy with which the estimated model fits the observed data.

Ln(w) = % > (ye— oz’ w))’ (2)

t=1

3 Robust Analysis of FANN

In some earlier works is shown that FANN models are affected with the presence
of outlying observations, in the way that the learning process and the prediction
have a very poor performance (See [2], [5], [9]).

Let the data set x = {gt,yt}tzl,,n consists of an independent and identi-
cally distributed (i.i.d) sample of size n coming from the probability distribu-
tion F(z,y). A nonlinear function y = ¢(x) is approximated from the data by
a feedforward artificial neural network, i.e., y = gx(z,w*) + r, where y € IR is
the desired output, z € IR™ is the input vector, w* € W C R? is the unknown
parameters vector and r € IR is the residual error.

Assuming that W is an open convex set and r; are independent to the z?,
t = 1..n, with symmetric density h(r/o,), where o, > 0 is the scale parameter
and k(z) is the density function of the z, then the joint density function f(x,y)

is given by f(z,y) = ;’(M)k(z)'

Or

An M-estimator @ is defined by @ = arg min{RL,(w) : w € W}, W C
R?, where RL, (w) is a robust functional cost given by the following equation,

RL,(w) = % Z p (ye — ga(a’,w)) (3)
t=1

where p is the robust function that introduces a bound to the influence due
to the presence of outliers in the data. Assuming that p is differentiable whose
derivative is given by ¥(r,w) = %, an M-estimator QTI\,/I can be defined

implicitly by the solution of the following equation,

n

tz_;w(yt_g;(x“w))l?gx(xt,w) =0 (4)
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where ¥y : IR x W — IR, 7 =y — g (@t,@nM) is the residual error and

T
Dgx(z,w) = (aawlgx(x, W), a%dgx(@, w)) (5)

is the gradient of the FANN. We will denote Dgy = Dgx(z,w) for short.

3.1 The Influence Function of the M-estimator of the FANN

In order to study the robustness and effectiveness aspect of the M-estimator, we
should analyze the influence function (IF) . The IF is a local measure introduced
by Hampel [7] and describes the effect of an infinitesimal contamination at the
point (z,y) on the estimate.

The IF of the M-estimator applied to the FANN model, @, , and calculated
at the distribution function F(z,y) is given by the following equation,

IF(z,r;w, F) = (r,w)M " Dgx(z, w) (6)

where 7 is the residual, Dgy(z,w) is given by equation (5) and

M= /}R (¢ (r, ) Dga Dyl — (r,w)D?gx)dF (2, ) = Ep[H(r,z,w)] (7)

where H(r,z,w) = (¢/(r,w)DgxDg} —1(r,w)D?g,) is the Hessian of p(-) with

2
respect to the parameters w and D?gy = [%ifigfﬁ)] is the Hessian matrix of

the FANN of side d x d. In practice, M is not observable and must be esti-
mated, White [10] demonstrated that a consistent estimator of M is M, =
1 Ly H(re, 2y, ﬁ)M) where ﬁ)M are the parameters obtained from the data by
the minimization of the risk function (3). With this result, we can estimate the in-
fluence at the point (z*, y*) by IF(z*,r*; M) = w(r*,@M)Mn 1Dgx(z*, wM)T.

n

3.2 Analyzing the Gaussian Case

As a special case we studied the case when the residual distribution is the
standard normal, i.e., h(r/o,) = ¢(r/o,), so the density function is given by
flz,y) = ¢(r/o,)k(z). If we assume a Gaussian model for the residuals and
is odd, then the second term in (7) can be neglected, so we get:

m =06 = [ vwaen) ([ papdixw) @

From the equation (6) and (8) we can realize that the IF can be decomposed
as the product of two factors, one dependent on the residual known as residual
influence (IR) and the influence due to the position (IP), obtaining the total
influence:

IF(z,r;w, F) = IT(z,r;w, F) = IR(r;w, ) P(z;w, K) 9)
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where TR(riw, ®) = (r) /E[¢/(r)] and IP(z; w, K) = (E[Dg\DgT]) Doy,
An important summary value based on the IF is the gross error sensitiv-
ity that measures the worst (approximate) influence which a small amount of
contamination of fixed size can have on the value of the estimator The gross
outlier sensitivity is defined as v*(@, F) := sup, {1 F(z,r; M F)||}. Tt is

w,, yWh
a desirable feature that v (i M F) be finite obtaining a B-robust estimator.

In the Gaussian case, the gI‘ObS error sensitivity is due to the rebidual and the
position influence, ie., (@M, F) = sup, A |[[R(r; w,, , D)||[IP(z; MR
When the classical Least Square estimator is used, the gross error sensitivity
is v:(wk F) = sup,, ,{|7|[[1P(z; W% F)||} = oo, i.e., this procedure lacks of
robustness by being sensible to the contamination in the residual error that relies
on the data.

To obtain a B-robust estimator we analyzed the influence due to the position
(IP) and the influence due to the residual (IR). The influence due to the position
is bounded (sup,{|[IP(z;w, K)||} < o0), when v is a logistic function and
o is a logistic or a linear function, because the gradient of the FANN model,
Dgy(z,w), has four types of derivatives:

9@ ) = (YuwlPlyt (ziyi = 1um, j = L

)
Yyt (),5 = 1A
)

=75(-)71,5(-), 5 = 1..X; and,

7’J
Igxr(z,w,)
8w[1 ) - 72(

89)\ (& wn)

8w>\+1 =75(),

because v} is a constant if 7y, is linear and max,{v5(z)} = 0.25 if 75 is a lo-
gistic function. Similarly for ;. These factors decrease faster than a:l grows.
The influence due to the residual must satisfy that sup,{|IR(r;w, ,P)|} =
sup, {|¥(r)/E[¢’(r)]|} < oo to obtain a robust learning estimator that is insen-
sible to the presence of outlying observations. For example the Huber and the
Bisquare functions, given by equation (10) and (11) respectively, satisfy these
requirements.

Y (r,c) = sgn(r)ymin{|r|, ¢} (10)
e (A LA N

By putting a bound on ~* will often conflict with the aim of asymptotic
effectiveness. In order to obtain an effective and robust estimator the value of
the constant ¢ of the v — function should be estimated.

It is a well know fact that the LS estimator is the most effective estimator of
the mean under a Gaussian model. By assuming that the residual has a distri-
bution close to the Gaussian and outliers should appear in regions further than
30,. By assuming that E[r] = 0 and by considering a robust estimation of o,
given by o, = 1.483median{|r — median{r}|}, we should look for a constant c
such that the distance between .(r*,¢) and ¥rs(r*) = r* is not bigger than
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Fig.1. a)(left) LS estimator. b)(right) Robust Learning Algorithm

a desired constant £ > 0 given at some point r* obtaining almost full efficacy
inside the [—r*,r*] region, and outside that point, the robust estimator start to
have less efficacy than the LS estimator under Gaussianity.

The value of the constant ¢ could be obtained analytically or by numeric
methods, for example, in the Huber case, we choose k = 0, so the value of the
constant is ¢ = r* and for the Bisquare case, we take some small value for k£ and
after some calculations and by using the absolute value as the distance metric,

ie., |Yp(r,c) —r| =k, we obtained ¢ = r*/(y/1 — /1 — k/r*).
Due to the fact that the estimation process is an adaptive learning algorithm

o, varies while the model is approaching the training data, implying that o, =
o, (t) depends on the iteration ¢. The same holds for the constant ¢ = ¢(t).

4 Simulations Results Applied to the RESEX Data

In this section the procedure is applied to the Residence Telephone Extensions
Inward Movement (Bell Canada) known as RESEX data. The chosen series is
a monthly series of ”inward movement” of residential telephone extensions of
a fixed geographic area in Canada from January 1966 to May 1973, a total of
89 data points [1]. This serie has two extremely large values in November and
December 1972 as it is shown in Figure 1. The two obvious outliers have a known
cause, namely a bargain month (November) in which residence extensions could
be requested free of charge. Most of the orders were filled during December, with
the remainder being filled in January. This serie was identified as an ARIMA
(2,0,0)x(0,1,0)12 model with the form x; = ¢121—1+Poxi—o+Ti—_12+ P14 —13+
2Tt 14 + a4

After analyzing the performance of different architectures where the input
and the hidden neurons where changed, good results were obtained for the FANN
with lags X;—1, X9, X¢—12, Xit—13, Xt—14 to predict X, i.e., five input neurons
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and one output neuron with linear activation function, and only one hidden
neuron with logistic activation function. Due to the low number of data and in
order to study the influence of the outlier in the learning algorithm, all the data
were included in the training phase.

This architecture was trained using three different functional cost: the least
square estimator (LS) described in (2), the M-estimators with the ¥ — function
of Huber (M H) and the Tukey’s bisquare (M B) given by the equation (10) and
(11) respectively. To obtain the parameters that minimize the functional cost,
the backpropagation with momentum algorithm was used [6].

The FANN were trained with all the data including the outliers (Serie 1)
and with the data where the known outliers were edited (Serie 2). The training
process was repeated 20 times.The results are shown in table 1 and 2, where the
performance and the effectiveness of the prediction of the FANN trained with
different estimators (first column) are shown. The performance was evaluated
with the mean square error (MSE) and the effectiveness as the ratio between
the MSE of the LS and the robust estimators.

The second and third column of both tables show the results of the FANN
trained with Serie 1 and Serie 2 respectively. A fourth column was included to
show the evaluation of FANN trained with the contaminated data (Serie 2) but
evaluated by omitting the outliers. Finally in the table 1, two additional columns
were added to show the peak value of the errors occurred in the location of the
outliers data, the most importants contributors to the MSE.

As can be seen in table 2, the robust estimators shows almost full effectiveness
under “uncontaminated” data (second column). Under the presence of outliers,
the performance of the FANN with LS estimator was superior than the other
two networks but as can be seen in the figure la), the model is separated to
the bulk of data, so if we evaluate the networks without considering the outliers
(fourth column), the FANNs with Robust learning over performed substantially
the LS case with 212% of effectiveness (4th column of table 2). As a conclusion,
first, the Robust networks approximated better the bulk of data meanwhile the
FANN with LS learning tends to model the outliers, and, second, the MSE is
a global measure of the prediction performance that introduce a distortion vision
of the quality of the estimator because does not show the local behavior of the
model.

Table 1. Performance of the learning process obtained for the different Learning
algorithms (x106)

Est. Serie 1 Serie 2 Serie 2 error? error?
without out. |Out. Nov.|Out. Dec.
LS |2.3184 £ 1.4609|37.680 + 0.0086|6.4264 4+ 1.2678| 2274.8 4.3
MH|2.3182 + 0.0277[42.484 4 0.0084|3.0203 + 0.6122| 2928.3 3.9
MB |2.3365 + 0.0102{42.592 4 0.0848|3.0304 + 0.5806| 2967.5 0.2
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Table 2. FEffectiveness of the Robust Learning compared to the LS case

(%;gfj * 100%) and square error of the outliers
Estimator|Serie 1|Serie 2|Serie 2 without out.
LS S J— -
MH 100.01%| 88.69% 212.77%
MB 99.22% | 88.47% 212.06%

5 Concluding Remarks

The learning process of the FANN, based on the Least Square for the parameters
estimate, were shown to be sensible to the presence of outliers, where they tend
to model gross outliers due to their influence in the training. A Robust Learning
Algorithm based on M-estimator was developed where the influence of the outlier
in the estimation process was bounded. The robustness of the estimator will
often conflict with the aim of asymptotic effectiveness, therefore the shape of
the functional cost were adapted during the training.

Simulations results on real Time Serie were developed to show the improve-
ment of the Robust Learning Algorithm over conventional least squares fitting
for the RESEX Time Series.

Different types of M-estimators could be used in the Robust Learning Algo-
rithm, so further studies can be made to choose the proper function for the data
in study. The Robust technique used in this paper can be used in a different
scope other than neural networks in time series. Future work in robust tech-
niques and Neural Networks will center around making neural networks robust
to changes in the variance of the noise.

References

[1] H. Allende, C. Moraga, and R. Salas, Artificial neural networks in time series
forecasting: A comparative analysis, Kybernetika 38 (2002), no. 6, 685-707. 29,
33

2] , Robust estimator for the learning process in neural networks applied in
time series, ICANN 2002. LNCS 2415 (2002), 1080-1086. 29, 30

[3] E. Capobianco, Neural networks and statistical inference. Seeking robust and ef-
ficient learning, Comp. Statistics & Data Analysis (2000), no. 32, 443-454. 29

[4] D. Chen and R. Jain, A robust back propagation learning algorithm for function
approximation, IEEE Trans. on Neural Networks 5 (1994), no. 3, 467-479. 29

[5] J.T. Connor and R.D. Martin, Recurrent neural networks and robust time series
prediction, IEEE Transactions of Neural Networks 2 (1994), no. 5, 240-253. 29,
30

[6] Richard Golden, Mathematical methods for neural networks analysis and design,
vol. 1, MIT Press, 1996. 28, 34




36 Héctor Allende et al.

[7] F.R. Hampel, E. M. Ronchetti, P. J. Rousseeuw, and W. A. Stahel, Robust statis-
tics, Wiley Series in Probability and Mathematical Statistics, 1986. 31

[8] Peter J. Huber, Robust statistics, Wiley Series in probability and mathematical
statistics, 1981. 29

[9] R. Salas, Robustez en redes neuronales feedforward, Master’s thesis, Universidad
Técnica Federico Santa Marfa, 2002. 30

[10] Halbert White, Artificial neural networks: Approzimation and learning theory,
Basil Blackwell, Oxford, 1992. 28, 31



Regularization of 3D Cylindrical Surfaces

Luis Alvarez, Carmelo Cuenca, and Javier Sdnchez

Departamento de Informética y Sistemas
Universidad de Las Palmas de G.C.
Campus Universitario de Tafira
35017, Las Palmas
{lalvarez,ccuenca, jsanchez}@dis.ulpgc.es
http://serdis.dis.ulpgc.es/ {alvarez, jsanchez}

Abstract. In this paper we present a method for the regularization of
3D cylindrical surfaces. By a cylindrical surface we mean a 3D surface
that can be expressed as an application S(I,6) — R>, where (I,6) repre-
sents a cylindrical parametrization of the 3D surface. We built an initial
cylindrical parametrization of the surface. We propose a new method to
regularize such cylindrical surface. This method takes into account the
information supplied by the disparity maps computed between pair of im-
ages to constraint the regularization of the set of 3D points. We propose
a model based on an energy which is composed of two terms: an attach-
ment term that minimizes the difference between the image coordinates
and the disparity maps and a second term that enables a regularization
by means of anisotropic diffusion. One interesting advantage of this ap-
proach is that we regularize the 3D surface by using a bi-dimensional
minimization problem.

1 Introduction

This paper deals with the problem of 3D geometry reconstruction from multiple
2D views. Recently, a new accurate technique based on a variational approach
has been proposed in [4]. Using a level set approach, this technique optimizes
a 3D surface by minimizing an energy that takes into account the regularity of
the set of points as well as the projection of the set of points on different images.

In this paper we propose a different approach which is also based on a varia-
tional formulation but only using a disparity estimation between images. We will
assume that the 3D surface we want to recover has a cylindrical geometry, that
is, it can be expressed as an application S(I,0) — R3, where (I,6) represents
a cylindrical parametrization of the 3D surface. Of course, this is an important
limitation in term of the surface geometry, but it simplifies in a strong way the
complexity of the problem and it can be applied in a lot of situations like for
instance, human face reconstruction as we will show in the experimental results.
We will also assume that the cameras are calibrated (see [3], [5] or [6]). Very ac-
curate techniques to estimate the disparity map in a stereo pair of images have
been proposed. To extend these techniques to the case of multiple views is not

F.J. Perales et al. (Eds.): IbPRIA 2003, LNCS 2652, pp. 37-44, 2003.
© Springer-Verlag Berlin Heidelberg 2003
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a trivial problem. The 3D geometry estimation that we propose can be divided
in the following steps:

— For every pair of consecutive images, we estimate a dense disparity map
using the accurate technique developed in [1]. We estimate such disparity
maps forward and backward. From these disparity maps we obtain a 3D
surface for every pair of stereoscopic images.

— Based on the camera configuration we estimate a 3D cylinder and we project
in such cylinder the 3D surfaces obtained in the previous step. From these
projections we estimate an initial cylindrical parametrization of the surface.
This cylindrical parametrization is based on the distance between the 3D
point and the cylinder axis. In fact, for each cylinder coordinates (I,0) we
average such distance for all 3D points which are projected in (I, 0).

— Typically, the recovered set of 3D points is noisy, because of errors in the
camera calibration process, errors in the disparity map estimations, etc.,
so some kind of regularization is needed. In this paper, we propose a new
variational model to smooth cylindrical surfaces. This regularization model
is based on the disparity estimations.

The regularization model we propose is based on a variational approach. We
start with an energy that has two terms, an attachment and a regularizing term.
The former minimizes the difference by respect to the disparity map computed
for every pair of stereoscopic images. This term is responsible for maintaining
the final 3D regularized point close to the information supported by the disparity
maps. The latter enables a regularization by preserving discontinuities on the
cylindrical function. The regularizing term is similar to the terms used in other
fields like stereoscopic reconstruction [1], optical flow estimation [2], etc.

Deriving this energy yields a PDE (Partial Differential Equation) that is then
embedded into a gradient descend method to look for the solution. We develop an
explicit numerical scheme based on finite differences to implement the method.

In Sect. 2 we introduce the cylindrical coordinate system necessary for the
representation of the cylindrical function and the relation with the projective
camera model. In Sect. 3 we study the model by proposing an energy deriving it
and embedding the resulting PDE into a gradient descend method. In Sect. 3.2
there is an explanation of the explicit numerical scheme. Finally in Sect. 4 we
present the experimental results for the bust sequence.

2 The Cylinder Structure

2.1 The Cylindrical Coordinate System and the Projective Camera

Using the notation expressed in Fig. 1 we note by Ny, Ny and N3 the orthogonal
axis of the coordinate system and by Qq the origin of the system. N; represents
the cylinder axis. The cylindrical coordinates are expressed by means of a list of
three candidates (I, 6, r) where [ is the displacement on the cylinder axis, 6 is an
angle (as it is outlined in Fig. 1) and r is the distance from a 3D point to the
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N2 ‘//.. |

Fig.1. Cylindrical and cartesian coordinate systems

cylinder axis. A cylindrical surface S(I,0) will be given by a cylindrical function
r(0,1) in the following way :

S(1,0) = Qo + INy +1(1,0) (cos N3 + sin ON3) . (1)

With this relation we may transform a cylindrical function r (I, #) into a func-
tion in the cartesian coordinate system. So, to provide a cylinder surface is equiv-
alent to provide a cylinder function r(l,0). We will see later that our method
make use of the disparity maps between pairs of stereoscopic images to con-
straint the regularization of the cylindrical function. The disparity maps are
expressed in image coordinates associated to every camera. We assume the pro-
jective model for the cameras. In our problem we have N, different projective
cameras and every camera is represented by a projection matrix P, of dimensions
3z4 that projects 3D points into the projection plane. In projective coordinates
these projections can be represented as follows:

me(l,0) =P (S(1,0),1)" . (2)

2.2 Building the Cylindrical Function

We suppose that for every stereoscopic pair we have a 3D surface. Our first
problem is to transform the 3D surfaces into a unique cylindrical function. The
main steps for computing the cylindrical function are:

1. Compute the coordinate system by estimating Qg, N1, Ny and Ns.

2. Adapt the resolution of the cylindrical image. The cylindrical function will
be represented through an image. This is what we call the cylindrical image.
The rows and columns of this image are given by the N; axis and the angle,
0, respectively.

3. Create the cylindrical function, (6, ). Once we have carried out the previous
steps we have to merge the information of all the 3D surfaces in one function.
We compute an average for all coincident 3D points projections in one pixel
in the cylinder coordinate system (I, 6).
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The first step is to estimate the position, Qy and axis, N1, No and N3, of the
cylindrical coordinate system. We have supposed that the camera configuration
system is cylindrical in the sense that all the cameras are situated around the
scene and looking at the center. We also suppose that the focus of the cameras
are situated close to a common plane. Qg is estimated as the average of the 3D
points of all surfaces. N; is the cylindrical axis and is computed accordingly to
the configuration of the focuses, N5 is the unitary vector that points to the focus
of the first camera and N3 is orthogonal to the others.

In the second step we are concern with the problem of representing the cylin-
drical function through a bi-dimensional image. We have to compute the dimen-
sions of an image that will allocate the values of the 3D points in cylindrical
coordinates. To calculate the number of rows the lowest and highest 3D points
in the N; component are computed. The difference between them defines the
size of the cylindrical axis. The number of columns are estimated knowing that
2-m-radius is the length for the cylinder. We adapt the value of radius in order
to obtain an image with regular pixels (same pixel height and width). This value
depends on the dimension of the image in the N; axis. This image represents
the 7(6,1) function.

The last step consist of assigning a value to every pixel on the image. This
process is carried out by representing the 3D points in cylindrical coordinates
and computing an average for coincident points on a pixel. There may be some
locations where no 3D point is projected, so a post-processing to fill these pixels
is necessary. These are filled from the values of the surrounding pixels.

3 The Regularizing Method

3.1 Energy Minimization

The regularization of the cylindrical function r(l,6) is equivalent to regularize
the cylindrical surface S(I,6). We propose a variational formulation to look for
the regularized solution. This solution is the result of a minimization problem.
Our model is composed of two terms: the attachment term that uses the disparity
maps to constraint the process; and the regularizing term that is used to obtain
a smooth solution. This term is designed to regularize the surface by preserving
the discontinuities of the cylindrical function which are related to the varying
depth of the 3D surface.
The energy model proposed is

N
E(r)=p (Z//Hmm (1,8) — m, (1,0) — hS, (me)|* dido

N
+Zl//|!mc (1,6) = hesr (1,0) — hE (mm)uzdzde)
v [ [otvel) ao. 5
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Met1 (1,0) is the image coordinate for camera ¢ + 1 denoted by (2) and
Uy (Mc) )
vy (M)
represent the optical flow estimations for pixel m. on camera c. Sign + corre-
sponds to the optical flow from camera ¢ to ¢+ 1 and sign — to the optical flow
from camera c to camera ¢ — 1.

After minimizing this energy we obtain the associated Euler—Lagrange equa-
tion that is given by the following PDE:

me (1,0) is the correspondent for camera c. Vectors lfzi/f(mc) = (

e t [ Om om om
_ _ Te /= c+1 c Te c
B (Z ((mm — e — h (i) - (a—: — % I, >)

c=1
Nec _ _ _
_ _ Te+ly = t amc 8mc+1 Tet1 6mc+1
(¢ VTl )
—o - div (7V7‘ =0 (4)
Vel
h (M) _ (%5
Wherejhzj( ’ ): 9z 9y
v(x,y) 9z oy
In order to search for the solution we implement a gradient descend method in
the way % =— aggr) . The divergence term is well known and acts like a diffusion
scheme. If we expand the divergence expression we obtain
(¢ (IVr]) ) ¢ (IVr) "
div (Vr = e + " (| Vr])r (5)
Vel Vel K
where n = % and ¢ = n* are the unitary vectors in the directions parallel

and perpendicular to the gradient, respectively.

Playing with function ¢ (s) it is possible to achieve an anisotropic diffusion
at contours. The first in proposing this kind of diffusion equation were Perona
and Malik [7] in where they introduced a decreasing function to avoid diffusion
at contours.

3.2 Numerical Scheme

In this section we are going to see how to implement an explicit numerical
scheme for this method. We derive % analytically from (2). Regarding (5) the

divergence is divided in two terms and the values for both of them are given by
the following expressions:

2 2 2 2
Taaly — 21Ty Toy + TyyTs _ TyyTy + 2757y T oy + ToxTy

) m =
r%—l—rg r%—l—rf}

(6)

reg
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Fig.2. Bust configuration: This figure shows the 3D reconstructed bust and
the distribution of the projection planes corresponding to the 47 cameras

The first and second derivates on = and y and the derivates of the components

of the optical flow, 2¢, 9u v v ynq 9 haye been approximated by finite

. ) Dz dy’ Dz’ Dy ox
differences.
The final numerical scheme is implemented by means of an explicit scheme
in the following way:

Ne¢

rig1 =re+dt- | a(ree + g (|Vr)]) ron) — 8 (Z ((ﬁlc — Met1 — BC_+1(mc+1))t

c=1

Ome  Om om e
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( or or Th- or )) + Zﬁl ((mc“ e — hi(me))

OMec+1 Ome —o OMe
( or  or _JI”ar))) ’ (7)

Function g (s) is a decreasing function that disables isotropic diffusion for big
values of the gradient.

4 Experimental Results

In this section we show the results of regularizing a bust sequence. In this case
the sequence is composed of 47 images taken around a bust. Figure 2 shows the
configuration of this sequence with the projection planes of the cameras. This is
a close sequence in where the first and last images are correlatives.

In Fig. 4 we may see the original Bust reconstruction and a regularized version
for « = 0,1 and s = 0.1.

From Fig. 5 we may appreciate several regularizations for o = 3,0 and dif-
ferent values of s. The § parameter is much smaller and is used to normalize the
variation between the two terms. In these experiences § = 104
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Fig.3. The left image represents the texture of the Bust sequence projected
on a cylindrical image. The right image is the cylindrical function represented
in gray levels (the white color is associated to the highest values)

5 Conclusions

In this paper we have presented a novel and simple method for the representation
and regularization of cylindrical surfaces. This method is ideally suited for convex
surfaces and also be appropriated for surfaces that have not deep clefts. We have
taken advantage of the simplicity of cylindrical coordinates to represent the set
of 3D points. Once the cylindrical function is built the problem of regularizing
the set of 3D points is reduced to the problem of regularizing a bi-dimensional
function.

We have established an energy in a traditional attachment-regularizing cou-
ple of terms. From this energy we have derived a diffusion-reaction PDE. We
have shown in the experiments that varying the a parameter results in a more
regular set of points and varying the A parameter implies a more regular set of
points by preserving the cylindrical function discontinuities as we have expected
from the results obtained in other fields. The use of a and A\ parameters are

Fig.4. Left two images: Front and profile views of the Bust reconstruction.
Right two images: Front and profile views of a 3D regularization for the Bust
sequence using « = 0,1 and s = 0.1
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Fig. 5. Several views of different 3D regularizations for the Bust sequence. Left
two images: « = 3,0 and s = 0, 5; Right two images: « = 3,0 and s = 1,0

simple. « refers to the smoothness of the final set of points and A refers to the
way the regularization is carried out at the contours.
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Abstract. We present a registration and retrieval algorithm of medi-
cal images. Our algorithm is oriented in a general fashion towards gray
level medical images of non-rigid bodies such as coronary vessels, where
object shape information provide poor information. We use rich descrip-
tors based on both local and global (contextual) information, and at the
same time we use a cooperative-iterative strategy in order to get a good
set of correspondences as well as a good final transformation. We focus
on a novel application of registration of medical images: registration of
IVUS, a promising technique of analyzing the coronary vessels.

1 Introduction

There is a wide range of applications of medical image registration and we refer
to books such as [7] for detailed information. We apply registration to IntraVas-
cular UltraSound images (IVUS), a powerful imaging modality for analysis and
diagnosis of coronary vessels ([1]). In concrete we present a registration proce-
dure to be used as a first step in a more general retrieval framework. The IVUS
technique produces images with quite particularities and noise, difficult to ana-
lyze. Thus, creating a retrieval system of IVUS images is of high clinical interest
for diagnosis purposes.

Although there is a huge number of works in the area of Registration and
Retrieval of Medical Images [2, 7], matching of IVUS images and retrieving cases
from an IVUS images database is a new problem to be solved. On the other hand,
many works on medical image registration are focused on rigid parts that justifies
rigid registration. Medical images of non-rigid bodies such as coronary vessels
in IVUS present features quite different as they do not have any characteristic
spatial configuration forced by the bony structure. We perform elastic matching
with a variational approach for the transformation, given the high variability
inter and intra subject of our medical images.

Registration consists on finding structures analog in a pair of images and
compute a transformation that align them. We will follow point mapping as
a general procedure of registration [5, 1].

* This work is supported by Ministerio de Ciencia y Tecnologia of Spain, grant
TIC2000-1635-C04-04.

F.J. Perales et al. (Eds.): IbPRIA 2003, LNCS 2652, pp. 45-52, 2003.
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Opposite to many works on medical images such as brain MRIs, which take
a grid of characteristic points over all the image, we only extract a small set
of characteristic points from the boundaries of the salient regions we want to
match. This approach makes the algorithm faster and avoids the necessity of
employing a multi-resolution scheme. Given the type of images we deal with,
we must choose quite a rich set of descriptors which not only take into account
the local statistics near the characteristic point (local descriptors) but also the
context of the point (global or contextual descriptors). This gives information of
how other structures are located around the point, and at the same time takes
account of where the point is located at its own structure. Graphs are the most
traditional tool for taking into account the context of some object. However,
they are very dependent on an accurate segmentation, and this makes them
little robust.

Instead, we make use of the so-called correlograms (see [3]) in order to take
account of the context of points, extending the shape-context descriptor of Be-
longie et al [3] to cope with gray level images. Correlograms in 2-D will allow us
to match the couple of images coarsely coping with the spatial distribution of
structures, but have the draw-back of including some information about the 2-D
shape of the contours not interesting in our case. Thus we extend the contextual
information using shape invariant 1-D correlograms after a coarse alignment.
The use of these two types of context descriptors as well as local descriptors will
make our feature space rich enough.

Yet, the set of correspondences obtained with this set of descriptors is not
enough to compute directly the final transformation based on them. We use
a cooperative-iterative scheme (see [5]) in searching a good final transformation,
which consists on giving feedback from the transformation to compute a new set
of correspondences, which at the same time will produce a new transformation
and so on, iterating the algorithm. We use a feedback scheme similar to the one
used by Rangarajan et al. in [6], but without an annealing framework, as the
combination of contextual and local information give us enough information to
seek for an accurate transformation in a more straightforward manner.

Summarizing, we extend and combine different important ideas into a single
framework: incorporation of contextual information with correlograms modified
to cope with gray level images, adding a second type of contextual information,
shape invariant 1-D correlograms; a cooperative-iterative scheme similar to the
one used by Rangarajan et al. [6] and the use of Thin Plate Splines (TPS) [4], al-
lowing different degrees of regularization-approximation as the correspondences
become better and better. The combination of these three factors give our algo-
rithm robustness as well as accuracy.

The article is organized as follows: section 2 explains the description of the
registration method, section 3 shows the results obtained and the paper finishes
with conclusions and future work.
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2 Description of the Method

Coronary vessels present all their structures of interest around the wall of the
vessel. We first make an anisotropic diffusion [9] of the IVUS image and let
a snake grow from its interior to the wall of the vessel. Then we sample the
boundary points in order to take our set of characteristic points and finally we
extract the feature vectors associated to each characteristic point.

2.1 Feature Space

We compute local feature vectors associated to each characteristic point and
then based on them compute 2-D correlograms and 1-D correlograms. Local
feature vectors aim at characterizing the biological structure where the point lies,
whereas correlograms will put the points into context. Summarizing, associated
to each characteristic point x; we are going to use three different feature vectors:
our local feature vector [;, a 2-D correlogram v;, an 1-D correlogram w;. We will
now describe each of them in turn.

In IVUS images regions such as calcium plaque are characterized by the gray
level they have inside them and the gray level they cause outside them because
of their echogenic impedance. Thus a good descriptor of the structure the point
is at, is the gray level profile along the line perpendicular to the wall from the
point towards the outside part of the vessel. We measure a set of statistics over
this profile and its first derivative which conform our local feature vector [1].

Correlograms consist of partitioning the image in cells distributed radially
around its origin, which is the current point we are describing. In fig. 1 we can see
a correlogram, a partition of the image in sectors or cells, each one accounting for
some part of the image at a specified range of angles and radius, taking as origin
a characteristic point x;. The radial length of the cells grows with logarithmical
rate from the origin towards outside, giving more importance to the near context
of the point.

In every cell of the correlogram we compute a statistic such as the mean
over the local feature vectors of the points that lie inside the cell. Let v; be the
2-D correlogram associated to z;. Let {Zy,, Tu,, -..,2y, } be the characteristic
points which lie in the u cell of v;. We take the local feature vectors associated to
these characteristic points: {ly,, luy, - - -, lu, } and compute a mean over each of
their characteristics. Let every local feature vector [, have d characteristics: [, =
(Tk1, k2, - - - lka) VE. Let ¢y = mean({lu,j, lusj, - - -5 lu,j }), the mean over the j
characteristic of the local feature vectors {ly,,lu,, - - -, lu, }. If we have r cells for
every correlogram, we can express the 2-D correlogram associated to the char-
acteristic point x; as v; = (€11, 12, -+, C1ds €21, 22y« + + y C2dy + + + s Crly Cr2y -« Crd)-

The 1-D correlogram is a division in cells but now of the contour curve
where we have our characteristic points. Let w; be the 1-D correlogram for
the characteristic point x;. We can express the contour curve as a function
¢ : [0,1) — R? depending on an intern parameter s € [0,1): p(s) = (z,v).
We take as intern parameter s an approximation to the arc-length of the curve,
and such that ¢(0) = z;. Then we take as cells of the 1-D correlogram a set of
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Fig.1. Correlogram with 12 intervals of angles and 5 intervals of radius

intervals I,, C [0,1)Vu,|J I, = [0,1), 1, (I, = 0 < u # v. This correlogram is
not based on the local feature vectors directly but on a classification result of
the characteristic points using these local feature vectors. For all the points that
fall inside one cell of a correlogram w; we count how many of these points belong
to the same type of structure and this is the value associated to this cell.

The 1-D correlogram does not take into account the particular shape pecu-
liarities of two structures to be aligned. Once we have put the structures close
by using the 2-D correlogram, which take account of the 2-D distribution of
structures, we finish an accurate matching of points from two analog structures
by using the 1-D correlogram. This descriptor accounts mainly for the position
of the point along the boundary of the structure it belongs to, saying intuitively
if this point is at one extremum (and in which extremum it is) or if it is near the
center of the structure. Thus extremum points from both structures are matched
together, central points together, and so on.

2.2 Iterative Scheme and Final Algorithm

Once extracted a set of characteristic points, we apply a coarse alignment us-
ing as feature vectors only the 2-D correlograms, which accounts for the 2-D
distribution of structures and put analog structures close enough.

After this coarse alignment, we perform a classification of the points. Let Iy
be the query image and Iz be the complementary. For any pair x; € I1, y; € Ia,
the distance between them is computed as deiqss + d(w;, w;), where the distance
d(w;, w;) is the x? distance (see [3]) between the 1-D correlograms of both points,
and dgjqss 1s infinite if both points do not belong to the same type of structure
(class), and 0 if they do. By adding djqss We are restricting the correspondences
to match always points belonging to the same structure. Furthermore, we restrict
the region where the matching point lies to be near the mapped characteristic
point, f(z;), where f is the coarse transformation obtained in the first step.
With these measures of distance between every couple of points we compute the
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final set of correspondences and based on them the final transformation. The
computation of the transformations is done by adjusting a TPS to the set of
correspondences obtained at each step.

For both steps we also use an iterative step that aims at doing cooperation
between neighbor points in the computation of a reliable set of correspondences.
The idea of cooperation is based on the fact that if one point z; is matched
with y;, a neighbor point z;11 of x; should not be matched with a point y; too
far away from y;. Let a couple of points z; € I; and y; € I3, and let its distance
in the feature space be d;;. We have such a distance for every possible couple of
points. After obtaining an initial set of correspondences based on these distances,
we make a transformation by TPS. Let f(z;) be the mapping of x; by the TPS.
We recompute the distance between every couple of points (x; € Ir,y; € I2)
as dij + o f(x;) — y;]|. With these new distances we compute a new set of
correspondences that produce a new transformation and this is iterated several
steps. The TPS do not allow two neighbor points x;41 of x; to be mapped far
away from each other. Thus, by adding the term «| f(z;) — y;|| for the point x;
and a| f(zi41) — y;| for the point x;41 to the set of distances, we are biasing
both points towards the same region of I5. The parameter « indicates how much
we rely on the last transformation. If the last transformation is very accurate, we
take as o a high value, restricting the corresponding points y; € I> to be near the
mapped points f(z;). Thus, as the process makes the transformations better, we
must increase this parameter through the successive iterations, beginning with
a small value. Also the regularization degree of the TPS becomes smaller as
the set of correspondences is better, as a high regularization is only needed to
approximate coarsely noisy correspondences. Thus we decrease the regularization
through the successive iterations.

Both types of correlograms depend on the spatial distribution of the charac-
teristic points. As the spatial distribution of the points become modified by the
successive mappings, we must recompute these correlograms through successive
iterations of the algorithm.

3 Results

We would like to show first the necessity of using contextual as well as local
information, and the necessity of using as contextual information not only the 2-
D correlograms but also 1-D correlograms. For an explanation of the parameters
used see [1].

In fig. 2 we can see a first couple of IVUS images with two calcium plaques,
one on the left and the other one on the right. The IVUS image of 2-(a) corre-
sponds to the query image, and the IVUS image of 2-(b) to its complementary
image. In fig. 2-(c) we show the anisotropic diffusion of the query image and su-
perposed in red the boundary of the vessel from which we extract the character-
istic points. In fig. 2-(d) we show the anisotropic diffusion of the complementary
image and superposed in red the boundary of the vessel from which we extract
the characteristic points. In fig. 6 we see the final set of correspondences.
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In fig. 3 we compare the result of the first coarse transformation using contex-
tual information (2-D correlograms) and using only local information (our local
feature vectors). We show transformation results on the anisotropic diffusion of
the images because it is visually more clear. In 3-(a) we show the anisotropic
diffusion of the query transformed by the coarse mapping. In 3-(b) we show the
complementary image with the edges of the transformed query image superposed
in red. We can see how both calcium plaques are mapped close, as well as the
adventitia tissue. In 3-(¢) and 3-(d) we show the same coarse transformation
using only local feature vectors. We can see that one of the calcium plaques has
not been mapped closed to any of the calcium plaques of the complementary
image.

In fig. 4 we see how the set of correspondences using only a 2-D correlogram
is more noisy than using a combination of 1-D correlogram and local feature
vectors.

If fig. 5 we compare the result of the transformation obtained in the second
step using 1-D correlograms and including the classification information by the
distance dgiqss (see previous section), with a transformation obtained by the
same algorithm but using 2-D correlograms and including also the classification
information. As can be seen the transformation using 2-D correlograms is more
inaccurate and produce an irregular warping with the noise seen in the images.
The irregular warping is due to be using a slow regularization degree of the
TPS based on a too noisy a set of correspondences for such a small degree of
regularization. Finally we see results for another couple in fig. 7.

4 Conclusions and Future Work

We apply a registration technique to a novel type of medical images, IVUS im-
ages of highly elastic bodies and quite difficult to analyze. These types of images
need a rich feature space, using not only local information around the point but
also providing context or global information relative to this point. We extend the
work of Belongie et al. [3] using a modification of their correlograms in order to
cope with gray level images, and adding a second contextual information, shape

Fig. 2. Query and its complementary IVUS (a)-(b). Their anisotropic diffusion
results (¢)-(d)



Non-rigid Registration of Vessel Structures in IVUS Images 51

\/

Fig.3. Coarse alignment (first step of the algorithm) using first contextual
information (a)-(b), and then only local information (c)-(d)

Fig.4. Correspondences with only 2-D correlograms (a) and correspondences
with 1-D correlograms and local feature vectors (b)

a

Fig. 5. Second transformation using first in 1-D correlograms (a)-(b), and then
2-D correlograms (c)-(d)

Fig. 6. Final set of correspondences of the first pair of images
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Fig.7. Query (a), complementary (b), and final set of correspondences on their
anisotropic diffusions (c)

invariant 1-D correlograms. We incorporate this rich set of descriptors into a
cooperative-iterative scheme similar to the one used by Rangarajan et al. [0],
but without the deterministic annealing framework they use, as the combina-
tion of contextual and local information gives us enough information to seek for
an accurate transformation in a more straightforward manner. The combination
of rich descriptors, TPS, and the use of an iterative-cooperative scheme gives
our algorithm robustness as well as accuracy, the result not depending on accu-
rate classifications of all the points. Currently, we extend the IVUS registration
including textural information.
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Abstract. Nowadays, the surveillance and inspection of underwater in-
stallations, such as power and telecommunication cables and pipelines,
is carried out by trained operators who, from the surface, control a Re-
motely Operated Vehicle (ROV) with cameras mounted over it. This is
a tedious, time-consuming and expensive task, prone to errors mainly
because of loss of attention or fatigue of the operator and also due to
the typical low quality of seabed images. In this study, the development
of a vision system guiding an Autonomous Underwater Vehicle (AUV)
able to detect and track automatically an underwater power cable laid
on the seabed has been the main concern. The system has been tested
using sequences from a video tape obtained by means of a ROV during
several tracking sessions of various real cables. The average success rate
that has been achieved is about 90% for a frame rate higher than 25
frames/second.

1 Introduction

The feasibility of an underwater installation can only be guaranteed by means
of a suitable inspection program. This program must provide the company with
information about potential hazardous situations or damages caused by the mo-
bility of the seabed, corrosion, or human activities such as marine traffic or
fishing. Nowadays, the surveillance and inspection of these installations are car-
ried out using video cameras attached to ROVs normally controlled by operators
from a support ship. Obviously, this is a tedious task because the operator has
to concentrate for a long time in front of a console, which makes the task highly
prone to errors mainly due to loss of attention and fatigue. Besides, the pecu-
liar characteristics of the undersea images —blurring, low contrast, non-uniform
illumination— increase the complexity of the operation. Therefore, the automa-
tion of any part of this process can constitute an important improvement in
the maintenance of such installations with regard to errors, time and monetary
costs.

The special visual features that artificial objects possess allow distinguishing
them from the rest of objects present in a natural scenario even in very noisy im-
ages. In our case, the rigidity and shape of the underwater cable can be exploited

* This study has been partially supported by project CICYT-DPI12001-2311-C03-02
and FEDER fundings.
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by a computer vision algorithm to discriminate it from the surrounding environ-
ment. This fact makes feasible the automatic guidance of an AUV by means of
visual feedback to carry out maintenance/inspection tasks. Following this strat-
egy, a first approach to the problem of detecting and tracking an underwater
power cable by analysing the image sequence from a video camera attached to
an AUV was described in [7], being afterwards improved and optimised in [8].

In this paper, a new version with similar success rate, better performance and
lower complexity is proposed. The vision system has been tested using sequences
from a video tape obtained in several tracking sessions of various real cables with
a ROV driven from the surface. These cables were installed several years ago,
so that the images do not present highly contrasted cables over a sandy seabed;
on the contrary, these cables are partially covered in algae or sand, and are
surrounded by algae and rocks, making thus the sequences highly realistic. The
mean success rate that has been achieved is about 90% for a frame rate of more
than 25 frames/second.

The rest of the paper is organized as follows: section 2 revises previous work
on the subject; the proposed vision system is described in section 3; section 4
shows the results obtained; and, finally, section 5 presents some conclusions and
future work.

2 Previous Work

In the literature about cable inspection, two main sensing devices can be dis-
tinguished: magnetometres and sonar. In general, both strategies require AUVs
larger and more powerful than is needed because of the very size of the devices
and due to the need of including extra batteries in the vehicle [5]. By using
CCD cameras, however, this problem is considerably reduced, either in cost and
in AUV size. In fact, throughout the last years, several research groups have
shown the suitability of vision systems either for navigation and for mission
tasks (see [9], among many others).

With regard to visual cable and pipeline tracking and inspection, several
systems have been proposed so far. Matsumoto and Ito [6] developed a vision
system able to follow electrical cables in underwater environments by using edge
detectors, the Hough transform and some higher-level processing related to the
line-like appearance of the cables. Hallset [5] presented another system able to
follow pipelines using edge detectors and the Hough transform too, and a map
of the pipeline network. At the University of Ancona, a system oriented towards
helping human operators in the inspection of gas and oil pipelines was also
implemented [10]. In this case, the system detected the pipes and some other
accessories attached to them using statistical information obtained from selected
areas of the image related to the position of the cable. More recently, Balasuriya
et al. proposed a system based on predicting a Region Of Interest (ROI) in the
image and applying the Hough transform to an edge map produced by a LoG
operator [4]. An improved version using a rough 2D model of the cable appears

in [3].
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Fig.1. Intermediate and final results for a real image split in 2 x 2 cells

3 The Vision System

Artificial objects usually present distinguishing features in natural environments.
In the case of the cable, given its rigidity and shape, strong alignments of contour
pixels can be expected near its sides. The vision system described in the paper
exploits this fact to find the cable in the images.

In order to obtain the cable parameters, the system splits the image to be
analysed in a grid of cells which are processed separately. This division pretends
to reinforce the evidence of the cable in those areas of the image where it ap-
pears clearly defined. Different steps are carried out to locate the cable in every
cell of the resultant grid. First, an optimised segmentation process is executed
to find image regions as approximated as possible to the scene objects. Given
the contours of such regions, alignments of contour pixels are determined. If
among those alignments there is strong evidence of the location of the cable
(mainly two alignments with a great number of pixels lined up and with a high
degree of parallelism, even without discounting the perspective effect), then the
cable is considered to have been located and its parameters are computed. After
analysing all the cells of the grid, the partial results obtained are merged to
achieve a global agreement about the real cable position and orientation in the
image. By way of example, fig. 1 shows the cable detection process for a real
image.

Once the cable has been detected, its location and orientation in the next
image are predicted by means of a Kalman filter, which allows reducing the pixels
to be processed to a small ROI. In this way, the computation time is considerably
lowered together with the probability of misinterpretations of similar features
appearing in the image.

When tracking the cable, a low or null evidence of its presence in the ROI
can be obtained. In such a case, the image is discarded and a transient failure
counter increased. If this anomalous situation continues throughout too many
images, then it is attributed to a failure in the prediction of the ROI, resulting
in two special actions: the Kalman filter is reset and the ROI is widened to the
whole image.
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Fig. 2. (a) Ideal bidimensional histogram; (b) Flow diagram of the cable detec-
tion step

3.1 Segmentation Process

A gray-level thresholding technique has been applied to carry out the segmenta-
tion of every grid cell. It is based on a particular histogram where the relevant
objects of the scene can be more easily distinguished than using the traditional
gray-level histogram.

In order to obtain the mentioned histogram, the cell of the grid to be analysed
is first transformed into the {gray-level, gradient modulus} space. This trans-
formation consists in building a bidimensional histogram where one horizontal
axis corresponds to gray-level, the other horizontal axis corresponds to a dig-
ital approximation of the modulus of gray-level gradient —the Sobel operator
has been used—, and for every combination {gray-level, gradient modulus} the
vertical axis is the number of pixels in the cell having that gray-level and that
gradient modulus.

In the case of several objects with different gray-levels, the ideal bidimen-
sional histogram should look like fig. 2(a). In effect, if the image can be approx-
imated by a noisy piecewise constant bidimensional function, the interior of any
object in the cell has gradient near zero, so that pixels in the interior zones are
located in the lower part of the histogram, with regard to gradient. Border pix-
els among objects, however, are located in zones of higher gradient, joining the
clusters corresponding to the interiors of such objects in a “fingers”-like fashion.

Once the bidimensional histogram has been built, it is projected onto the
plane {gray-level, number of pixels}. The projection is cumulative and does not
consider the pixels whose gradient is greater than a predefined threshold. Ideally,
this parameter should reject the pixels that belong to the contour zones.

The next step partitions the cell into the regions that can be intuitively
distinguished in the previously computed histogram, looking for its valleys.

3.2 Detection of the Cable

Once the cell has been segmented, the system proceeds to locate the cable execut-
ing the tasks enumerated in fig. 2(b). This step is carried out from the contours
of the segmented cell, by looking for lines which can belong or be near the sides
of the cable. In this context, a line is defined as a set of connected contour pixels
not including branches. On the other hand, it is important to note that, unlike
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Fig. 3. (a) Splitting of a line L; (b) Co-linearity analysis

previous versions of the system [3], the detection step does not assume a ver-
tical orientation of the cable in the image. This restriction is removed in order
to use any evidence of the presence of the cable. However, it also increases the
probability of erroneous detections.

Lines are obtained by scanning the segmented cell from bottom to top. The
direction of scanning is important as the lower part of the image tends to be
clearer than the upper part when the camera is not oriented towards the seabed,
due to the properties of light propagation undersea. Once a contour pixel has
been found, adjacent pixels are selected according to a prediction of the cable
orientation produced by a Kalman filter applied over the past cable parameters.
Using this information, the system favours looking for lines in directions similar
to the predicted one. When, for a given contour pixel, there is no adjacent pixel
in the preferred directions, the process of tracking the line finishes and a new
one starts by resuming the scanning of the cell from the point it was left.

A straight segment fitting task follows next. This process can be seen as a low-
pass filter to remove noise either due to the redefinition of the cable contours
caused by the proliferation of flora on top of and by the cable, and due to the
processes of acquisition and segmentation. Total least squares is used in the
fitting. As the fitting error can become large in some cases, a control procedure
is executed after each fitting. It is as follows: (1) for each point p; belonging to
the line L, its orthogonal distance to the fitted straight segment S, d(p;, S) > 0,
is computed; (2) if d(p;, S) = max{d(p;,S) | pi € L} > ke, then L is split into
two halves by the point of greatest local maximum error which is not an end of
the line (k. is a threshold). See fig. 3(a) for a typical example.

The resultant set of straight segments is filtered according to their length. In
this context, the length of a straight segment is defined by means of the total
number of contour points that it fits. The filter consists in keeping the N longest
straight segments. In this way, it is intended to reduce the size of the problem
in a controlled way. Besides, as the segments that supply more information are
kept, a non-negative influence of the filter on the results obtained is expected.

Subsequently, a co-linearity analysis is applied to the set of straight segments
obtained, in order to join the segments that can be considered as originally be-
longing to the same long straight contour. As an example of the analysis per-
formed, consider the set of segments that have passed the length-based filtering
process (see fig. 3(b)). For each straight segment S; under analysis, a new long
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straight segment L.S; is calculated using again total least squares. This time, the
points used in the fitting are those contour points corresponding to the straight
segments which completely fall within a strip-shaped region aligned with S;,
whose width is w, the tolerated co-linearity error.

Immediately afterwards, the resultant set of straight segments is filtered
again. Unlike the specific length filter, now each long straight segment is evalu-
ated based on a suitable combination of four different criteria. Those segments
that obtain an evaluation lower than a predefined threshold are removed. In this
way, it is intended to reject straight segments with little probability of belonging
to one side of the cable. The criteria used to assess such segments are as follows:
length (C1), fitting error (C2), average of the gradient modulus of the contour
pixels fitted by the straight segment considered (C3), and the standard deviation
of the differences among the gradient directions of the aforementioned contour
pixels (Cy). The partial and normalised assessments obtained of each one of
the previous criteria are weighted in order to compute the final one. Successful
results have been achieved assigning a higher weight to the criteria C; and Cs.

The last task of the detection step consists in choosing the pair of long
straight segments which are likely to correspond to the sides of the cable. Con-
sidering its morphological characteristics, the task mainly looks for two long and
parallel straight lines. Initially, each possible pair of straight segments is checked
according to the distance that separates them. Those pairs whose separation
reasonably differs from the expected width of the cable in the images are dis-
carded. Note that, using this new parameter, the system assumes that the width
of the cable does not change significantly between images. This is just a matter of
navigation control. The probability of erroneous detections thus is considerably
reduced. Afterwards, three different criteria are used to evaluate each surviving
pair of straight segments: degree of parallelism (Cs), average of the Euclidean
length of both segments (Cg), and, finally, the average of the individual assess-
ments obtained by such segments in the previous task (C7). Once all the final
weighted assessments have been computed, the pair with the highest one is se-
lected. In case the maximum score is below a minimum value, it is considered
there is not enough evidence of the cable in the cell.

3.3 Fusion of Partial Results

Once all the cells of the grid have been processed, each cell contributes to the
computation of the global position and orientation of the cable using the resul-
tant partial detections. Those cells for which two long parallel straight segments
showing enough evidence of the presence of the cable have been found contribute
with that pair. In the remaining cases, the contribution consists in the segments
surviving the filtering tasks previous to the pairing. In this way, both sides of
the cable are not required to lie in the same cell of the grid so as to be taken
into account. Results are merged considering non-overlapping groups of 2 x 2
cells in a pyramidal way, reducing, at each iteration, the number of cells from
N x M to [%W X (%1 For every set of cells, the fusion of results is achieved by
re-executing the segment grouping, heterogeneous filtering and segment selection
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Table 1. Image sequence results

Sequence Length (frames) Frame rate achieved Wrong detections Success rate

1 253 61.76 f/s - 16 ms/f 37 85%
2 499 33.02 f/s - 30 ms/f 64 87%
3 386 39.93 f/s - 25 ms/f 11 97%
4 116 33.29 f/s - 30 ms/f 11 90%
5 113 36.75 f/s - 27 ms/f 11 90%
Average 1367 40.95 f/s - 24 ms/f 134 89.8%

tasks previously described (see fig. 2(b)). The merging process finishes when only
one cell is left. In this case, the average of the pair of segments resulting from
the segment selection task, if any, constitutes the output of the vision system.

3.4 Cable Tracking Strategy

The tracking stage is based on the hypothesis that the cable parameters are not
going to change too much from one image to the next. Therefore, once the cable
has been detected in the image sequence, the computed position and orientation
are used to predict the new parameters in the next image. In this way, the image
area where to look for the cable can be reduced to a ROI, increasing, thus, the
probability of success. In case the system is not able to find enough evidence of
the cable in the ROI, the recovery mechanism previously described is activated.

To predict the cable parameters, the system makes use of a linear Kalman
filter for the main axis of the cable. Previous versions of the system carry out
such prediction by means of two filters, one for every side of the cable (see [3]
for details). The main axis has however shown to be more predictable than the
sides. The state vector X contains the position and orientation of the main
cable axis in the Hough plane (p, #). The model of the filter is expressed as (1)
X(t+1)=X(t)+v(t) and (2) Z(t+1) = X(t) + w(t), where v and w represent
respectively the process and the measurement noises.

The ROI for the next image is computed as follows: first, the position and
orientation of each cable side are estimated on the basis of the predicted main
axis and the expected cable width in the images; afterwards, a small tolerance
factor is added to both sides.

4 Experimental Results

To test the system, real image sequences coming from several ROV sessions
recorded on video tape have been used. Specifically, five sequences were selected
from that recorded material to carry out the experiments. Although they are
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Fig. 4. Results for an excerpt of sequence 4 with the ROI superimposed. The
white line represents the computed main cable axis and thus a possible command
to the AUV navigation controller

not very lengthy, they cover a wide range of complexity: steep gradient in illu-
mination, low contrast and blurring, objects overlapping the cable, instability
in the vehicle motion, etc. Table 1 shows relevant information about every se-
quence. The success rate appearing in the table refers to those images for which
the ROI wholly includes the cable and the system has been able to determine
correctly its location. All the tests were run on an Intel Pentium IIT 800 MHz
machine executing Windows XP Professional, and the resolution of the images
was half-NTSC (320 x 240 pixels).

Fig. 4 shows results for an excerpt of sequence 4. In general, the system tends
to return the main axis of the cable within the cable region of every image, as
it can be seen in the figure, so that it can be said the position of the cable is
correctly detected every time. The orientation measured, however, is sometimes
affected by the noise present in the image, either in the form of small particles of
algae and lack of contrast between cable and seabed. Consequently, sometimes
deviates from the real orientation.

5 Conclusions and Future Work

A vision system for real-time underwater cable tracking has been presented.
Using only visual information, the system is able to locate and follow a cable
in an image sequence overcoming the typical difficulties of underwater scenes.
Five highly realistic sequences have been used to test the system. The mean
success rate that has been achieved is about 90% for a frame rate of more than
25 frames/second. Given the fact that the output of the system has not been
used to correct the vehicle’s course, which would give rise to softer movements of
the camera, a higher success rate is still expected. Additional information about
the vision system can be found in [2].
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This study is included in a more ambitious project in which the inspection
of underwater installations in connection with the proposed system is the main
concern. At present, a first approximation to the control architecture for locat-
ing and tracking the cable autonomously on the basis of the vision system has
been successfully implemented and validated. For a detailed description on the
subject, the reader is referred to [1].
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Abstract. We describe a novel strategy of hierarchical clustering
analysis, particularly useful to analyze proteomic interaction data. The
logic behind this method is to use the information for all interactions
among the elements of a set to evaluate the strength of the interaction of
each pair of elements. Our procedure allows the characterization of
protein complexes starting with partial data and the detection of
“promiscuous” proteins that bias the results, generating false positive
data. We demonstrate the usefulness of our strategy by analyzing a real
case that involves 137 Saccharomyces cerevisiae proteins. Because
most functional studies require the evaluation of similar data sets, our
method has a wide range of applications and thus it can be established
as a benchmark analysis for proteomic data'.

1 Introduction

When we can define a distance measure among elements of a set, hierarchical
clustering techniques are often very useful to define “natural” groups within that set
[4]. However, the ability of such methods to obtain reasonable classifications depend
on how are the distances among the elements. For example, when many pairs of
elements are at the same distance, it is often impossible to unambiguously define the
groups. This problem arises in many cases, as in the characterization of nets of
irregular topology, in which distances are generally constrained to values between 1
and 5 [1]. The available data on protein-protein interactions generated in massive
proteomic analyses [5-7, 13] can be similarly converted into distances, that measure
the degree of metabolic or functional proximity within the cell. Again, those distances
are constrained. For both prokaryotic and eukaryotic organisms, it has been found that
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distances have very often low values, suggesting that the cellular protein interaction
network has “small world” properties, with a high degree of connectivity and
closeness among components [8, 11].

It is therefore very interesting to generate methods able to deal with those difficult
cases. In this work, we describe a fast, iterative hierarchical clustering algorithm that
uses the information provided by the whole database of distances among elements of
a set (that we will call from now on as primary distances, d) to evaluate the closeness
of two particular elements. The algorithm converts the primary distances between two
elements into secondary distances (d’) that reflect the strength of the connection
between two elements relative to all the other elements in the set. Those secondary
distances can then be used again to perform a hierarchical clustering analysis.

In the following section, we will detail the new algorithm and we will show its
properties by analyzing a simple case. Then, we will describe the results when the
method is applied to a real case (a complex set of 137 interacting proteins of the
baker’s yeast Saccharomyces cerevisiae). The last section contains some concluding
remarks about the advantages of this strategy.

2 A New Hierarchical Clustering Strategy

We start by defining the parameters used to perform a typical hierarchical clustering
strategy (see also [10]). Let us consider a set of N elements. For each pair of elements,
we have determined a distance value, that we will call primary distance (d). Let us
now establish in that set a partition P, formed by M clusters (A;, A, ..., Ay). Each
cluster A; contains x; elements (a;, a,, ..., a,;). We can define then a cluster function
for A; (F[A;]) as follows:

Xi

x;—1
FA)= D D d,. (1)

k=1 j=k+1

where dj; is the primary distance between element a; and element a;. The number of
primary distances within this cluster is:

n(A) =x; (x;-1)/2 2

Similarly, we can define a function for the whole partition (F[P]) , that includes the
distances among all elements:

N- y
FP)= > >.d, 3)

i=l j=i+l
The number of primary distances for the whole partition is:
nP)=N(N-1)/2 4

We can then define a global function (F[G]) that evaluates, once the clusters have
been established, the average of the distances for pairs of elements included in the
clusters respect to the average value of distances in the whole partition:
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FG)=[ -7 =——= 1/ [F®)/n(P)] )

This F(G) value is minimum when the clustering obtained is optimal. Therefore,
the problem to solve is to minimize the value of F(G) for a certain set of elements. A

typical algorithm of hierarchical clustering is developed in [2]. Starting with N
elements, a maximum number of N clusters are established. An F(A;) value equal to
zero is assigned to all single-element clusters (i. e. intraclement distances are zero).
Then, the best grouping with N — 1 clusters is determined by examining all possible
combinations among the N elements and putting together the two elements that have a
minimum distance (equivalent to minimizing F[G] for that particular number of
clusters). This procedure can be repeated for N-2, N-3, ..., up to 1 clusters. It is
significant that the way that the F(G) values change every time a cluster is eliminated
provides a hint of the quality of the clustering. When a large increment is obtained for
the F(G) value when we pass from X to X - 1 clusters, we can conclude that the
grouping is becoming artificial, i. e. is putting together elements that are too
dissimilar for the clustering to be meaningful [3].

Let us consider now the situation when there are many identical primary distances
between pairs of elements. This situation causes the additional problem that there are
many identically optimal (i. e. with identical F[G] values), but totally unrelated
solutions, both when the same or different numbers of clusters are established. A
typical example will clearly show how this additional difficulty complicates the
clustering procedure. In Table 1, we show a table of distances, generated for
illustrative purposes.

In the set shown in Table 1, there are 8 elements, named A to H, and all primary
distances have values ranging from 1 to 5. Thus, many of these distances are identical.
When we apply the typical clustering strategy described above, we will find that
several independent solutions, obtained by connecting elements that are separated by
a distance equal to 1, yield identical, optimal F(G) values. Using the data in Table 1,
if we make 20 hierarchical clusterings, we obtain four solutions with identical values
of F(G) (Table 2, left).

Table 1. Matrix of distances among eight elements (A — H). The distances are constraines to
values between 1 and 5

A B cC D E F G H
Al - 1 1 2 3 4 5 5
B | 1 - 1 1 2 3 4 5
cC| 1 1 - 2 3 4 5 5
D| 2 1 2 - 1 2 3 4
E| 3 2 3 1 - 1 3 2
F | 4 3 4 2 1 - 1 1
G| 5 4 5 3 3 1 - 1
H| S 5 5 4 2 1 1 -
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Table 2. Four optimal solutions found using Table 1 distances

Optimal clusterings No. of times found
(A,B,C)(D,E) (F,G, H) 15
(A,C)(B,D) (E,F)(G,H) 2
(A,C) (B,D)(E) (F,G,H) 2
(A,B,C) (D) (E,F)(G,H) 1

Table 3. Secondary distances among the eight elements analyzed

A B C D E F G H

A - 5 1 21 | 21 |21 | 21 | 21
B 5 - 5 17 |21 |21 | 21 | 21
C 1 5 - |21 21 |21 |21 |21
D |21 |17 ] 21 - 6 |21 ]21 |21
E |21 |21 | 21 6 - 18 121 | 21
F [ 21 | 21 [ 21 |21 | 18 | - 4 4
G |21 |21 |21 |21 | 21| 4 - 1
H [ 21 |21 |21 |21 |21 | 4 1 -

The results of the multiple replicates can be used to evaluate the strength of the
connection between two elements respect to the connections among all the elements
in the partition. For example, if we apply the clustering algorithm 20 times, it is found
that the four solutions are generated with different frequencies. One of the solutions is
found in 75% of the analyzed cases (Table 2, right). Moreover, connections between
particular pairs of elements occur in several final solutions (e. g. elements A and C are
together in all 20 solutions shown in Table 2). Thus, the strength of the connection
between two elements, respect to the whole set, can be evaluated by considering the
number of times those two elements are found together in all alternative solutions and
the frequency of each alternative solution. Thus, a new table of secondary distances
(d’) can be generated that contains the number of times that each pair of elements
appear together for a large and randomly generated set of alternative optimal
solutions. In our example, these secondary distances are shown in Table 3. This
secondary distances are simply calculated as the number of times two elements do not
appear together plus one. Thus, in our case, all elements that never appear together
have a secondary distance of 21 and all those elements that go always together have a
secondary distance of 1 (Table 3).

Table 4. Optimal clustering using secondary distances

(A O(B(D)(E(FH(G(H [FG) = 006086957
(A O(BI(D)(E(FH(G H |FG) = 0.06086957
(A O(BI(D)(E(F G, H |FG) = 0.15217391

(A, C B)(D(E(FG, H F(G) = 0.20289855
(A, C B)(D,E(F G, H F(G) = 0.22608696
(A, C B, D, E(F G, H F(G) = 0.69297659

(A C B, D,EF G, H) FG) = 1
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Once these secondary distances are established, we can now use them to make a
new cluster analysis. As an example, we show, in Table 4, the groups obtained by
taking the secondary distances shown in Table 3 and using the heuristic hierarchical
clustering algorithm described above.

In Table 4, the small increments of F(G) up to the establishment to three clusters
together with the large jump in the F(G) value, from 0.226 to 0.693, when two
clusters are established suggest that three natural clusters are present. In fact, they
correspond to those more frequently found in the original analysis using primary
distances (Table 2). However, it would be most interesting to be able to a priori
establish a cutoff value beyond which the clustering results will be considered
unreliable. To do so, we have defined an Affinity Coefficient (AC), as follows:

AC=100 {(1 - F[G]) / (1 = F[Guin])} (6)

Where F(Gpy,) is the minimum value for the F(G) function. We thus will proceed
to define a particular value of 4C and then use it to establish the limit in which the
clustering procedure is stopped. If AC = 100, then only optimal clustering will be
considered. In a case as the one discussed above, that would mean that only elements
with distances equal to 1 will be clustered together. However, by relaxing the
conditions, that is using 4C < 100, we will allow some level of non-optimal clustering
to occur. As we will show in the next section, relaxing the conditions of clustering
may be useful when considering incomplete and/or unreliable data, as those generated
in massive proteomic projects.

For a total of R replicates for the hierarchical clustering analysis using primary
distances, the clustering strategy may be described as follows:

Select AC value
Repeat from N = 0
Random ordering of elements;
Hierarchical Clustering (d, ACQC);
Increment d’ counters according to the solution found;
N=N+1
To N = R

3 Application to Real Proteomic Data

Protein-protein interaction data are rapidly accumulating and the analysis of these
data may provide very important hints about cellular function. In the yeast
Saccharomyces cerevisiae, massive interaction data have been obtained using two
different strategies, namely massive two-hybrid system analyses [7, 12] and affinity
purification of complexes using tagged proteins [5, 6]. However, there are two
problems with the information generated using those techniques. On one hand, false
positive interactions are generated by proteins that are “promiscuous”, that is, able,
under the conditions of these experiments, to anomalously bind to multiple partners.
The number of false positive interactions may be up to 50% [13]. On the other hand,
purification of complexes using tagged proteins is often partial, that is, the complexes
obtained do not contain all the proteins that constitute them in vivo. This is shown by
the fact that different complexes that however share several, often many, subunits are
found (data from [5, 6]).
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Fig. 1. Summary of results for septin-interacting proteins of S. cerevisiae, with AC = 100%.
The light gray tones correspond to low secondary distances between proteins. Proteins that are
part of a complex are shown consecutively in this figure. Asterisks indicate two examples of
putative promiscuous proteins, characterized by having similar secondary distance values with
proteins belonging to several different complexes. These results were obtained after 1000
replicates

Our clustering strategy may contribute to the resolution of these problems,
especially for the data provided by complex purification experiments. In order to
implement this strategy, we started by creating a simple measure of distance among
proteins, that ranges from 1 (when direct interactions are known) to 5 (unrelated
proteins) (Mars, Arnau and Marin, submitted). Once distances are determined for a set
of relevant proteins, the clustering strategy detailed in the previous section allows to
determine secondary distances among proteins. When a protein is promiscuous, it has
primary distances of 1 with many proteins. This fact determines that the secondary
distances of this protein with many others are similar and often much higher than
expected for a protein that belongs to a particular complex. On the other hand, when
different independent complexes are found that have several proteins in common, and
thus most likely correspond to partial purifications of a same, bigger complex, those
common proteins obtain values of distance equal to 1. When secondary distances are
established, proteins of these complexes with common subunits have values that are
much smaller that those found for proteins that belong to independent complexes.

We have used this strategy with the set of proteins that interact with a group of S.
cerevisiae cytokinesis and cell cycle regulators, the proteins known as septins. Using
data obtained by Gavin et al. and Ho et al. [5, 6], we established that septins interact
with a total of 137 proteins that were purified as part of 13 complexes. We then
generated a 137 x 137 matrix of distances by compiling all the information available
for those proteins, and used our hierarchical clustering strategy to determine
secondary distances among proteins under different 4C values, ranging from 100%
(only distances equal to 1 are used for clustering) to 70% (a much more relaxed
condition, when proteins with distances equal to 2 or even 3 were allowed to cluster
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together). Figure 1 shows our results for AC = 100% using gray tones to represent
secondary distances.

The first important result is that our analyses allowed the recognition of eleven of
the thirteen complexes, demonstrating that the clustering strategy is correctly
functioning. Moreover, our results also established the existence of a very strong link
between proteins of the remnant two complexes, that suggests these complexes
actually may be just partial purifications of a single, larger complex. Examination of
the components of those two highly related complexes led us to the finding that they
have related functions, and most likely are part of a single complex, which function
would be to coordinately generate multiple aminoacyl-tRNAs in order to locally
increase protein synthesis. A similar complex had been hitherto characterized in
animals U (see [9] and references therein), but never in yeasts as S. cerevisiae. In
summary, our method has demonstrated its usefulness to deal with real proteomic
data, generating significant information to interpret complex interaction results.

4 Conclusions

In this paper, we propose a strategy of hierarchical clustering with two distinctive
features: iterative generation of multiple solutions and control of the quality of the
clustering, using the AC parameter. We also show that it can be used to analyze real
proteomic data. It is known that protein complexes are often partially characterized
and that a certain amount of false positives are obtained when massive interaction
data are generated. Our strategy allows detection of those anomalies.

Our implementation of this method is relatively fast. Data presented above for 137
proteins generated a dataset of 9316 distances. A total of 1000 replicates to obtain
reliable secondary distances from that dataset can be obtained in about an hour on an
IBM-compatible PC computer running at 1.7 GHz. The examined dataset contains
about 2.5 x 10 of all possible interactions in S. cerevisiae (that has about 6000
different protein products) and perhaps about 10 of all possible interactions in
human cells (assuming 100000 different proteins, in part determined by alternative
RNA processing). That means that analysis of the whole datasets for eukaryotic
species would require parallelizing our algorithms. However, research of most
scientists is focused on particular cellular processes that involve limited groups of
proteins. Those applications require the analyses of much smaller datasets, as the one
showed above, that can be easily performed on a standard personal computer in a
short time. Thus, we think our strategy can be of very general use, and its simplicity
allows it to potentially become established as a benchmark for proteomic data
analysis.



A Hierarchical Clustering Strategy and Its Application to Proteomic Interaction Data 69

References

[1] V. Arnau, J.M. Orduiia, A. Ruiz, and J. Duato. “On the Characterization of
Interconnection Networks with Irregular Topology: a New Model of
Communication Cost”, in Proceedings of the IASTED Internactonal
Conference Parallel and Distributed Computing and Systems (PDCS’99) pp. 1-
6, Massachusetts, 1999.

[2]  R. O. Duda and P. E. Hart. “Pattern Classification and Scene Analysis”, John
Wiley and Sons, 1973.

[3]  B. Everitt, “Cluster Analysis”. John Wiley and Sons, New York, 1974.

[4] D. Fasulo. “An Analysis of Recent Works on Clustering Algorithms”, Tech.
Rep. # 01-03-02. Dpto. of Computer Science & Engineering, University of
Washington, 1999.

[5] A.-C. Gavin, M. Bosche, R. Krause, P. Grandi, M. Marzioch et al. (38
authors), “Functional organization of the yeast proteome by systematic
analysis of protein complexes”, Nature, 415, 141-147, 2002.

[6] Y. Ho, A. Gruhler, A. Helibut, G. D. Bader, L. Moore et al. (46 authors),
“Systematic identification of protein complexes in Saccharomyces cerevisiae
by mass spectrometry”, Nature, 415, 180-183, 2002.

[7] T. Ito, T. Chiba, R. Ozawa, M. Yoshida, M. Hattori, and Y. Sakaki, “A
comprehensive two-hybrid analysis to explore the yeast protein interactome”,
Proc. Natl. Acad. Sci. USA, 98, 4569-4574, 2001.

[8] H. Jeong, S. P. Mason, A.-L. Barabasi, and Z. N. Oltvai. “Lethality and
centrality in protein networks”, Nature 411, 41-42, 2001.

[9] L. Nathanson and M. P. Deutscher, “Active aminoacyl-tRNA synthetases are
present in nuclei as a high molecular weight multienzyme complex”, J. Biol.
Chem. 41, 31559-31562, 2000.

[10] J.M. Orduiia, V. Arnau, and J. Duato. “Characterization of Communications
between Processes in Message-Passing Applications”, in “IEEE International
Conference on Cluster Computing (CLUSTER2000)”, pp. 91-98, Chemnitz,
Germany, 2000.

[11] J. C. Rain, L. Selig, H. De Reuse, V. Battaglia, C. Reverdy, et al. (13 authors),
“The protein-protein interaction map of Helicobacter pylori”, Nature 409,
211-215,2001.

[12] P. Uetz, L. Giot, G. Cagney, T. A. Mansfield, R. S. Judson et al. (20 authors).
“A comprehensive analysis of protein-protein interactions in Saccharomyces
cerevisiae”, Nature, 403, 623-627, 2000.

[13] C. von Mering, R. Krause, B. Snel, M. Cornell, S. G. Oliver, S. Fields, and P.
Bork, “Comparative assessment of large-scale data sets of protein-protein
interactions”, Nature, 417, 399-403, 2002.



A New Optimal Classifier Architecture
to Avoid the Dimensionality Curse

Paul M. Baggenstoss*

Naval Undersea Warfare Center
Newport RI, 02841
p.m.baggenstoss@ieee.org
http://www.npt.nuwc.navy.mil/csf

Abstract. In paper we present the theoretical foundation for optimal
classification using class-specific features and provide examples of its
use. A new PDF projection theorem makes it possible to project prob-
ability density functions from a low-dimensional feature space back to
the raw data space. An M-ary classifier is constructed by estimating
the PDF's of class-specific features, then transforming each PDF back to
the raw data space where they can be fairly compared. Although sta-
tistical sufficiency is not a requirement, the classifier thus constructed
will become equivalent to the optimal Bayes classifier if the features
meet sufficiency requirements individually for each class. This classifier
is completely modular and avoids the dimensionality curse associated
with large complex problems. By recursive application of the projection
theorem, it is possible to analyze complex signal processing chains. It is
possible to automate the feature and model selection process by direct
comparison of log-likelihood values on the common raw data domain.
Pre-tested modules are available for a wide range of features including
linear functions of independent random variables, cepstrum, and MEL
cepstrum.

1 Introduction

1.1 Classical Classification Theory and the Dimensionality Problem

The so-called M-ary classification problem is that of assigning a multidimen-
sional sample of data x € R™ to one of M classes. The statistical hypothesis
that class j is true is denoted by H;, 1 < j < M. The statistical characterization
of x under each of the M hypotheses is described completely by the probability
density functions (PDFs), written p(x|H;), 1 < j < M. Classical theory as ap-
plied to the problem results in the so-called Bayes classifier, which simplifies to
the Neyman-Pearson rule for equi-probable prior probabilities

J" = argmax p(x|Hj). (1)

* This work was supported by the Office of Naval Research.

F.J. Perales et al. (Eds.): IbPRIA 2003, LNCS 2652, pp. 70-79, 2003.
© Springer-Verlag Berlin Heidelberg 2003
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Because this classifier attains the minimum probability of error of all possible
classifiers, it is the basis of most classifier designs. Unfortunately, it does not
provide simple solutions to the dimensionality problem that arises when the
PDFs are unknown and must be estimated. The most common solution is to
reduce the dimension of the data by extraction of a small number of information-
bearing features z = T'(x), then re-casting the classification problem in terms of
z:
jt = argmjax p(z|H;). (2)
This leads to a fundamental trade-off - whether to discard features in an
attempt to reduce the dimension to something manageable - or to include
them and suffer the problems associated with estimating a PDF at high di-
mension. Unfortunately, there may be no acceptable compromise. Virtually
all methods which attempt to find decision boundaries on a high-dimensional
space are subject to this trade-off or “curse” of dimensionality. For this rea-
son, many researchers have explored the possibility of using class-specific fea-

tures [Frimpong-Ansah et al., 1989, [Kumar et al., 1999], [Kumar et al., 2000],
[Watanabe et al., 1997],
[Belhumeur et al., 1997], [Sebald, 2001], [Oh et al., 2001].

The basic idea in using class-specific features is to extract M class-specific
feature sets, z; = Tj(x), 1 < j < M, where the dimension of each feature
set is small, then to arrive at a decision rule based only upon functions of the
lower-dimensional features. Unfortunately, the classifier modeled on the Neyman-
Pearson rule,

= argmax pla|H;). (3)

is invalid because comparisons of densities on different feature spaces are mean-
ingless. One of the first approaches that comes to mind is to computes for each
class a likelihood ratio against a common hypothesis composed of “all other
classes”. While this seems beneficial on the surface, there is no theoretical di-
mensionality reduction since for each likelihood ratio to be a sufficient statistic,
“all features” must be included when testing each class against a hypothesis
that includes “all other classes”. A number of other approaches have emerged in
recent years to arrive at meaningful decision rules. Each method makes a strong
assumption (such as that the classes fall into linear subspaces) that limits the
applicability of the method or else uses ad-hoc method of combining the like-
lihoods of the various feature sets. In this paper, we present an extension to
the classical theory that provides for an optimal architecture using class-specific
features.

2 The PDF Projection Theorem

The PDF projection theorem allows us to project a PDF p,(z) from any feature
space z = T'(x) back to the original (raw) data space x. Define

P(T,p,) ={pz(x) :z2=T(x) and z ~ p,(z)},
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that is, P(T,p.) is the set of PDFs p,(x) which, through T(x), generate
PDF p.(z) onz. If T'( ) is many-to-one, P(T, p,) will contain more than one mem-
ber. Therefore, it is impossible to uniquely determine p,(x) from 7'() and p.(z).
We can, however, find a particular solution if we constrain p,(x). In order to
apply the constraint, it is necessary to make use of a reference hypothesis, Hy,
for which we know the PDF of both x and z. If we constrain p,(x) such that for
every transform pair (x,z) we have

pz(%) Y (2)
pe(x|Ho) ~ p-(alHo)’ @

or that the likelihood ratio (with respect to Hp) is the same in both the raw
data and feature domains, we arrive at a satisfactory answer. We cannot offer
a justification for this constraint other than it is a means of arriving at an answer.
However, we will soon show that this constraint produces desirable properties.
The particular form of p,(x) is uniquely defined by the constraint itself, namely

_ pe(x|Ho)
- (z[ Ho)

Theorem 1 states that not only is p,(x) a PDF, but that it generates p.(z)
through T'(x).

Dz (%) p:(z); where z=T(x). (5)

Theorem 1. (PDF Projection Theorem). Let Hy be some fized refer-
ence hypothesis with known PDF p,(x|Hy). Let X be the region of support
of px(x|Hyp). In other words X is the set of all points x where py(x|Hp) > 0. Let
z = T(x) be a many-to-one transformation. Let Z be the image of X under the
transformation T(x). Let the PDF of z when x is drawn from p.(x|Hp) exist
and be denoted by p,(z|Hp). It follows that p.(z|Hy) > 0 for all z € Z. Now,
let p.(z) be any PDF with the same region of support Z. Then the function (5)

1s a PDF on X, thus
/ pe(x) dx = 1.
xeX

Furthermore, p,(x) is a member of P(T,p.).
Proof: These assertions are proved in reference [Baggenstoss, 2001].

2.1 Usefulness and Optimality Conditions of the Theorem

The theorem shows that provided we know the PDF under some reference hy-
pothesis Hy at both the input and output of transformation T'(x), if we are given
an arbitrary PDF p,(z) defined on z, we can immediately find a PDF p,(x) de-
fined on x that generates p,(z). While it is interesting that p,(x) generates p,(z),
there are an infinite number of them and it is not yet clear that p,(x) is the best
choice. However, suppose we would like to use p,(x) as an approximation to the
PDF p,(x|H;). Define

5 pa(x|Ho)

PoCAt) = (ol )

ﬁz(Z|H1)a (6)
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where z = T'(x). From Theorem 1, we see that (6) is a PDF. Furthermore, if
T(x) is a sufficient statistic for Hy vs Hy, then as p,(z|H1) — p.(z|H;), we have

Pe(X|H1) — pa(x[Hy).

This is immediately seen from the well-known property of the likelihood ratio
which states that if T'(x) is sufficient for Hy vs. Hy,

Pz (x|Hy)  p.(z|Hy)
pe(x|Ho)  p.(z[Hp) (7)

Note that for a given Hj, the choice of T'(x) and Hy are coupled, so they must be
chosen jointly. Also note that the sufficiency condition is required for optimality,
but is not necessary for 6 to be a valid PDF. Here we can see the importance
of the theorem. The theorem, in effect, provides a means of creating PDF ap-
proximations on the high-dimensional input data space without dimensionality
penalty using low-dimensional feature PDF's and provides a way to optimize the
approximation by controlling both the reference hypothesis Hy as well as the
features themselves. This is the remarkable property of Theorem 1 - that the
resulting function remains a PDF whether or not the features are sufficient statis-
tics. Since sufficiency means optimality of the classifier, approximate sufficiency
mean PDF approximation and approximate optimality.

Theorem 1 allows maximum likelihood (ML) methods to be used in the raw
data space to optimize the accuracy of the approximation. Let p.(z|H;) be pa-
rameterized by the parameter 8. Then, the maximization

{pm(XIHo)
p=(z|Ho)

max

p.(z|H1;0), z = T(X)}
0.,17,H,

is a valid ML approach and can be used for model selection (with appropriate
data cross-validation).

2.2 Data-Dependent Reference Hypothesis

Under certain conditions, the reference hypothesis Hyp, in (6), may be changed
“on the fly”. The advantage of a variable reference hypothesis is that Hy may be
made to more closely match the input data sample to avoid the PDF tails to avoid
very small values of p(z|Hp). This is only allowed if the ratio p(x|Hp)/p(z|Ho)
is independent of Hy as Hy varies within a set H.. For every statistic z, there is
a region of sufficiency (ROS) H.. For example, let z = T'(x) contain the sample

variance:
N
1
zZ — NE Ty, *k, * ...
=1

Let Ho(0?) be the hypothesis that x is a set of independent Gaussian sam-
ples of zero mean and variance o,. Then, it may be shown that the ratio
p(x|Ho)/p(z|Hp) is independent of 02 because as o2 varies, it traces out a ROS
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for z. We are therefore justified in making the substitution 02 = z;, which is the
value of ¢ which maximizes both the numerator and denominator of the ratio
for each dtaa sample. This makes Hy a function of the data z. We therefore write

P (X|Ho(2))

P = Gy o)

p-(z|Hy), (8)
where z = T'(x). The reason for using a variable hypothesis is purely numerical

- it has no statistical interpretation. It allows PDF approximations to be used
in the denominator expression, such as the central limit theorem (CLT).

2.3 Asymptotic ML Theory

If Hy is parameterized by a set of parameters @, and z is a maximum likelihood
estimator of @, then we may use asymptotic ML theory and may approximate
(8) using

0) . @m), (9)

R Pa(X;
o (X|H =p—
Ba(xli) =

Ik

where 6 is the ML estimate of 8, and I(8) is the Fisher’s information ma-
trix. This expression agrees with the PDF approximation from asymptotic the-
ory [Strawderman, 2000], [Durbin, 1980].

2.4 The Chain Rule

In many cases, it is difficult to derive the J-function for an entire processing chain.
On the other hand, it may be quite easy to do it for one stage of processing at
a time. In this case, the chain rule can be used to good advantage. The chain rule
is just the recursive application of the PDF projection theorem. For example,
consider a processing chain:

X Tl—();) y T&) w ngv) Z (10)

The recursive use of (6) gives:

Pa(x[Ho(y)) py(y|Ho(w)) puw(w|H{ (z))
py(Y[Ho(y)) pu(W|Hy(w)) p=(z|H (2))

where y = T1(x), w = Ta(y), z = T3(w), and Hy(y), H{(w), Hf(z) are refer-
ence hypotheses (possibly data-dependent) suited to each stage in the processing
chain. By defining the J-functions of each stage, we may write the above as

pe(x|Hy) = p(z|Hy)  (11)

pT(X|H1) = J(Xa T17H0(y)) J(YaTQaH(/)(W)) J(WaT?))H(I)/(Z)) pZ(Z|H1)' (12)
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Fig.1. Block diagram of a class-specific classifier

3 The Class-Specific Classifier

3.1 Classifier Architecture and the Class-Specific Module

Application of the PDF projection theorem to classification is simply a matter
of substituting (8) into (1). In other words, we implement the classical Neyman-
Pearson classifier, but with the class PDFs factored using the PDF projection
theorem: (x| Ho s (2,))

% Pz X| 110,52, ~

7 = angma PSR | (13)
where z; = Tj;(x), and we have allowed for class-dependent, data-dependent,
reference hypotheses.

The chain-rule processor (11) is ideally suited to classifier modularization.
Figure 1 is a block diagram of a class-specific classifier. The packaging of the
feature calculation together with the J-function calculation is called the class-
specific module. Each arm of the classifier is composed of a series of modules
called a “chain”.

A library of pre-tested modules are available at
http://www.npt.nuwc.navy.mil/csf. Some of the most important feature
types include:

1. Linear functions of independent random variables. A widely-used combina-
tion of transformations in signal processing is to first apply an orthogonal
linear transformation, perform a squaring operation (or magnitude-squared
for complex RVs), then perform a linear transformation. These transforma-
tions include widely-used features such as MEL cepstrum [Picone, 1993],
polynomial fits to power series and power spectra, and autocorrelation func-
tion - and through one-to-one transformations also autoregressive (AR) and
reflection coefficients (RC).
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2. Order statistics. Rather than applying linear filters to the chi-squared or
exponential RVs at the output (magnitude-squared) of orthogonal transfor-
mations, it is often more apropriate to choose the largest set of “bins” - and
regard the bin locations (frequencies) and amplitudes as features.

3. One-to-one transformations. A multitude of one-to-one transformations are
used for feature conditioning including Levinson algorithm, log transforma-
tions, etc.

3.2 Feature Selectivity: Classifying without Training

The J-function and the feature PDF provide a factorization of the raw data PDF
into trained and untrained components. The ability of the J-function to provide
a “peak” at the “correct” feature set gives the classifier a measure of classification
performance without needing to train. In fact, it is not uncommon that the J-
function dominates, eliminating the need to train at all. This we call the feature
selectivity effect. For a fixed amount of raw data, as the dimension of the feature
set decreases, indicating a larger rate of data compression, the effect of the J-
function compared to the effect of the feature PDF increases. An example where
the J-function dominates is a bank of matched filter for known signals in noise. If
we regard the matched filters as feature extractors and the matched filter outputs
as scalar features, it may be shown that this method is identical to comparing
only the J-functions. Let z; = |w/x|* where w; is a normalized signal template
such that wiw; = 1. Then under the white (independent) Gaussian noise (WGN)
assumption, z; is distributed x2(1). Tt is straightforward to show that the J-
function is a monotonically increasing function of z;. Signal waveforms can be
reliably classified using only the J-function and ignoring the PDF of z; under
each hypothesis. The curse of dimensionality can be avoided if the dimension
of z; is small for each j. This possibility exists, even in complex problems,
because z; is required only to have information sufficient to separate class H;
from a specially-chosen reference hypothesis Ho ;.

3.3 J-function Verification

One thing to keep in mind is that it is of utmost importance that the J-function
is accurate because this will insure that the resulting projected PDF is, in fact,
a valid PDF. A fool-proof method of testing the J-function is to define a fixed
hypothesis, denoted by Hy, for which we can compute the PDF p(x|H,) readily,
and for which we can synthesize raw data. Note that Hy is not a reference hy-
pothesis. The synthetic data is converted into features and the PDF p(z|H,) is
estimated from the synthetic features (using a Gaussian Mixture PDF, HMM,
or any appropriate statistical model). Next, the theoretical PDF p(x|Hy) is com-
pared with the projected PDF

p(x|Hys) = J(x, T, Ho) p(z|Hs)

for each sample of synthetic data. The log-PDF values are plotted on each axis
and the results should fall on the X=Y line.
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4 Types of J-functions

We now summarize the various methods we have discussed for computing the
J-function.

4.1 Fixed Reference Hypothesis

For modules using a fixed reference hypothesis, care must be taken in calculation
of the J-function because the data is more often than not in the tails of the PDF.
For fixed reference hypotheses the J function is
Pa(x[Ho)

J(x,T, Hy) -zl Ho) (14)
The numerator density is usually of a simple form so it is known exactly. The
denominator density p.(z|Hp) must be known exactly or approximated care-
fully so that it is accurate even in the far tails of the PDF. The saddlepoint
approximation (SPA), described in a recent publication [[Kay et al., 2001], pro-
vides a solution for cases when the exact PDF cannot be derived, but the exact
moment-generating function (MGF) is known. The SPA is known to be accurate
in the far tails of the PDF [Kay et al., 2001].

4.2 Variable Reference Hypothesis Modules
For a variable reference hypotheses, the J function is

T Hy(z
J(x,T,Ho(z)) = %'

Modules using a variable reference are usually designed to position the reference
hypothesis at the peak of the denominator PDF, which is approximated by the
central limit theorem (CLT).

(15)

4.3 Maximum Likelihood Modules

A special case of the variable reference hypothesis approach is the maximum
likelihood (ML) method, when z is an (ML) estimator (See section 2.3)

p(x|0)

J(x,T,Hy) = — "
e el (L

4.4 One-to-One Transformations

One-to-one transformations do not change the information content of the data
but they are important for feature conditioning prior to PDF estimation. Recall
from Section 2 that Theorem 1 is a generalization of the change-of-variables
theorem for 1:1 transformations. Thus, for 1:1 transformations, the J-function
reduces to the absolute value of the determinant of the Jacobian matrix,

J(x,T) = |Jr(x)|.
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5 Implementation Problems

There are a wide range of pitfalls that must be avoided for proper implementation
of a class-specific classifier.

. Numerical errors in J-function calculation.

. Proper selection of features and reference hypothesis.

. Proper PDF estimation of features.

. Data segmentation. Although the features of each class may use a different
segmentation of the raw data, all features must represent exactly the same
input data.

5. Normalization. By normalizing features, information relating to the scaling
of the raw data is lost. If normalization is used, it must be applied equally
to all dclasses, i.e. care must be taken to normalize the raw input data,
which is processed by all feature transformations, rather than normalizing
just a subset of the feature sets. As a rule of thumb, all energy present in the
input data must find its way to the output of all feature transformations.

=W N

6 Conclusions

Space requirements do not permit any examples here. For examples and addi-
tional information, the reader is refered to the web site:
http://www.npt.nuwc.navy.mil/csf. The PDF projection theorem represents
a completely new paradigm in classification. Because it requires careful feature
design for each data class, it is not just another method of making sense of
the classification problem in a high-dimensional feature space. Thus, it is diffi-
cult to directly compare with a variety of approaches that operate on a given
feature set. Furthermore, we are describing a new “method”, not a new “algo-
rithm”. Therefore, proper implementation is necessary to insure that the results
are valid. Results on real data have resulted in orders of magnitude reductions
in false alarm rate in operational systems. Work is underway to compare the
method with existing methods on standard databases of handwritten character.

We have introduced a powerful new theorem that opens up a wide range of
new statistical methods for signal processing, parameter estimation, and hypoth-
esis testing. Instead of needing a common feature space for likelihood compar-
isons, the theorem allows likelihood comparisons to be made on a common raw
data space, while the difficult problem of PDF estimation can be accomplished
in separate feature spaces. We have discussed the recursive application of the
theorem which gives a hierarchical breakdown and allows processing streams to
be analyzed in stages. For additional information on designing a classifier as
well as a library of modules, the reader is referred to the class-specfific web site
http://www.npt.nuwc.navy.mil/csf. A more detailed theoretical treatment of
the method may be found in a recent publication [Baggenstoss. 2003].
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Abstract. The problem of imbalanced training sets in supervised pat-
tern recognition methods is receiving growing attention. Imbalanced
training sample means that one class is represented by a large num-
ber of examples while the other is represented by only a few. It has been
observed that this situation, which arises in several practical situations,
may produce an important deterioration of the classification accuracy, in
particular with patterns belonging to the less represented classes. In the
present paper, we introduce a new approach to design an instance-based
classifier in such imbalanced environments.

1 Introduction

Design of supervised pattern recognition methods is based on a training sample
(TS), that is, a collection of examples previously analyzed by a human expert.
Performance of the resulting classification system depends on both the quantity
and the quality of the information contained in the TS. This dependency is
particularly strong in the case of non-parametric classifiers since these systems do
not rest upon any probabilistic assumption about the class models. Researchers
have very early realized that the TS must satisfy some requirements in order
to guarantee good classification results. From the start, two assumptions were
established: 1) the set of ¢ classes present in the T'S covers the whole space of the
relevant classes, and 2) the training instances used to teach the classifier how to
identify each class are actually members of that class.

As the number of practical applications of these methods grows, experience
has gradually indicated the necessity of some requisites for the system to reach
satisfactory results. Among others, one can remark: 3) the TS represents the
population, 4) the considered features must permit discrimination, and 5) the
size/dimensionality rate of the sample is high enough.

* Partially supported by grants 32016-A (Mexican CONACyT), TIC2000-1703-C03-03
(Spanish CICYT), and P1-1B2002-07 (Fundacié Caixa Castell6-Bancaixa).
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An additional and interesting complication arises when the TS is imbalanced.
A TS is said to be imbalanced if one of the classes is represented by a very
small number of instances compared to the other classes. Throughout this paper,
and consistently with the common practice [16, 10], we consider only two-class
problems and therefore, the examples are said to be either positive or negative
(that is, either from the minority class or the majority class, respectively). It has
been observed that class imbalance may cause a significant deterioration in the
performance attainable by standard supervised methods. High imbalance occurs
in real-world domains where the decision system is to detect a rare but important
case, such as fraudulent telephone calls [12], oil spills in satellite images [17], an
infrequent disease [24], or text categorization [20, 18].

Most of the research efforts addressing this problem can be organized into
three categories. One is to assign distinct costs to the classification errors for
positive and negative examples [14, 8]. The second is to resample the original
TS, either by over-sampling the minority class [19] and/or under-sampling the
majority class [16] until the classes are approximately equally represented. The
third consists in internally biasing the discrimination-based process so as to
compensate for the class imbalance [21, 12, 11].

In an earlier study [2], we provided preliminary results of several techniques
addressing the class imbalance problem. In such a work, we focused on resam-
pling (by under-sampling the majority class) the TS and also on internally bias-
ing the discrimination process, as well as on a combination of both methods. In
the present paper, we introduce a new approach for a better and higher decrease
in the number of negative examples. The technique proposed here is evaluated
over four real datasets using a Nearest Neighbour (NN) classifier [6].

2 Related Works

The two basic methods for resampling the TS cause the class distribution to be-
come more balanced. Nevertheless, both strategies have shown important draw-
backs. Under-sampling throws out potentially useful data, while over-sampling
increases the TS size and hence the time to design a classifier. Furthermore, since
over-sampling typically replicates examples in the minority class, overfitting is
more likely to occur. In the last years, research has focused on improving these
basic methods. Kubat and Matwin [16] proposed an under-sampling technique
that intelligently removes only those negative instances that are “redundant” or
that “border” the minority prototypes (they assume that these bordering cases
are noisy examples).

Chawla et al. [4] combine under-sampling and over-sampling methods and,
instead of over-sampling by merely replicating positive prototypes, they form
new minority instances by interpolating between several positive examples that
lie close together. On the other hand, Chan and Stolfo [3] first run preliminary
experiments to determine the best class distribution for learning and then gen-
erate multiple TSs with such a distribution. This is accomplished by including
all the positive examples and some of the negative prototypes in each TS. Af-
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terwards, they run a learning algorithm on each of the datasets and combine
the induced classifiers to form a composite learner. This method ensures that all
of the available training instances are used, since each negative example will be
found in at least one of the T'Ss.

Pazzani et al. [21] take a slightly different approach when learning from
an imbalanced TS by assigning different weights to prototypes of the different
classes. On the other hand, Ezawa et al. [11] bias the classifier in favour of certain
attribute relationships. Kubat et al. [17] use some counter-examples to bias the
recognition process.

In a previous work [2], we presented some methods for under-sampling the
majority class in the TS and a technique for biasing the classification procedure.
Since downsizing the majority class can result in throwing away some useful in-
formation, this size reduction must be done carefully. One should be interested
in using the removal of negative examples to eliminate the less valuable proto-
types, that is, noisy or atypical cases, instances that are close to the decision
boundaries, and redundant examples. For these purposes, we employed several
well-known editing and condensing schemes [7] that offer a good alternative for
removing all these examples. In [2], we tried three prototype selection algorithms.
Two of them are in the group of editing: the classical Wilson’s proposal [23] and
the k-NCN (Nearest Centroid Neighbourhood) scheme [13]. Both aim at filtering
the TS by deletion of noisy or atypical instances, generally increasing the NN
accuracy. These two techniques were also used in an iterative manner.

For elimination of redundant prototypes, we have employed the Modified
Selective (MS) [1] condensing. This method is based on the idea of creating
a consistent subset [15], and guarantees a suitable approximation to the NN
decision boundaries as they are defined by the whole TS. Finally, employment
of the combined editing-condensing (Wilson + MS and k-NCN + MS) was also
proposed as a way of downsizing the majority class in the TS to balance the
class distribution.

For internally biasing the discrimination procedure, we proposed in [2]
a weighted distance function to be used in the classification phase. Let dg(-)
be the Euclidean metric, and let Y be a new sample to be classified. Let xg
be a training prototype from class i, let N; be the number of prototypes from
class i, let N be the TS size, and let m be the dimensionality of the feature
space. Then, the weighted distance measure is defined as:

dw (Y, 20) = (§)Y™ - dp(Y, z0)

The basic idea behind this weighted distance is to compensate for the im-
balance in the T'S without actually altering the class distribution. Thus, weights
are assigned, unlike in the usual weighted k-NN rule [9], to the respective classes
and not to the individual prototypes. In such a way, since the weighting factor
is higher for the majority class than for the minority one, the distance to posi-
tive instances becomes much lower than the distance to negative examples. This
produces a tendency for the new patterns to find their nearest neighbour among
the prototypes from the minority class.
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3 Classifier Performance in Class Imbalance Problems

To evaluate the performance of learning systems, a confusion matrix like the
one in Table 1 (for a two-class problem) is usually employed. The elements
in this table characterize the classification behaviour of the given system. The
columns are the actual class and the rows correspond to the predicted class. The
sum of the two columns gives the total number of samples in each class which
isnt =TP+4 FN and n~ = FP + TN, respectively.

The standard evaluation measure in pattern recognition domain is the classi-
fication accuracy, defined as acc = Efigﬂv . However, this form of classification
accuracy assumes that the error costs (that is, the cost of a false positive and
a false negative) are equal. This assumption has been criticized as being unreal-
istic. For instance, consider a domain where only 0.2% patterns are positive. In
such a situation, labeling all new patterns as negative would give an accuracy
of 99.8%, but failing on all positive cases. Classifiers that optimize for accuracy
in these problems are of questionable value since they rarely predict the mi-
nority class. Consequently, in the presence of imbalanced datasets, it is more
appropriate to use other performance measures.

Alternative criteria for evaluating classifier performance include ROC curves
[22] and the geometric mean of accuracies [16]. These are good indicators of
performance on imbalanced datasets because they are independent of the dis-
tribution of prototypes between classes, and are thus robust in circumstances
where such a distribution might change with time or be different in the training
and test sets. In particular, the geometric mean of accuracies measured sepa-
rately on each class [16] is defined as g = Vacct - acc—, where acct = Z:—f is
the accuracy on the positive examples, and acc™ = 17;_17\/ denotes the accuracy on
the negative examples. This measure closely relates with the distance to perfect
classification in the ROC space.

The rationale behind this measure is to maximize the accuracy on each of the
two classes while keeping these accuracies balanced. For instance, a high acct
by a low acc™ will result in a poor g value. The g measure has the distinctive
property of being nonlinear, that is, a change in acc™ (or acc™) has a different
effect on g depending on the magnitude of acc™: the smaller the value of acc™,
the greater the change of g. This means that the cost of misclassifying each
positive pattern increases the more often positive examples are misclassified.

In this work, the g criterion will be used to evaluate the learning algorithms
both because the interesting general properties of g and also because the pro-

Table 1. Confusion matrix

Actual Positive Actual Negative
Predict Positive | True Positive (TP) | False Positive (FP)
Predict Negative|False Negative (FN)|True Negative (TN)
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posed classifiers do not directly have a changing parameter which properly jus-
tifies a ROC analysis.

4 The Weighted Wilson’s Editing

As already explained, we have experimented with several methods [2] aimed at
reducing the size of the majority class. Out of concern for the possibility of
eliminating useful information, we have used the well-known Wilson’s editing
algorithm [23]. One of the contributions of our previous paper to the imbalance
problem has been the application of this editing technique only to the majority
class. Another idea also explored in [2] is the employment of a weighted distance
when looking for the nearest prototype of a new pattern to be classified. Both
proposals have produced a significant increase in performance.

Despite these important results, it was observed in [2] that the editing tech-
nique does not produce significant reductions in the size of the majority class.
Accordingly, the imbalance in the TS is not diminished in an important way.
It is worthy to consider that Wilson’s technique essentially consists in a sort of
classification system. The corresponding procedure works by applying the k-NN
classifier to estimate the class label of all prototypes in the TS. Afterwards, those
prototypes whose class label does not agree with the associated with the largest
number of the k neighbours are discarded.

Of course, the k-NN classifier is also affected by the imbalance problem.
When applied to prototypes from the majority class, the imbalance in the TS
will cause a tendency to find most of their k£ neighbours into that majority class.
Consequently, only a few of the negative instances will be removed from the TS.
This means that the majority class is not completely cleaned of atypical cases
and also that the balance in the TS is far from being reached.

To cope with this difficulty, in the present paper we introduce the employ-
ment of the weighted distance previously mentioned, not only in the classification
phase but also in editing the majority class. That is, we apply the Wilson’s edit-
ing procedure, but using the weighted distance function instead of the Euclidean
metric. In such a way, the already explained tendency will be overturned.

This proposal is assessed with experiments carried out over four datasets from
the UCI Database Repository (http://www.ics.uci.edu/ mlearn/). Five-fold
cross-validation is used to obtain averaged results of the g criterion. Some
datasets have required to be transformed into two-class problems, both to have
a minority class and also to facilitate comparison with other published re-
sults [16].

The experimental results are shown in Table 2. The average g values obtained
when classifying with the original TS, and with this TS after being processed
with the idea of Kubat and Matwin [16], are also included for comparison pur-
poses. Weighted editing of the majority class yields an improvement in perfor-
mance (as measured by the g criterion). This improvement is more remarkable
when the weighted distance is employed both in editing and classification. It is
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Table 2. Average g value by processing the majority class

Phoneme Satimage Glass Vehicle

Original TS 73.8 70.9 86.7 55.8
Fuclidean editing and classification 74.9 73.0 86.2 64.0
Fuclidean editing and weighted classif. 75.7 76.2 87.9 65.8
Weighted editing and Euclidean classif. 75.0 74.5 86.2 65.6
Weighted editing and classification 75.3 77.8 87.9 67.2
Kubat and Matwin 74.4 71.7 86.4 61.0

Table 3. Average size before and after processing the majority class

Phoneme Satimage Glass Vehicle
Original TS 3,054.0 4,647.0 150.0 508.0
After Euclidean editing  2,882.8 4,471.6 147.2  414.8
After weighted editing 2,729.8 4,320.6 144.6  392.0

also important to note that the results from the procedure of Kubat and Matwin
are excelled in all datasets.

The effects of the weighted Wilson’s editing can be better analyzed by consid-
ering the number of negative examples that remain in the TS after its application
(see Table 3). Results in this table suggest a higher decrease in the size of the
majority class when it is processed with the weighted editing.

On the other hand, there is no reason to consider that the minority class is
free from atypical prototypes, which certainly affect the classifier performance.
However, none of the previously published works has reported attempts to elim-
inate noisy positive examples. Because of the relative small size of the minority
class, positive prototypes are considered as very important and therefore, elimi-
nation of some of them is usually regarded as a very risky undertaking.

To explore the convenience of editing also the minority class, we have done
some experiments applying the usual and the weighted editings to both classes
simultaneously. In these experiments, both editing procedures have been applied
only once since more iterations may lead to removal of all examples in the mi-
nority class. As can be seen in Table 4, both editing methods have produced
an increase in the imbalance between the classes, although this increment is
patently lower when the weighted editing was applied.

Despite this imbalance intensification, weighted editing of both classes pro-
duces enhancement of the g values, when compared with the usual editing tech-
nique (see Table 5). This is particularly true when the weighted distance is also
employed to classify new patterns. These results indicate that the weighted dis-
tance for classification is able to cope with the imbalance increase (with the
weighted editing) when it is moderate, as in Phoneme and Glass databases.
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In these datasets, the g values now obtained exceed the best results shown in
Table 2 (editing only the majority class).

5 Concluding Remarks and Further Work

In some real-world applications, the learning system has to work with just a few
positive examples and a great number of negative instances. Traditional learning
systems such as the NN rule can be misled when applied to such practical prob-
lems. This effect can become moderate by using some simple prototype selection
techniques to under-sample the majority class and/or some kind of weighted dis-
tance to compensate the imbalance. In these directions, a new approach has been
proposed in this paper. The idea of employing a weighted distance when editing
the majority class has yield promising results: majority class gets a higher size
reduction and the resulting TS is better cleaned from atypical prototypes.

The issue of cleaning also the minority class, through removal of noisy and
redundant prototypes, deserves further attention. The resulting increase in the
imbalance when both classes are processed may be diminished if the minority
class is over-sampled after the application of the editing procedure. In our paper,
we have shown that, when this increase is moderate, employment of the weighted
distance in the classification stage is able to obtain accuracy improvement.

Despite the successful results, a problem common to most of the downsizing
techniques is that they do not permit control on the number of prototypes to
be removed. Therefore, eliminated examples can be too many or too few to ade-
quately solve the class imbalance problem. Hence, experimentation with schemes
that allow to control the number of resulting examples [5] could be of interest.

Table 4. Majority to minority ratio when both classes are processed

Phoneme Satimage Glass Vehicle

Original TS 2.41 9.29 6.25 2.99
After Euclidean editing 2.85 12.06 8.00 6.90
After weighted editing 2.52 10.37 7.23 5.49

Table 5. Average g values when processing both classes

Phoneme Satimage Glass Vehicle

Euclidean editing and classification 73.8 66.4 84.6 47.5
Euclidean editing and weighted classif. 76.7 69.5 86.4 51.5
Weighted editing and Euclidean classif. 75.1 70.1 84.6 52.3

Weighted editing and classification 76.4 72.2 88.7 56.1
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Abstract. This paper presents a methodology to segment olive groves in
high spatial resolution remotely sensed images. The developed algo-
rithms exploit the typical spatial patterns presented by this forest cover
and are mainly based on mathematical morphology operators. It consists
on identifying firstly the olive groves followed by the recognition of
their individual trees. The methodology is tested with ortophotomaps
from a region in central Portugal.

1 Motivation and Objectives

The Mediterranean agricultural landscape is, since antiquity, characterised by the
presence of the olive tree that has been preserved and intensively used by their people.
On the agricultural and economical points of views, this species assumes a fundamen-
tal role, which presently receives an important financial support by the agricultural
strategy of the European Union, constituting therefore an important natural resource,
which is important to evaluate correctly. The main producer countries also dispose of
informatics instruments to manage this resource, namely, through Geographical In-
formation Systems where the information of the producers is introduced and updated
in a periodic basis. Nevertheless, these tasks are presently performed, among other
traditional methods, by using mainly the traditional techniques in forest inventories,
i.e., through the manual photo interpretation of aerial photographs by an expert, when
these images exist, together with fieldwork missions.

Due to this situation and considering the current state-of-the-art in pattern recogni-
tion/image analysis, where several forest cover segmentation approaches have been
published recently [2][3][6][7]1[9][12][13] but none on the specific olive trees cover, it
was considered to develop a methodology to substitute the fastidious and incomplete
present procedures of evaluating and upgrading olive groves.

From the spatial point of view, the olives trees are characterised by a regular spatial
pattern along lines and rows where each tree can be identified by a circular region (its
cupola) over a different background. This well-defined spatial arrangement, distin-
guishable in images with high spatial resolution gives the possibility of recognising
directly this forest class without combining information where the spectral power is
higher (for instance, from the Landsat TM bands).

The methodology developed and presented in this paper exploits the textural in-
formation at high spatial resolution scales in order to segment the olive groves and

F.J. Perales et al. (Eds.): IbPRIA 2003, LNCS 2652, pp. 89-96, 2003.
© Springer-Verlag Berlin Heidelberg 2003
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then to recognise each tree individually. It is mainly based on mathematical morphol-
ogy operators by proposing a sequence that extracts the typical regular patterns pre-
sented by this type of tree. Mathematical morphology is an image analysis theory
created in the middle 1960’s by Georges Matheron and Jean Serra whose initial ob-
jective was to provide some tools to describe the geometric features of structures [10].
Its theoretical evolution over the last three decades, after the first applications in the
geosciences scientific domain, has successfully reached new application areas and also
remote sensing (a recent complete survey can be consulted in [11]).

2 Description of Data Available

The data available to develop the present methodology consists of ortophotomaps, i.e.,
aerial photographs that were previously geometrically corrected and geo-referenced,
from a region in central Portugal [1]. The respective digital input images are true
colour ones (RGB) with a dimension of 2500 x 2500 pixels, each one with 256 grey
levels digitised with a spatial resolution of 1 metre/pixel.

An example showing the general aspect view of an image is presented in fig. 1,
where the different olive groves that occur in this view are magnified in order to have
a better perception. Its regular patterns can be clearly noticed, where the olive trees,
due to agricultural practices, are regularly aligned along rows and lines presenting
standard distances between adjacent trees. On the contrary, the global shape of the
olive groves varies from region to region depending upon several reasons (the relief of
the terrain, the type of soil, the limits of the farms, etc.), being almost impossible to
find two different olive groves presenting the same global geometry. Moreover, the
land where these trees are located is seasonally cleaned, therefore showing homogene-
ous bare or almost bare soil.

3 Segmentation: Global Mask Construction

The first phase of this methodology consists of segmenting globally the olive groves.
It aims on creating roughly a mask that contains the individual olive trees. Neverthe-
less, this kind of hull may, in this first step, contain more information than the olive
trees. This way appears the necessity of later verifying if all the trees that construct
these typical patterns belong to this forest cover type. The trees, or the structures, not
located at standard distances from their adjacent neighbours are not considered as
olive trees. The way of providing a sequence of transforms to answer that statement
constitutes the second phase of the proposed methodology (section 4).

It seems, at once, that the olive trees can be segmented using the top-hat transform
introduced by Meyer [8], since it identifies the local darker regions over a lighter
background independently from its height location. The black or valley top-hat ver-
sion, BTH(f), is computed on thresholding 7 at adequate levels (¢, and #,) the function f
resulting from the difference between the closing ¢ with a structuring element B of

size A of the initial image fand f itself.



Morphological Recognition of Olive Grove Patterns 91

Fig. 1. Orthophotomap (area of 2500 m x 2500 m) with a spatial resolution of 1 metre/pixel
and different olive groves occurring in the region, whose magnification is presented on the
right side of the figure

Anyhow, the direct application of the black top-hat transform segments not only the
desired sets of trees but also, with the exception of noise, the darker regions of the
image that have the same size, i.e., the valleys that correspond to directional structures
like roads, water lines, or connected alignments of trees. No matter how long these
structures are, they are always detected if their thickness is smaller than the diameter
of the structuring element used. In fig. 2b an application of the black top-hat transform
to the image of fig. 2a is presented, where the dark structures that have a size smaller
or equal to the structuring element are segmented: the segmented image consists of the
olive trees, some individual trees (mainly cork oak type in the region under study),
some continuously aligned trees (see the black structure along the road in white that
starts at the bottom left corner of the image in fig. 2a), and some bushes and vegeta-
tion (Remark: for visualisation reasons, in the binary images the set X is represented

in black, while the complementary X ¢ set appears in white).

In order to avoid the segmentation of directional or aligned structures, the top-hat
transform should be modified. This modification follows the ideas proposed by Lay
[5] to segment small black spots in the human retina. It consists of firstly computing
the inf of the directional closings of the initial image f in the main directions of the
digital grid used (in the hexagonal case the directions «, o +60° and «+120° are the
ones used) with directional structuring elements / of the maximum diameter / of the
trees. The following operations are the same of the classical top-hat transform, i.e.,
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consist of the difference between the inf image and the initial one f, thresholded T at
adequate levels (¢, and ¢,):

X, = BTH(f) = Thntlp? (£.00. 0" (foa+ 607, 0" (foa+1209]- 7], . (1)

The valleys that are filled in one direction are only retained if they are also filled in
the other two directions, i.e., if they present an isotropic shape. The thresholding of
the image resulting from the difference operation between the inf image and the initial
one produces the isotropic top-hat. The differences between the image obtained from
the application of this isotropic black top-hat (fig. 2¢) and the one resulting from the
application of the classic top-hat transform (fig. 2b) are evident: only the isotropic
dark structures are now segmented, resulting in a much cleaner image. Anyhow, al-
though the olive grove is correctly segmented, there is some noise that is still included
in the final image obtained at the end of this step.

To filter now the remaining undesired structures one has to take advantage of the
regular pattern exhibited by the olive trees. It consists of the creation of a cluster or
mask that contains the olive trees in order to filter the structures outside the mask. The
creation of a cluster of olive trees is obtained by a closing operation ¢ with an iso-
tropic structuring element AB of half of the size of the distance between adjacent trees
in a line or row of the pattern (fig. 3a). This “strong” cluster is now able to resist to
erosion-reconstruction filters. The application of an erosion &£ with an isotropic
structuring element will remove the smaller unwanted structures located outside the
mask and will leave some regions that mark the mask of the olive trees (fig. 3b). These
regions will serve now as markers for the reconstruction R of the final mask in the

geodesics ¢w (X,) . The reconstruction operation results from the application of the

geodesical dilation O of e* (¢w (X,))in the geodesics ¢w (X)) performed till

idempotence. The output of this transform can be seen in fig. 3c. The set intersection
of this image with the initial one X, , will provide as a result the olive grove (set X,)

but also some unwanted structures located between the olive trees (fig. 3d), that still
have to be filtered (see next section):

Xy =R (€7 (0P (XN X, @)

(@) (b) (©)

Fig. 2. Application of the top-hat transform: (a) initial image; (b) classic version; (c) isotropic
version
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Fig. 3. Sequence to create a mask containing the olive grove: (a) closing; (b) erosion; (c) recon-
struction; (d) set intersection

4 Recognition: Indirect Individual Tree Analysis

Although based on the typical pattern exhibited by the olive groves, their correct seg-
mentation at each orthophotomap does not imply a totally correct identification of the
trees that constitute them, since no verification of the structures located within each
mask was directly performed. Thus, it is necessary to verify this point and, in case of
missegmentation, to suppress “fake” trees.

Since the distance between adjacent trees in the terrain is standard, a simple solu-
tion to solve this problem could rest on analysing the distances measured between
adjacent objects and filtering the ones not respecting the standard one. Although the
solution is not straightforward, laying the major difficulty on the definition of adjacent
structures, it is anyway a possible solution. Anyhow we propose to act globally on
each olive grove through a sequence based on morphological operators.

The first step of this algorithm starts by identifying the geodesic centre of each
structure or object belonging to each segmented olive grove (set X5 ). It is obtained

by a thinning (O ) with the letter D of Golay alphabet (see [10] for the details) per-
formed till idempotence (the definition of geodesic centre is only valid for simply
connected objects, being necessary to fill previously the occurring holes, to guarantee
that all structures are correctly analysed). The following step consists of identifying
the influence zone of each structure through an isotropic and homotopic thickening
(®) of the geodesic centres (the letter L of Golay alphabet [10] is the one used)(fig.
4a):

Y =((x;0D),)®L), 3)

If the object belongs to the olive grove pattern then its influence zone presents a
standard isotropic shape. On the other hand, the fragmented influence zones present
different shapes, which signifies that they are competing for the same region and con-
sequently indicate that not all of them belong to the regular pattern, i.e., not all of
them are olive trees. The identification of these “irregular” shapes is obtained through
a granulometric approach by application of isotropic openings of increasing size. In
order to distinguish isotropic from anisotropic objects, directional structuring elements
have to be used in the opening trasform. It consists of computing the sup of openings
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by line segments of the specified size in the number of principal directions indicated
by the sampling grid. The set difference between the initial image Y, and the filtered

one permits to recover the suppressed regions by the directional openings:

Y, = (sup, 7 )\, @)

These sets mark now the regions of interest, i.e., the ones that are candidates to be
olive trees. The recovery of their initial shape is obtained through its reconstruction
R in the geodesics Y, (fig. 4b). Now these objects constitute isotropic influence

zones divided by one or more lines of unitary thickness (one pixel in the digital im-
ages) being its merge performed by a unitary closing of size 1 (fig. 4¢):

Yy = 0% (R, (1) 5)

The geodesic centre of each one of these influence zones substitutes in the initial
image the several geodesic centres obtained before:

Y, =(;0D). u(r\1;) (6)

The resulting image constitutes now the correct olive grove where all its members
are at standard distances being, indirectly, considering as olive trees (the respective
influence zones are presented in fig. 4d).

5 Application of the Developed Methodology

The presented methodology was developed using an initial set of about 300 ortopho-
tomaps from a region in central Portugal. In order to develop the methodology, 60
ortophotomaps were chosen as training set, while 30 images of those larger initial set
were used as test set. The ground-truth images used to perform the comparison, i.e., to
compute the confusion matrixes, were obtained by expert photo-interpretation.

The analysis of table 1 demonstrates that the olive groves are identified with a high
rate (59/66=0.8939). The errors committed (olive groves not identified) are related to:
(1) some intrinsic features of the images (terrains not properly cleaned or presenting
abundant vegetation result in images with lower contrast) and (ii) algorithmic options
(the very small olive groves are filtered). There exist some structures presenting regu-
lar patterns similar to the olive groves that are identified into this forest cover (false
positive), such as, vineyards or fruit trees.

(b) (c) (d)

Fig. 4. Identification of possible “fake” olive trees (zoomed region): (a) influence zones; (b)
candidates to “fake” trees; (c) closing; (d) influence zones of corrected olive trees
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Table 1. Average classification rates of olive groves

Ground-Truth Developed methodology
Positive False positive
Number of olive groves 66 59 7

Table 2. Average classification rates of olive trees

Ground-Truth Developed methodology
Positive False positive
Number of olive trees 38266 36073 2497

The recognition of individual trees also reaches a high recognition level like table 2
shows (36073/38266=0.9427). The false positive ones, i.e., the trees that are classified
as olive trees, but are in fact other type of trees (the majority of them, are cork-oak, a
common cover in the Portuguese region under study) appear normally in the neigh-
bourhood of the olive groves being, during the application of the developed algorithm,
captured and included within the constructed mask.

6 Conclusions

A novel methodology to segment and recognise olive groves in high spatial resolution
remotely sensed images was presented. It is based on the assumption that they consti-
tute typical patterns and is constructed into two main phases: the first one consists of
segmenting the olive grove while the second one makes the recognition of each one of
its individual olive trees. The algorithms developed appeal to mathematical morphol-
ogy operators and exploit the typical spatial pattern exhibited by this forest cover type,
using only intensity images (256 grey levels, 1 metre/pixel), and are independent the
dimension, shape and orientation presented by the olive groves. The results obtained
in the application of these algorithms to ortophotomaps of a central region in Portugal
are highly satisfying, but still face some difficulties that may be solved by some im-
provements.

The major difficulty is related to the similarity of other regular patterns that may be
confounded with olive groves, namely, the ones presented by fruit trees. Although the
dimension and shape of the cupolas of the trees may be a good discriminator in some
situations, it does not remain valid for some other situations. The use of spectral fea-
tures is a hypothesis to exploit in future developments.

Moreover, a comparative study between images at different spatial scales is envis-
aged in order to evaluate the lower needed scale to perform the upgrading tasks.
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Abstract. A new scheme for detecting edges in multi-channel SAR im-
ages is proposed. The method is applied to a set of two full-polarimetric
SAR images, i.e. a P-band and an L-band image. The first step is a low-
level edge detector based on multi-variate statistical hypothesis tests.
As the spatial resolution of the two SAR bands is not the same, the
test is applied to the polarimetric information for each band separately.
The multi-variate statistical hypothesis test is used to decide whether an
edge of a given orientation passes through the current point. The test
is repeated for a discrete number of orientations. Eight orientations are
used. The response for the different orientations of the scanning rectan-
gles as well as for different bands is combined using a method based on
Dempster-Shafer Theory. The proposed scheme was applied to a multi-
channel E-SAR image' and results are shown and evaluated.

1 Introduction

Synthetic Aperture Radar (SAR) image products are very important and useful
for remote sensing applications because they can be acquired independent of
time of day or weather conditions and because their characteristics (wavelength,
polarisation, observation angle) can be chosen in function of the phenomenon
under investigation. The first satellite-based SAR systems used for remote sens-
ing were single-band mono-polarisation systems with a spatial resolution of a few
tens of meters (e.g. 25m for ERS1, 30m for Radarsat). However, scene interpre-
tation results can be greatly enhanced by combining different SAR images [1]
e.g. multi-polarisation, multi-frequency, different aspect angles, multi-temporal,
etc. In future satellite systems, the spatial resolution will be improved to a few
meters and the systems will be capable to acquire high-resolution polarimetric
and/or multi-frequency, i.e. multi-channel, data. Current airborne SAR systems
are already capable to acquire multi-channel SAR images with a metric resolu-
tion. For the automatic interpretation of such images, adequate low-level image

* The presented research is done in the frame of a European project IST-2000-25044:
SMART (Space and Airborne Mined Area Reduction Tools).
! The test image was provided to us by the German Aerospace Center (DLR).

F.J. Perales et al. (Eds.): IbPRIA 2003, LNCS 2652, pp. 97-107, 2003.
© Springer-Verlag Berlin Heidelberg 2003
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processing tools are needed. In this paper we propose an edge detection scheme
for multi-channel SAR images. Current edge detectors were designed to work
on low-resolution, single-band, multi-look SAR images. The most widely used
edge detector for such SAR images is the ratio-detector [2]. It is based on the
speckle distribution in uniform regions in single-band multi-look intensity im-
ages. In [3, 4] we proposed new edge detectors for polarimetric SAR images and
based on multi-variate statistical hypothesis tests. The hypothesis test is applied
for different orientations of a set of two scanning rectangles. In order to deter-
mine whether a vertical edge passes through a point P two vertical rectangles are
constructed around the point P and the statistics of the pixels in both rectangles
are compared using the hypothesis test. The test is repeated for a given number
of different orientations of the scanning rectangles. Normally the maximum of
the response over all orientations is considered as the global edge response. In
this article we investigate a new and improved way to combine (fuse) the re-
sponses of statistical edge detectors. The method is based on Dempster-Shafer
evidence theory [5, 6] which is briefly described in section 3. In a first step the
fusion method is applied to combine the response of the statistical test over
the different orientations of the scanning rectangles. In a second step the same
fusion method is used to combine edge detection results obtained from the two
frequency-bands. In section 2 the edge detector based on multi-variate statistical
hypothesis is introduced, section 3 gives a brief summary of Dempster-Shafer ev-
idence theory which is applied to the fusion of edge detection results in section 4.
In section 5 results of applying the method on a set of two polarimetric SAR
images, are shown and discussed. The last section presents the conclusions and
the perspectives for further research.

2 An Edge Detector Based on Multi-variate Statistics

An obvious way to detect edges in multi-channel images is to fuse the results of
existing detectors applied on each individual channel. An alternative is to use
multi-variate statistical methods which treat the combined information from
the different channels as a single input-vector. We have already successfully
introduced such methods for detecting edges in polarimetric SAR images [3, 4].
Fig. 1 illustrates the two approaches that can be used for detecting edges in multi-
channel SAR images. A comparative evaluation [7] has shown that the multi-
variate methods outperform the fusion of uni-variate methods. The multi-variate
hypothesis test for equality of variances that was used is the Levene test [8]. It is
applied to the single-look complex data where differences in radar backscattering
appear as differences in variance of a zero-mean normal distribution. The null-
hypothesis H, is that the samples from the two scanning rectangles are from
populations with the same variance, the alternative hypothesis H; is that the
population variances are different. In the Levene test the samples from the two
scanning windows are first transformed in absolute deviations of sample means.
In the case of a single-look complex polarimetric image with complex data of
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Fig.1. Edge Detection in Polarimetric SAR
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in which i is the index of the observations and k the index of the scanning win-
dow (k=1 or 2). The question whether two samples display significantly different
amounts of variance is then transformed into a question of whether the trans-
formed values show a significantly different mean. This can then be tested using
a Hotellings T%-test [9, &]. The Hotellings T?-statistic is defined as:

nan(fl — E)tc_l(ﬁ — fz)
nl+n2

T2 =

: (2)

with Ly the average of the L;; values in the k" window and [C] the pooled
covariance matrix estimated by:
(n1 — 1)01 + (712 — 1)C2

C =
ny+ng —2

; (3)

where C7 and C5 represent the covariance matrices estimated from the two
scanning rectangles. The significance of T? is determined by using the fact that
in the null-hypothesis of equal population means the transformed statistic

(’I’Ll +nNo2 —p— 1)T2
(TL1 + no — 2)p

Tp = (4)
follows a Fisher-Snedecor distribution, F), ., with degrees of freedom v, = p
and v5 = ny +ng —p— 1. p is the number of variants, i.e. 6 in our case if the real
and imaginary components for each polarisation are counted separately. From
the theoretical distribution of the test statistic the theoretical a% false alarm
threshold 6, for the detector can be determined. It is given by

P{Tr >0, | H,} =«. (5)

The theoretical distribution of the test-statistic when the null-hypothesis is ver-
ified is used to transform the test-statistic in each point in the image into the
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corresponding p-value. For a value pf the test-statistic Tr(x,y), found in a given
pixel, the p-value is the probability that an even more extreme value can be found
when the null-hypothesis is verified. A low p-value means the test-statistic is very
extreme and indicates that the null-hypothesis is probably not verified, i.e. the
region corresponding to the two scanning rectangles is not uniform, and there
might be an edge passing between the two rectangles. Using p-values allows to
compare and combine results of different edge operators.

3 Overview of the Dempster-Shafer Theory Framework

The aim of the fusion described in the current article is to combine the response
of the edge detector for different orientations of the scanning rectangles as well
as to combine the results obtained in different SAR images of the same scene.
The proposed fusion method is based on Dempster-Shafer (DS) theory [5, 6] .
Dempster-Shafer or evidence theory is a mathematical tool that allows to work
with uncertain, imprecise and incomplete information. The uncertainty is taken
into account by assigning masses to sets of different hypotheses. Several experts
distribute their knowledge over these different hypotheses and a final decision
is obtained after combining the masses assigned by each expert. In DS-theory
a set of hypotheses is defined: © = {H;, Hs,...H, }. The different experts or
sources of information distribute masses to sub-sets A; of ©. For each source of
information a mass function is defined as:

m:2% —10,1]

in which 2% is the set of all sub-sets of © and m(A4;) represents the confidence
that the information source has that the solution lies in the sub-set A;. The
attribution of masses for each information source is constrained by the following
rules:

m(®) =0, (7)
ZA,;EQC‘) m(Al) =1,

where @ denotes the empty set. The solution is found by combining the masses
attributed to the different sub-sets by the different experts. The combination of
masses from different experts is done by Dempster’s combination rule. Let mq
and mo be the masses that were respectively attributed by expert 1 and expert
2, then the combination of the masses from these two is defined as:

mip(Ai) = Y ma(Ay)ma(A,) . (8)
A NA,=A;

Masses are thus attributed to the sub-set formed by the intersection of the dif-
ferent sub-sets. Depending on what happens when the intersection is empty, one
distinguishes the closed world or the open world model. In the closed world one
assumes that the solution corresponds necessarily to one of the defined sub-sets.
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Any mass that would be combined into the empty set is therefore redistributed
over all other sets and the mass of the empty set remains zero. In the open world
model one allows the possibility that the solution is not part of the defined sub-
sets. A mass that goes into the empty set can then be interpreted as a symptom
of the fact that the solution is not within the sub-sets or that different experts
have incompatible opinions. From the combined masses two functions can be
derived that characterise the support to the final decision. The first is called the
belief (Bel) and represents the degree of minimal support on sub-set A;. The
second is called plausibility (Pls) and corresponds to the maximal or potential
support to a given sub-set in the final mass assignment [6]. They are defined as:

BGZ(AZ) = ZAJ g Az m(AJ) y PlS(Az) = ZAjﬁA,; m(AJ) . (9)
A # &

In the design of a system for fusion of information based on DS-theory one

distinguishes the following steps:

— Define the sub-sets relative to the problem

— Choose the model (closed or open)

— Define the mass functions used by each expert to distribute its confidence to
the different sets

4 Application of DS-Theory to the Fusion
of Edge Detection Results

4.1 Definition of the Sub-sets and the Strategy

The aim is to combine the response of the edge detector for different orientations
of the scanning rectangles. The edge detector for each orientation of the windows
is considered as an expert giving its opinion about the presence of an edge along
that direction. A small p-value means the expert has a strong opinion about
the presence of the edge and consequently a high confidence should be given to
that direction. The larger the p-value, the less strong the opinion is and the less
confidence should be given to that particular direction. We use 8 orientations
Dy..D7 (ranging from Dy = 0 to D7 = 157.5° in steps of 22.5°%) of the scanning
rectangles and we say that if a low p-value is found for a given direction, it
does not necessarily mean an edge is located along that direction; it could be
oriented along neighbouring directions. Even when we find an edge in a given
orientation, we do not know whether there is, in the same point not also an edge
along another orientation (a corner). Therefore we need to attribute also some
mass to the other directions. We have defined the following sub-sets of directions:

the singleton: {D;},

the triplet: {Di,h Di, Di+1},

— the complement of the direction {D;}
the complete set of directions {Dy..D7}
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The open world model is the most convenient for our problem [13]. In general
the mass of the empty set m(®) after combining the masses is an indication for
a disagreement between experts or for the fact that the solution is not among
the defined sub-sets. This mass should therefore be high at corners The mass of
the complete set m¢ indicates an indecisiveness of the experts. It will be low in
edges or corners and high in the background. Three cases are distinguished:

— Background: If all p-values are “high”, probably no edge is present, and we
attribute most of the mass to the complete set of orientations, i.e. we know
nothing to decide the orientation of an edge. The complete set will, when
the masses are combined over different experts, not contribute to the mass
of the empty set. Therefore the mass of the empty set will be very low.

— Corners: Here several experts may detect an intermediate p-value and we
should find a high conflict between the experts and the mass of the empty
set should be high.

— Edges: The p-value for the correct edge direction is very low while neigh-
bouring directions will also have a low p-value. The mass of the complete
set should be low because some experts are very sure, while there is some
conflict due competing neighbouring directions.

4.2 Learning the System’s Parameters

For determining the system’s parameters a learning set with examples of edge
(EP), corner (CP) and background points (BP) was selected.

Thresholds for the p-Values. In order to introduce a dependence of the mass
assignment on the p-values that are obtained for the different orientations, the
range of possible p-values was sub-divided into 5 sub-ranges corresponding to
increasing p-value. The actual borders are fixed by studying the p-values of the
set of learning points for a given edge direction. The thresholds are selected such
that for the correct edge direction the p-values are very low or low; for corners
they are intermediate or high and in the background the p-values are high or
very high. The p-value thresholds that gave the best results for the Levene test
are: Ty = 1078, T, = 1077, T3 = 1074, Ty = 1072

Optimisation of the Mass Functions. Even when the sub-sets are chosen
and when we know what should be the result of the combination of masses from
different experts, it is still difficult to design the mass functions consequently. We
therefore determined the mass functions automatically on the basis of a small
learning set. In order to find the optimal mass functions a cost function Cy,; =
Cg + C¢ is defined as the sum of a cost function defined on the empty set and
the complete set as:
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1 2 1 2
Cp = — Z [qup — 0.1] + = Z [mqs,p — 0.5]
Nip peBP BEP ,cEP
1
t— > [mae,—0.9]" , (10)

N,
cr peCP

1 1
Co = NiBP Z [mc,p — 0.5]2 + Ni Z [mqp — 0.1]2
pEBP

1
+Non > [mep—01]7 . (11)
peCP

The masses of the different sub-sets are adapted iteratively in order to minimise
the cost function Ci,; on the learning points. The optimisation is performed
using the downhill simplex method of Nelder and Mead [10, 11]. Convergence
is reached after 20 to 25 iterations. The resulting mass functions are shown in
table 4.2. The general tendency for the resulting mass functions after optimi-
sation is that for very low p-values most of the mass goes to the singleton. As
p-value increases the mass of the triplet (neighbouring edge orientations) and
the complement (a possible indication of corners) increases and finally, for very
high p-values, most of the mass is concentrated in the complete set which cor-
responds to undeciveness (background). Masses in the table correspond to the
value assigned when the p-value corresponds to the given thresholds; for p-values

in between the thresholds, masses are linearly interpolated.

Table 1. Mass functions after optimisation of cost function

Sub-Set Threshold
0.0 | Th Ts Ts Ty 1.0
(D} 0.497/0.473/0.014]0.101/0.018/0.021
{Di-1,D;, Di;+1}|0.174]0.062|0.906/0.131/0.010|0.089
{D;} 0.066/0.329/0.005|0.299/0.000{0.009
{Dy..D7} 0.262|0.136/0.075|0.470|0.972|0.882

4.3 Fusion of Results from Different Frequency Bands

The test set used in this paper consists of two polarimetric images, respectively
in P-band and L-band. The two images were acquired from two parallel flight
paths and cover approximately the same region. However the spatial resolution
of both images is not the same. Together with the SLC images we received
transformation matrices that enable one to find the ground coordinates of each
point in the SLC images. These were obtained by the German Space Agency
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DLR by geocoding the SAR image using a DEM of the region. By combining
the transformation matrices from the two bands it is thus possible to find the
relationship between the positions in the two images. However, because of the
difference in spatial resolution, this is not a one-to-one relationship. This is why
we decided to apply the raw edge detector to each band separately and fuse only
the results of the edge detection. In this paper we used the two images as two
sets of experts voting for a given edge orientation in each pixel of the P-band
image. The DS-based fusion is used to combine the different experts for different
edge orientations as well as for the two bands. As a reference, the image with
lowest resolution is used, i.e. the P-band image. The P-band image is scanned
and in each pixel first the edge information from the different orientation experts
is gathered and then the corresponding point in the L-band image is determined
and the edge information from the L-band image at that point is also gathered.
The DS-fusion is used to combine this joint information.

5 Results and Discussion

5.1 Fusion of Edge Orientations

In fig. 2 a part of the original P-band E-SAR image is shown on the left. The
edge detector is applied to the three polarisations simultaneously. The dimension
of the scanning rectangles is 10 x 50. The 2nd and 3rd image respectively show
the mass of the empty set mg and of the complete set m¢ after combination of
masses. High values for mg correspond to corners and to other locations in the
image with high uncertainty with respect to the orientation of edges, e.g. highly
textured regions (built-up areas, forests or lines of trees). On the other hand m¢
is low at the position of edges and corners. The decision whether a given point of
the image corresponds to an edge (or corner) can thus be based on the combined
information in m¢ and me. If the point belongs to an edge, the orientation of
the edge can be derived from the plausibility and the belief. The orientation
corresponds to the singleton of directions for which the highest plausibility is
found. The right image of fig. 2 represents the image of edge orientations.

Fig.2. Pband image results (from left to right: original image, mg, m¢c and
image of edge orientations)
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Fig. 3. Results of fusing the edge information of the two frequency bands (from
left to right: original L-band image, results after fusion for meg, mc and edge
orientation)

5.2 Fusion of Edge Detection Results from the Two Bands

In fig. 3 the results of fusing the edge information of the P- and L-band image are
shown. Note that the L-band image in the figure was geometrically rescaled to
the same size as the P-band image for display purposes. Results are also shown
in the coordinates of the P-band image. Note that the image of the complete set
shows more edge detail after the fusion.

5.3 Comparative Evaluation of the Results

The images above already show that the results after fusion of the two bands
are better than without the fusion. In order to obtain a quantitative idea of
the detector’s performance we determined the Receiver-Operator Characteristic
(ROC) curves for edge detection based on the P-band alone and after fusion
of P-band and L-band. ROC curves show the probability of detection P; of
a detector versus its probability of false alarms Py. P; and Py are determined
on a test image in which the true edges are known. These “true” edges were
indicated manually on the image. The ROC curve is generated by varying the
detector’s threshold. Fig. 4 shows the ROC curves obtained with and without
fusion of the two bands. The curve found for the fusion is above the curve found
for the P-band, indicating that the combination of the two bands indeed improves
edge detection results.

6 Conclusions and Perspectives

In this article a new scheme for detecting edges in multi-frequency polarimetric
SAR images is presented. It consists of two steps. The first step uses a multi-
variate statistical hypothesis test to decide whether an edge of a given orientation
passes through the current point. The test is repeated for a discrete number (8)
of orientations. The multi-variate test is applied to the full-polarimetric image,
but each frequency band is treated separately because their spatial resolution is
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Fig.4. ROC curve for edge detection results

different. The second step combines the edge detector response over the different
orientations. For this combination an approach based on Dempster-Shafer theory
was developed. The edge detector for each orientation behaves as an expert that
gives an opinion about the presence of an edge in a set of possible directions.
The confidence each expert assigns to each sub-set of orientations is determined
using mass function. A cost function is defined to find masses in order to in-
crease the distinction between edges, corners and background. The masses are
automatically optimised using this cost function. The method is applied to a set
of two full-polarimetric E-SAR images in resp. P- and L-band. In a next step we
will investigate further how to incorporate local spatial information, i.e. taking
into account neighbours of each pixel, to improve edge detection. In particular
we will explore a method to increase further the confidence in a given edge pixel
when neighbouring edge pixels in the higher-resolution image are found along
the same edge direction. We will also investigate the use of active contours to im-
prove detected edge structure and investigate synergy between our edge detector
and speckle reduction methods.
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Abstract. This work is a part of a surveillance system where content-
based image retrieval is done in terms of people appearance. Given an
image of a person, our work provides an automatic description of his
clothing according to the colour, texture and structural composition of
its garments. We present a two-stage process composed by image seg-
mentation and a region-based interpretation. We segment an image by
modelling it due to an attributed graph and applying a hybrid method
that follows a split-and-merge strategy. We propose the interpretation of
five cloth combinations that are modelled in a graph structure in terms
of region features. The interpretation is viewed as a graph matching with
an associated cost between the segmentation and the cloth models. Fi-
nally, we have tested the process with a ground-truth of one hundred
images.

1 Introduction

In many application fields large volume of data appear in image form. The
Content-Based Image Retrieval (CBIR) is the Computer Vision area in charge
to handle and organize this great volume of data due to its visual content.
Image retrieval from databases is usually formalized in terms of descriptors that
combine salient visual features such as colour, texture, shape and structure. For
any given feature there also exists multiple representations that characterize it
from different perspectives. The reviews of Huang [11] and Forsyth [7] expose
a wide variety of feature representations and image retrieval strategies.

This work is focused on the development of a content-based retrieval system
where the image classification is done according to the presence and description
of a certain object. The process involves two steps: an image segmentation and
a region based interpretation. In the first step, the information of the segmented
image is organized as an attributed graph which features characterize the regions
and their relationships. We define certain operators that, following a split-and-
merge scheme, allow the graph to evolve until finding the final solution. Image

* This work has been partially supported by the project TIC2000-0382 and the grant
2002F1-00724.
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segmentation techniques can be roughly classified into four groups: pixel based,
boundary based, region based and hybrid techniques. Some understanding sur-
veys on image segmentation are those of Haralick and Shapiro[9] and Munoz[13].
Our segmentation strategy is classified as a hybrid method for combining clus-
tering in the colour space, colour homogeneity and edge detection. In the second
step of our process, image interpretation, the structure of the segmented regions
is matched against a set of models of objects. These models are also represented
as graphs that contain features such as colour, texture, size, shape and position.
Hence, the interpretation step is performed as a matching procedure between
the graph of the segmented image and the graph of the model objects. The best
matching solution is chosen due to a cost measure provided by the matching
operations on the model features.

We have tested our system by integrating it as a retrieval module of a general
surveillance application. This application performs image retrieval in terms of
people appearance and acts as a control mechanism of the people that enters
in a building. It automatically constructs an appearance feature vector from an
image acquired while people is checking-in in front of an entrance desk. This
way, the system analyses some person characteristics, such as the height, the
presence of glasses or the clothing, and stores the result in a database. Thus,
a graphic based interface allows the security personnel of the building to perform
an image retrieval of the registered people by formulating queries related on their
appearance. The objective of our work is centred in the module that provides an
automatic description of the people clothing. This description is given in natural
language in terms of colour, texture and structural composition of the garments.

In the literature we can find several examples of strategies that, like the
one which we have developed, combine region features and graph structure for
database indexing [6][14]. However, in the concrete aim of the clothing de-
scription, the most similar approach consists in the Changs development of
a computer-aided fashion design system [3]. However, this approach treats the
clothing segmentation process but does not treat the interpretation one.

The paper is organized as follows: in section 2 we detail the image segmenta-
tion according to its graph-modelling and its strategy. In the section 3 we present
how we model the clothing compositions as another graph of features and how
we perform the matching to interpret the clothing regions. Next, in the section 4,
we expose an example of the retrieval behaviour of our module. Finally, in the
sections 5 and 6 we present some results and conclusions respectively.

2 Image Segmentation

2.1 Segmentation Modelling

Graph Representation. We model an image I as a set of non-overlapping
regions R structured by an attributed graph G. The graph G is formed by a set
of nodes N, a set of edges F, and two labelling functions over these nodes and
edges. While each node identifies an image region r, each edge represents a re-
lation between two regions 7;, r;. The graph is also provided with two labelling
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functions, Ly and Lg. They are in charge to obtain and store the feature infor-
mation Fy and Fg that identifies the nodes and edges respectively.

G:(N,E,LNZNHFN,LEZEHFE)

Node Features Fy = {BB(n), A(n),H(n), E(n), AC(n), AI(n),T(n)}: A region
is described with its bounding box (BB), the area (A), the colour histogram
(H), the edge presence (E), the average chromaticity (AC), the average intensity
(AI), and the texture presence (7).

Edge Features Fr = {D(n;,n;), NH(n;,n;j)}: The region relations are defined
by the neighbourhood information (NH) and a similarity distance (D). In the
next section 2.2 we detail how D is computed from the node features.

Graph Edition Operations. We define two graph operators that work over
the graph structure and allow it to grow and to diminish. These operators are the
fusion operator vr and the division operator vp. After a step of graph expansion
or contraction, they are in charge to recalculate Fiy and Fg and restructure G
(remove obsolete edges, etc).

2.2 Segmentation Process

Algorithm Steps. As we illustrate in the Figure 1, our segmentation algorithm
is a process that consists in three steps: initialisation, split and merge.

Starting from the source image I and a mask of the zone we want to segment,
we create the initial graph G as a unique node. Then we expand G in two phases
corresponding to a discrimination of the textured areas and a breaking of the
plain ones. Thus, the division operator vp(G) acts over the graph nodes due
to some predefined split criteria SC' based on the node features Fiy. Finally we

d

Region of interest

Textured regions Plain regions

SPLIT

Source Image INITIALISATION

MERGE " Final result

Fig.1. Segmentation process guided by a graph structure
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apply iteratively the fusion operator yr(G) due to some merge criteria M C' that
deal with the edge features Fg of the graph. Next we expose the criteria we
follow to apply the operators in the split and merge steps.

Split Criteria. We deal with homogeneity measures on the node features.

Texture Discrimination. We discriminate the texture zones by applying a sta-
tistical strategy inspired in the work of Karu[l2] and in the MPEG-T7 texture
descriptor[5]. The general idea of our process is to consider as textured regions
those image zones with a certain amount of area that present a high density of
contours checked at certain frequencies. The exact detection steps are graphi-
cally showed in the Figure 2. The node feature E stores the edge information,
and T indicates the texture presence.

Plain Regions Split. We apply a pixel-based technique that consists in a cluster-
ing of the colour space. A plain region will be formed by all the connected pixels
in the image that belong to the same colour cluster. We have used the octree
quantization algorithm of Gervautz and Purgathofer[3] that, given a number of
colours nc, provides the palette of the ncth most usual colours of the image. This
adaptability is very interesting to avoid the under segmentation when we deal
with garment combinations of very similar colours. The quantization information
is stored in the node feature H.

Merge Criteria. We allow the fusion of two adjacent regions if their similarity
feature D is under a certain threshold. Being this value a measure between 0
and 1, the fusion operator will be applied iteratively to the pair of neighbouring
regions with minimum distance.

Plain Regions Similarity. The shadows provided by the clothes folds are viewed
as intensity changes that become especially critical in the case of the plain re-
gions. Thus, we have developed a similarity distance that gives more tolerance
to the intensity variations and allows the presence of progressive and smooth
intensity degradation in a region. The similarity measure is computed by a com-
bination of a chromatic distance and an intensity distance. The chromatic dis-
tance is computed from the AC node features as the Euclidean distance between
the colour means on the chromatic plane. When two regions are adjacent, the
intensity distance I D is computed from the E node features as the rate of edge

1

ORIGIMNAL IM&GE Canny edges ubtraction éamluﬁan Edge density Blub breaking Bloh ares fithering

flow gaussian smoothing) (high) {round mazky thrasholdig (edgas, high) RESLLT

Fig.2. The five steps of the texture discrimination process
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pixels in the common boundary. Otherwise, we calculate ID as the Euclidean
distance between the average intensity Al of the regions.

Textured Regions Similarity. We use the histograms of the two regions (H) as
their texture descriptors. We use a similarity metric that treats simultaneously
the distances of the histogram rates and the distances of the colours that they
represent. This measure is commonly used for region based image retrieval and
is defined as a similarity colour descriptor in the MPEG-7[5] encoding.

3 Interpretation

3.1 Interpretation Modelling

We attempt to distinguish between five types of clothing compositions that are
combinations of two garments (buttoned or unbuttoned) and a tie. We under-
stand the garments of a class composition as ordered layers from the most ex-
ternal to the most internal. For example we describe a person wearing an unbut-
toned black jacket and a blue shirt, like a structure of two layers, the first black
and the second blue. In terms of garment regions this can be seen as two black
outer regions and one blue inner region.

We describe a clothing composition by a an ideal model structured as an
attributed graph Gp; where the nodes Ny represent the garment regions gr and
the edges E); their relationship (see Figure 3).

GM = (NM,EM,LNM ZNM_’FNMaLEM :EM _’FEM)

Model Node Features Fy,, = {A(nm),S(nm), CL(ny,), CH(ny)} : The model
regions are defined by its ideal area (A) understood as the area rate with respect
to the whole object. The region limits are analysed in order to identify a certain
shape (.5). Furthermore, we can set some colour restrictions by forcing the region
to have a certain colour homogeneity (CH) and being this colour homogeneity
of a certain label (C'L) such as skin, grey, blue, pink, etc. We use the 25 colour
label classification proposed by the colour naming method of Benavente[l].

Model Edge Features Fg,, = {SP(Nmj,Nmk), SI(Nmj, mi)}: We need to add
some similarity restrictions (ST) to those regions that, even thought of being
apart, belong to the same garment (for instance the two regions that describe
an unbuttoned jacket). We indicate the relative spatial positions between two

AR ARG A A

Fig. 3. Modeling of the five possible clothing compositions
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regions (SP) with a combination of two labels [AP, LP]. These labels are ob-
tained from the region bounding boxes and are inspired in the iconic indexing
techniques of Rs-String [10] and 2D String [4]. Figure 4 show them graphically.

3.2 Interpretation Process

The interpretation process consists in evaluating all the possible mapping solu-
tions between a segmentation graph G and each model graphs Gp;. Minimizing
a cost value associated to matching operations chooses the best result. The in-
terpretation process applies an n-to-one mapping between the image regions and
the model regions. It also allows an image region not to take part in the solution.
The procedure pretends to avoid the over segmentation problem and reject those
intrusive regions (bags, wallets, etc.) that do not belong to the clothing.

Matching Cost. We compute the mapping between a graph G and
a model Gp; due to some cost functions. These functions evaluate how the
node features and the edge features of the model are preserved when they are
mapped to the image ones. The functions d4, dcm, dcr, and dg, evaluate Fi,,;,
and the functions ds; and dsp, evaluate Fg,,,. Let us name o ({n}isnmi)
and 0, (€, €m;) the combination of the node costs and edge costs respectively.
In a higher level, the function § joins and weights them with the parameters,
ay,; and ag,;. These parameters enhance the significance of a model part or of
a relationship.

#Nnri #Enm
8(Gr, Gai) = Y anix0py,,, ({n}isnm) + Y ami*dp(eiem) (1)
i=1

i=1

Next we define in a general way how we calculate the costs related with each
feature. For more details, see Borras[2]. The functions 4, dg; and dcp provide
cost measures that vary in a range of goodness from 0 to 1 in reference to the
area (A), similarity (ST) and colour homogeneity (CH) features. The area cost
is computed as the ratio of the difference between the {n}; and mn; areas. The
similarity and cohesion costs are computed as the mean of the colour-texture
distances defined in the section 2.2. In relation to the features with boolean
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Fig. 5. Given a segmentation graph G the figure shows the three best matching
for the graph-modelled classes: 1,4 and 2. There is no result for 3 and 5 due to
the absence of tie shape. The image is classified as Class2 since it has the lowest
matching cost

properties, their costs are set to 0 or oo according to its accomplishment. The
function dsp checks the space labelling (SP) and d¢y, examines the colour la-
belling of a region (C'L) using the colour naming method [1]. Finally g analyses
the shape with synthetic tie mask.

Matching Process. From graph G and a model graph Gjs;, we make an
expansion in a depth-search priority of a decision tree. Each tree level represents
the mapping of a region model with a set of segmented neighbouring regions.
Each tree node has associated a cost mapping of the partial solution. At each
step, we only expand the nodes with a cost value < 1. When the process is done
for all Gj; we choose the segmentation solution G¥ with minimum cost C;
< 1. Applying the matching process to the whole models and observing the
minimum value of each best mapping, we decide the class classification of the
clothing composition. Figure 5 exemplifies a graph matching solution.

4 Example

We exemplify the behaviour of our method in front of a query formulated against
a database. This database contains the clothing descriptions that our method
has generated from a set of 100 test images, as well as, the colour labelling of
identified garments [1]. Then, we try it out with two queries which results are
showed in the Figure 6. A first query would be formulated as: ” We search a person
wearing a clothing composition of two layers: the first opened, the second closed;
with indistinct colour for the first layer, and white for the second layer”. Then,
a second query could refine the previous one adding a colour restriction for the
first layer as: ”...with black colour for the first layer...”.
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Fig.6. Image retrieval: 1 to 7. Refined retrieval: 1,4,5 and 6. (a) Original
image (b) Segmentation and colour naming (¢) clothing regions of the structure
identification

5 Evaluation of the Results

Starting from a set of one hundred images {Ij}{jzl..lo()} taken from a real envi-
ronment, we have evaluated the whole process and their intermediate steps. We
have chosen an empirical discrepancy method based on a set of ground truth
information. We have used a synthetic segmentation of the images SG = {G7}
and a manual labelling of their structure SGy = {G%,,}. According to them
we have extract some statistics over two sets of structure results that we have
obtained form two experiments. The first set, RGY,, is obtained by running our
method starting from the original images. The second set, RG';¢, is obtained by
running it from the synthetic segmented images.

Global Evaluation. Running our method form the original images we have
obtained a success of 64% on the clothing classification (SGyNRGE,=64%)

Segmentation Evaluation. We have compared the success on the structure
identification starting from the original images and starting from the synthetic
ones. Then we have obtained that SGyNRGE,=64% and SGyNRG3ZE=69%.
Therefore we observe that the automatic segmentation influences the process by
incrementing the structure misclassification in a rate of 5%. This way, we can
evaluate the segmentation success in a rate of 92.75%.

Structure Description Evaluation. As we have seen in the previous results,
the structure description method can be evaluated with a 69% of success with-
out the segmentation influence. The mean reasons that introduce this 31% of
error are given by altered positions if the person in the image scene and severe
occlusions on the cloth zones provided by external objects.

6 Conclusions

We have developed a content-based image retrieval strategy that we have ap-
plied to a problem of people clothing identification. Our process consists in two
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stages, image segmentation and interpretation, both guided by a graph struc-
ture. Even thought the difficulties that the clothes segmentation carries (the
shadows of their folds, the irregular textures, etc.), our segmentation method
fulfils satisfactorily the objective. To perform the interpretation step, we have
modelled five types of clothing compositions according to some region features.
We use several cost functions to evaluate the best matching between the regions
of the segmented image and the ideal regions of the clothes composition models.
The process attempts to overcome the over segmentation problem by allowing
an n-to-one region mapping. Our strategy can be adapted to recognize and de-
scribe in terms of regions any object due to their colour, texture and structure
features.
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Abstract. In this paper we describe a new method for detection and
initial pose estimation of a person in a human computer interaction in
an uncontrolled indoor environment. We used the Koepfler-Morel-
Solimini mathematical formulation of Mumford-Shah segmentation
functional adapted to color images. The idea is to obtain a system to
detect the hands and face in a sequence of monocular or binocular im-
ages. The skin color is predefined and a procedure is parameterized to
segment and recognize the homogeneous regions. Besides, we fit our
results to a restriction that the two hands and face must be detected at
the same time. We also use a biomechanical restriction to reach this
initial estimation. So, the centroid of the blob is computed for every re-
gion. We explain the mathematical background segmentation, and re-
gion classification (hands, face, head and upper-torso). Finally, we pre-
sent some interesting results and we implement the algorithm efficiently
in order to obtain real time results processing standard video format.

1 Introduction

Human-Computer Interaction (HCI) is evolving towards devices that allow the user to
interact without physical contact with the machine; this communication can be carried
out with voice or user gesticulation capture. In gesture capture, it is possible to use
different kinds of devices: black and white cameras, color cameras, infrared cameras,
etc. Our research focuses on capturing human motion with color cameras. The user
gesticulation analysis process involves various tasks: capture, user detection, tracking
of interesting regions, gesture recognition and execution of the action specified by the
user. In this work we focus on the capture process and user detection; we propose a
new method to detect a user, recognize his/her clothes and other parameters that will
be useful in the tracking task [10] in a future work.

Capture is carried out from color cameras; our system allows us to employ more
than one camera to carry out a 3D reconstruction in a tracking step.

F.J. Perales et al. (Eds.): IbPRIA 2003, LNCS 2652, pp. 117-125, 2003.
© Springer-Verlag Berlin Heidelberg 2003
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The global process must detect a new user entering the system and analyze him/her
to determine parameters such as hair color and clothes. Once the user who is going to
interact with the machine has been detected, the system starts to track interesting re-
gions such as the head, hands, body and joints, using information obtained in the user
detection task. The input data for the gesture interpretation process are the position
and orientation of these regions. This process will determine which gesture the user
has carried out. Next, these gesture data are sent to the execution process which ends
the process by performing the action that has been specified, and so completing the
feedback process.

In the following section, we explain briefly the mathematical background of the
segmentation process based on the Mumford-Shah functional. This method is adapted
to multichannel images (color images) and real time processing. Section 3 introduces
the main method to detect the user in front of the camera and carefully explains the
analysis process and parameters needed for a future tracking process. Finally, we con-
clude with some interesting results including a set of color images and conclusions,
future works and references.

2 Multichannel Segmentation Algorithm

Image segmentation is the first step in data extraction for computer vision systems.
Achieving good segmentation has turned out to be extremely difficult, and is a com-
plex process. Moreover, it depends on the technique used to detect the uniformity of
the characteristics sought between image pixels and to isolate regions of the image
that have this uniformity. Multiple techniques have been developed to achieve this
goal, such as contour detection, split and merging regions, histogram thresholding,
clustering, etc. A Survey can be found in [1].

In color image processing, pixel color is usually determined by three values corre-
sponding to R (red), G (green) and B (blue). The distinctive color sets [7] have been
employed with different goals, and specific sets have even been designed to be used
with specific segmentation techniques [1].

We define a color image as a scalar function g = (g', gz, g3), defined over image
domain Q < R* (normally a rectangle), in such a way that g: Q — R’. The image
will be defined for three channels, under the hypothesis that they are good indicators
of autosimilarity of regions. A segmentation of image g will be a partition of the rec-
tangle in a finite number of regions; each one corresponding to a region of the image
where components of g are approximately constant. As we will try to explicitly com-
pute the region boundaries and of course control both their regularity and localization,
we will employ the principles established in [2, 4] to define a good segmentation.

So, the functional E that we consider to segment color images must have control
terms of autosimilarity for each region with respect to the channels chosen (that is,
distinctive color used) and the size, localization and regularity of the boundaries. To
achieve our goals we consider the functional defined by Mumford-Shah in [3] (to
segment gray level images) which is expressed as:



A New Method for Detection and Initial Pose Estimation 119

E(u.B)= [Ju—g| du+it(B)=

Q (1)
I{(ul —g1)2 +(u’ _gz)Z +(u’ —g3)2 xdy + 2{(B)
Q

where B is the set of boundaries of a homogenous region that define a segmentation
and u (each »*) is a mean value, or more generally a regularized version of g (of each
g") in the interior of such areas. The scale parameter A in the functional (1) can be in-
terpreted as a measure of the amount of boundary contained in the final segmentation
B: if 4 is small, we allow for many boundaries in B, if 1 is large we allow for few
boundaries.

The segmentation properties defined for the previous functional has been studied
by Koepfler-Morel-Solimini in [2, 4] and we can see the properties of the functional
in [3, 4]. The use of multichannel images (eg. color images) can be seen in [4, 5].

A segmentation B of a color image g will be a finite set of piecewise affine curves -
that is, finite length curves - in such a way that for each set of curves B, we are going
to consider the corresponding u to be completely defined because the value of each u’
coordinate over each connected component of Q \ B is equal to the mean value of g’ in
this connected component. Unless stated otherwise, we shall assume that only one u is
associated with each B. Therefore, we shall write in this case E(B) instead of E(u, B).
We define the following concepts.

Definition 1. A set of curves B’ is a subsegmentation of B if B’ has been obtained
from B by merging an arbitrary number of adjacent regions.

Definition 2. A segmentation B is normal if for each subsegmentation B’ of B it is
verified that E(B) < E(B”).
A property which is easier to compute is defined as follows:

Definition 3. A segmentation B is called 2-normal if, for every pair of neighboring
regions O; y O;, the new segmentation B’ obtained by merging these regions satisfies
E(B’) > E(B).

A more detailed explanation of the concepts and their mathematical properties can
be consulted in [2, 4, 6]. We shall consider only segmentations where the number of
regions is finite, in other words Q \ B has a finite number of connected components
and the regions do not have internal boundaries.

Koepler-Morel-Solimini demonstrate that the set of 2-normal segmentation verifies
the properties that are demanded in the image segmentation algorithm. Note that the
results and boundary marks obtained by Morel-Solimini continue being valid when
we are working with color images instead of gray level images, in other words, in the
case of multichannel images[4]. We shall use a variation of segmentation algorithm
by region merging described in [3] adapted to color images.

Obviously, it is not possible to directly find the global minimum of the energy by
examining the whole set of possible segmentations. The principle of the computa-
tional method we use is to generate local transformations of a given segmentation and
keep the ones which reduce the energy (lower energy means improvement of the
segmentation). The tool to produce these transformations is to merge adjacent regions
according to a region growing algorithm.
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The concept of 2-normal segmentations synthesizes the concept of optimal seg-
mentation we are looking for, and it lays on the basis of the computational method we
use. In fact, if we follow the main idea of the region growing methods, we shall see
that what they compute is precisely a 2-normal subsegmentation of a fine initial seg-
mentation, obtained by recursive merging.

We now consider the problem of computing a 2-normal segmentation as defined
above. The 2-normality property is well adapted for the construction of an algorithm
based on region growing by merging neighboring regions. Two regions will be
merged if this operation reduces the energy. At each step we need to compare the bal-
ance of energy if we remove a common boundary 8(0;, O;) of two neighboring re-
gions O;, O;. If B is 2-normal, one has E(B) < E(B - 4(0;, 0;)), which, in the case of a
piecewise constant function u, implies the balance

A(3(0,0, ))_ O(Z( —uk )] ()

where | - | is the area measure and u;, is the approximation of g on O; to compute the
data for evaluating the balance for each region O; we associate its area |O;] and we can

compute
L g

‘ l ‘

We call equation (2) the merging criterium. We decide to remove the common
boundary 9(0;, 0;) of O; and O; if this equation is not satisfied. By repeating this step,
that is, by comparing the balance energy for deciding to join any two neighboring re-
gions, we finally obtain a 2-normal segmentation for the scale parameter 4, a seg-
mentation, i.e., where no further elimination improves the energy. Then, we have im-
plemented a multiscalar algorithm and data structure similar to that used in [2] and [6]
but adapted to color images and real time processing.

The algorithm used the RGB components, because the segmentations obtained are
very accurate to our goal. But the system is able to use another color space or color
descriptor as we can see in [1]. Moreover, if it is needed it can weigh the channels
used in order to obtain the segmentation.

for k=1, 2, 3.

3 User Detection and Initial Pose

The image is captured and segmented with the algorithm explained in the previous
section and is then analyzed to determine whether it is a user or not, as we can see
below in a work related with this topic [8]. If a user has been detected, the system
studies him and obtains some parameters that will be useful in the tracking and analy-
sis process [9]. By applying this process directly to segmented images without using
information from previous frames, the system is robust to background changing and
variable illumination. The parameters obtained from the segmentation task are fixed
in order to user interactions with upper torso (body, arms, hands and head). The sys-
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tem obtains the upper torso configuration: shirt, hair, hands and face. User detection
process is waiting for a user located opposite the camera, with hands separated and at
the same height that head, then it recognizes and later analyzes user configuration.

Below we offer a more detailed explanation of this step.

This module receives a segmentation of the captured image, analyzes every region
and marks as skin region if its RGB medium value is in a characteristic color range of
skin. To achieve more homogenous regions, neighboring skin regions are merged.
This merging is carried out to avoid detecting a hand or the face in two neighboring
regions. To join a hand with the face or the other hand is not possible due to the ex-
pected initial position described above, following the merging criteria:

YO,,0;/Neighbour(0;,0; ) A Skin(O; ) A Skin(0; )= 0, L O, 3)

where Neighbor(O;, O;) means that two regions are neighbors and Skin(O;) means that
is a skin region.

After this skin region merging, we obtain a skin region set, called 5, where any pair
of skin regions are separated.

For all ordered set of three regions included in S, we identify each one as face Z,
left hand Y; and right hand Y,, then we evaluate a criteria to determine whether this
configuration is correct. The criteria is done by

Mgkx{(p(o,.,oj,ok): V0,,0,,0, € ffza (4)
i,j,

where a is a threshold probability and we call ¢ the user detection function. In this
function we take into account the following:

1 The central region must be the biggest. A(Z) > A(Y;) and A(Z) > A(Y,), where
A(Z) is the area of Z.

Lateral regions, hands, have a similar area. A(Y;) =~ A(Y3)

Face region area A(Z) must be between a minimum Z "~ and a maximum Z

Hands area A(Y;) and A(Y>) must be between a minimum Y~ and a maximum Y *
Vertical position Y; and Y, should be similar and nearest possible to Z

B~ W

The user detection function returns a value between zero and one that measures the
probability that a user has been detected. From all possible combinations of Z, ¥; and
Y, the one with the greatest value, greater than a reference minimum value a, is cho-
sen as the best configuration.

In order to apply the above algorithm, we need to fix the following values: a color
range of skin to detect hand and face regions, a threshold probability o to discriminate
non expected initial positions. To avoid high differences of hands we include an area
similarity criterion, a maximum size of hand area is also necessary. All these pa-
rameters are used in order to discriminate bad detections.

All threshold values are established in relation with camera to user distance and
image resolution. This distance is predefined by initial application setup.

After a user has been detected, the same image is analyzed to determine hair and
shirt color. Region proposed as hair, X is the upper neighboring region of Z if A(X) /
A(Z) relation is greater than a threshold, hair is discarded and is considered that it is a
bald user.



122 Jose Maria Buades Rubio et al.

To analyze shirt, the following algorithm is applied. Initially, shirt region W is the
greatest region whose upper boundary is included in the boundary of Z (see Figure 1).
Afterwards, neighboring regions of  are joined until Z is connected with ¥; and ¥,
through W. A candidate region 7; chosen at every step i to be joined to W is in relation
with: color space distance between mean color of 7 and W, and distance in pixels
from Tto Y; and Y.

With this process, the system detects a user and obtains useful data for the tracking
system. In the following section some results are displayed.

- i ; : i 3 o @ e
7, T P 7
7, - 7, T, v o T, w
7,

Fig. 1. Shirt region detection. W region is the initial region classified as shirt. In each step the
algorithm merges a new region 7; until ¥ joins Z with Y; and ¥,

4 Results

All capture software has been implemented with the API designed by Microsoft for
Windows platform, this API called DirectShow permits the use of any camera (IEEE
1394, USB Web Cam, parallel port scanner, video file,...) as long as you have drivers
for Windows. Any kind of these input devices is programmed in a transparently and
independent hardware way, without the need to modify our application. This API has
been chosen with the intention to cover the highest number of end users at a low cost
without changing the capturing system.

We have implemented the above algorithm in C++. It has been tested in 320x240
resolutions (Figure 2) and 640x480 standard video resolution (Figure 3). We initialize
the multichannel segmentation algorithm with an initial segmentation wich is a grid of
size Ty x Ty on the image, usually we take T, = Ty = 1, 2 or 4. From this initial seg-
mentation, the algorithm determines a 2-normal segmentation for different values of
the scale parameters A, we increase from A = 2° to A = 2" following the merging crite-
rion described in (2) and the specifications of the algorithm described at the end of
section 2. The stopping criterion can be: if the last level A = 2" has been reached or if
there is just one region left or if the desired number of regions is reached. In our dis-
played experiments the stopping criterion is to achieve a fixed number of regions.
Then, we apply the algorithm described in section 3 where the selected parameters are
detailed: Skin range color in HLS ([0-10], [20-230], [62-255])

In the two sequences of pictures we can see in Green the boundaries of hair region.
The color Red is used for boundaries of hand and face regions, the centroid of these
regions is visualized with a solid red square. In Pink we display the upper-torso
boundary and finally we use Black and White for other regions detected for the seg-
mentation algorithm.

In the first sequence we take a 2x2 initial segmentation and the system runs at 5
frames/second in a P4 1.6GHz. We display several different initial positions and cloth
configuration; and we can see how the proposed method detects the interesting re-
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gions. In the second sequence, Figure 3, we display the same initial pose image and
the results obtained with different size of initial segmentation, from top to bottom we
use 1x1, 2x2, 4x4 respectively. Left column pictures are 320x240 and right ones are
640x480. In the first case, the system runs at 0.32 frames/second, 1.41 frames/sec and
6.70 frames/sec; and in the second 0.08 frames/second, 0.30 frames/sec and 0.82
frames/sec respectively.

5 Conclusions and Future Work

In this paper we have proposed a new system for user detecting for HCI that does not
use background substraction, therefore the system is robust to environment and illu-
mination changes. Moreover, it analyzes the user to determine parameters that will be
useful for a future tracking process. The region segmentation process based on the
Mumford-Shah algorithm adapted to multichannel images is sufficiently good and
beneficial for our aims. Besides, the process is carried out in real time. The software
implementation is efficient and OOP. The result of this process is the input of a
tracking and reconstruction of an intelligent human computer interaction system. It
remains as future work to do tracking of interesting body parts and to interpret
movements in order to carry out action recognition that the user is performing. At the
moment, we are working on particle filter tracking with a biomechanical model to re-
duce the search space solutions. Moreover, a stereo version is proposed to improve fi-
nal results. This paper is subsidized by the project IST-2001-32202 HUMODAN and
CICYT TIC2001-0931.
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Fig. 3. Some results obtained with different size of initial segmentation
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Abstract. We present a procedure for tracking a rigid object based
on a piecewise planar model, and show how it can be used to track
a human face. The tracking is performed using a single incremental SSD-
based tracker. The main feature of the approach presented is that it can
track a rigid set of arbitrarily small patches all of which could not be
individually tracked.

1 Introduction

Three-dimensional head tracking is a basic component in many applications of
computer vision. For instance, the construction of advanced computer interfaces
deals with problems such as the identification of head gestures, face expression
analysis or lip reading. It is also used in biometric applications, like face or
iris-based recognition, for which a stable location of the face is critical. Also,
for very low bit-rate communications, the MPEG-4 standard proposes the use
of animated artificial face models in a wide range of applications from virtual
videoconferencing to virtual actors. All these applications require a robust and
efficient (i.e. real-time or near real-time) head tracker with no markers on it.

Various techniques have been proposed in the literature for head tracking.
Some of them only track the 2D position of the face on the image plane [2, 5],
others model the face as a plane, which can be affinely or projectively [7, 3, 6]
tracked in 3D space. Finally, there is a third group of procedures which rely on
a 3D model of the face. These are based on individually tracking a set of salient
points [11], 2D image patches [8, 9, 12], or 3D surface-based head models [10].

Procedures based on individually tracking a set of features can be quite
unstable as each feature, individually, may not provide enough information to
be tracked. In order to cope with this problem some higher level process, like
a Kalman filter [9, 12] or a set motion restrictions propagated on a network of
features [8], are used to accumulate the information provided by the tracker of
each feature/patch in order to estimate the motion of the head. This problem
does not exist for methods which model the face with a single surface, but, on
the other hand, those based on a single-plane are not able to track the head
in presence of out-of-the-image plane rotations [7, 3, 6], whereas those which
are based on a more complex head model, for example a cylinder [10], need
computationally expensive warping algorithms.

F.J. Perales et al. (Eds.): IbPRIA 2003, LNCS 2652, pp. 126-133, 2003.
© Springer-Verlag Berlin Heidelberg 2003



Tracking Heads Using Piecewise Planar Models 127

In this paper we present a procedure for model-based head tracking. The
model is based on a set of image patches located in space with a known 3D
structure. Our approach differs from previous feature/patch-based trackers [3,
9, 12] in that we track all features using a single incremental tracker [7, 6].
In this way we integrate in a single tracker the low level information provided
by all patches in the image, enabling us to reliably track a set of arbitrarily
small patches, all of which could not be individually tracked. In section 2 we
briefly introduce the incremental image alignment paradigm. In section 3 we
build the tracker. Finally in sections 4 and 5 some experiments are presented
and conclusions drawn.

2 Incremental Image Registration

Let x represent the location of a point in an image and I(x,t) represent the
brightness value of that location in the image acquired at time t. Let R =
{X1,X2,...,Xx} be a set of N image points of the object to be tracked (target
region), whose brightness values are known in the first image of a sequence,
I(X, to)

Assuming that the brightness constancy assumption holds, then

I(x,to) = I(f(x, fir), t) Vx € R, (1)

where I(f(x, i), t) is the image acquired at time ¢ rectified with motion model
f and motion parameters g = fi;.

Tracking the object means recovering the motion parameter vector of the
target region for each image in the sequence. This can be achieved by minimising
the difference between the template and the rectified pixels of the target region
for every image in the sequence

min 3 [(£(x, 7). ) — I(x, o)) (2)

This minimisation problem has been traditionally solved linearly by computing
it incrementally while tracking. We can achieve this by making a Taylor series
expansion of (2) at (@, t) and computing the increment in the motion param-
eters between two time instants. Different solutions to this problem have been
proposed in the literature, depending on which term of equation (2) the Taylor
expansion is made on and how the motion parameters are updated [1].

If we update the model parameters of the first term in equation (2) using an
additive method, then the minimisation can be rewritten as [1, 4]

min [I(£(x, i + 0/i), t + 0t) — I(x,10)]%, (3)

where dfi represents the estimated increment in the motion parameters of the
target region between time instants ¢ and ¢ + Jt.
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— 0Offline computations:
1. Compute and store M(x,O0).
2. Compute and store Hj.
— On line computations:
. Warp I(z,t+ dt) to compute I(f(x,it),t+ dt).
Compute &(x,t+ dt).
From (4) compute 0fi.
. Update ,at+6t = /:Lt + 6,[7,

A~ W N

Fig.1. Outline of the incremental tracking algorithm

The solution to this linear minimisation problem can be approximated by [4]

op=—Hy' Y M(x,0) E(x,t + 6t), (4)
VxeER

where Hj is
Ho = Z M(XaO)TM(XaO)v
VxeER

E(x,t+ dt) is the error in the estimation of the motion of pixel x of the target
region
E(x,t+dt) = I(f(x, fir), t + ) — I(x,tg),

and M(x,0) is the Jacobian vector of pixel x with respect to the model param-
eters i at time instant ¢y (we will assume fi;, = 0). If f(x,0) = x, then M(x,0)
can be expressed as

= VoI (x,t0)" [M} =0

aI(f(Xv p“)v tO)
- — Of

M(x,0) = o
=0

where ViI(x,tp) is the template image gradient and %’;m is the Jacobian

vector of the motion model.

The Jacobian of pixel x with respect to the model parameters in the ref-
erence template, M(x,0), is a vector whose values are our a priori knowledge
about target structure, i.e. how the brightness value of each pixel in the ref-
erence template changes as the object moves infinitesimally. It represents the
information provided by each template pixel to the tracking process. Note that
when Ho = > cr M(x,0) "M(x, 0) is singular the motion parameters cannot
be recovered, this would be a generalisation of the so called aperture problem in
the estimation of optical flow.

The on-line computation performed by this tracking procedure is quite small
(see Fig. 1) and consists of a warping of N pixels, which can be made very
fast by conventional software o even by specialised hardware, a subtraction of
N pixels to compute £(x,t + 0t), the addition of N vectors multiplied by one
constant, and the multiplication of this result by the n x n matrix Ho ™', where
n = dim(f).



Tracking Heads Using Piecewise Planar Models 129

H,

S e

- - TN

K

Iy

Fig.2. Geometrical set up of the tracking process

3 The Tracker

In this section we will introduce the target region motion model, f, and show
how to compute the image Jacobian M(x, 0) with respect to the parameters of
the model.

3.1 Motion Model

Let {m;} be a set of N planar patches in 3D space, each one containing a target
region. Each patch, m;, of this set can be described by equation 7; = n/ P =1,
where n; = [a,b,c]" is a three-element vector containing the normal direction
to the plane 7;, and P = [X,Y, Z]T € 7; are the coordinates of a 3D point on
that plane expressed in the reference system of the scene, Oxyz. Each plane,
i, will have a reference template or high-resolution image of the target region,
I?, associated to it. At the initial time instant, we will assume that the reference
systems attached to the camera and scene are perfectly aligned.
The projection of a point on a planar patch P, onto image I; of the sequence
is given by
x;’ =KR;[I-tn] | Py, (5)
H;
where K is the camera intrinsics matrix, which is assumed to be known, I is the
3 x 3 identity matrix, R, t; represent the pose of the camera and x,° represents
the homogeneous coordinates of the pixel projection. As we are dealing with 3D



130 José M. Buenaposada et al.

points that are located on planes, their projection model is a 2D linear projective
transformation or homography, H;.

The motion model, f(x, fi), can be derived from (5) by considering the pro-
jection of 3D point P, onto Iy = I(xo,t0) and onto I; = I(xy,t)

x;’ = KRy[I—tn] | K 'xp’,

where, Ry(o,8,7) and  ti(ts,ty,t.) are the six  parameters,
o= (oz,ﬁ,fy,tm,ty,tz)T, of the motion model, which represent the pose
of the camera with respect the first image in the sequence. Note that, since our
scene is rigid, these motion parameters are common to all patches m; in the
model.

3.2 The Image Jacobian

In this subsection we will show how to compute the second element of our algo-
rithm, M(x, 0).

Due to partial occlusions, perspective effects or low resolution, the projection
of a target region onto Iy may not provide enough information to accurately
compute VyxI(x,%p). In this case we use the reference template to compute it,
through the following relation

OI; (gi(x, n»r [agm m} |

Vil (%,t0) lyxen; = [ og; ox

where g; is the warping function that transforms the projection of planar patch
m; in image Iy onto reference template I?, that is, Ip(x) = I'(gi(x, @) Vx € ;.
Finally, the Jacobian of the motion model with respect to the motion param-

eters is given by
of (x, i)

o

(6)

_[8f(x,u) 6f(x,u)}
o da ot |,

where, for example

) 00 0 _ 1
£ £
R g 100 -1] K-1xg: and W:—K 0| K xo.
o 01 0 e 0

4 Experiments

We have carried out three experiments to test the tracking algorithm here
presented, for each of which we have generated an image sequence (See videos
at:  http://www.dia.fi.upm.es/ lbaumela/FaceExpressionRecognition/
research.html). Sequences A and B were generated using pov-ray' (see Fig 3

L A free ray tracer software, http://www.povray.org
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Fig.3. Sequence A. First row: images 1, 100, 200 and 300 of the sequence. In
white thick lines is shown the motion estimated by our tracker. Second and third
rows: tracking parameters for sequence A. In solid line is shown the ground truth
data and in dash-dot line is shown the motion estimated by the tracker

and 4), in order to have ground truth data of the motion of our target. Sequence
C (see Fig. 5) was captured with a Sony VL-500 CCD colour camera with no
gain and no gamma correction.

In the first experiment we test the accuracy of our tracker. For this test
we have used sequence A (see Fig. 3), in which a cube located 4 meters away
from the camera translates along the X axis (¢, varies) and rotates around the
Z axis (y varies). As can be seen in Fig. 3 the parameters estimated with our
tracker coincide with the ground truth data. Note that as we are generating the
sequences with synthetic ligths and we are warping the textures over the planar
patches (with aliasing effects involved), the sequences are not noise free.

The second experiment compares the tracking procedure presented in this
paper with a traditional patch-based tracker in which each of the patches is
tracked individually. For this test we have generated sequence B (see Fig. 4)
which is identical to sequence A except that now the moving object is composed
of two planar patches with textures which individually do not provide enough
information for tracking. As shown in Fig. 4 the individual tracker diverges after
a few frames. This is caused by the ambiguity of the textures in the patches.

In the last experiment we test the performance of our tracker when following
a human face. For this test we use sequence C. As shown in Fig. 5, the tracker
accurately tracks the face even for moderate out-of-the-image plane rotations.
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Fig.4. Sequence B. First row: images 1, 100, 200 and 300 of the sequence. In
white thick lines is shown the motion estimated by our tracker. Second and third
rows: tracking parameters for the first 100 frames in sequence B. In solid line is
shown the ground truth data, with dashed line is shown the estimation of the
individual tracker, finally with dash-dot line is shown the motion estimated by
our tracker

These rotations could be even larger just by including patches taken from the
sides of the head.

5 Conclusions

We have presented a procedure for tracking a rigid object based on a set of
image patches. By integrating low level information in a single tracker we have
been able to reliably track in 3D a set of patches which individually could not
provide enough information. With this algorithm we could also track a face with
out-of-the-image plane rotations, even with a poor face model.

Another issue that should be addressed in the future is the speed of conver-
gence of the tracker. This is related to the approximation made to solve (3) and
to the dependencies (correlations) in the columns of the Hgp matrix, which are,
in turn, directly related to the ambiguities in the estimation of the tracking pa-
rameters and which may result in slow convergence, and eventually divergence,
of the tracker. Other open issues are the invariance to illumination changes and
to variation in the texture of the patches (e.g. variations in face appearance).
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Fig.5. Sequence C. Upper row: four images of the sequence. In white thick
lines is shown the location of each feature estimated by the tracker. Bottom row:
Estimated rotation parameters
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Abstract. In this communication, we propose the use of Support Vec-
tor Machines (SVM) for crop classification using hyperspectral images.
SVM are benchmarked to well-known neural networks such as multilayer
perceptrons (MLP), Radial Basis Functions (RBF) and Co-Active Neu-
ral Fuzzy Inference Systems (CANFIS). Models are analyzed in terms of
efficiency and robustness, which is tested according to their suitability
to real-time working conditions whenever a preprocessing stage is not
possible. This can be simulated by considering models with and without
a preprocessing stage. Four scenarios (128, 6, 3 and 2 bands) are thus
evaluated.

Several conclusions are drawn: (1) SVM yield better outcomes than neu-
ral networks; (2) training neural models is unfeasible when working with
high dimensional input spaces and (3) SVM perform similarly in the four
classification scenarios, which indicates that noisy bands are successfully
detected.

1 Introduction

The information contained in hyperspectral images allows the reconstruction of
the energy curve radiated by the terrestrial surface throughout the electromag-
netic spectrum. Hence, characterization, identification and classification of the
observed material from their spectral curve is an interesting possibility. Pattern
recognition methods have proven to be effective techniques in this kind of ap-
plications. In fact, classification of surface features in satellite imagery is one of
the most important applications of remote sensing. It is often difficult and time-
-consuming to develop classifiers by hand, so many researchers have turned to
techniques from the fields of statistics and machine learning to automatically gen-
erate classifiers [1-7]. Nevertheless, the main problem with supervised methods

* This research has been partially supported by the Information Society Technologies
(IST) programme of the European Community. The results of this work will be
applied in the “Smart Multispectral System for Commercial Applications” project
(SmartSpectra, www.smartspectra.com). All the data used were acquired in the
Scientific Analysis of the European Space Agency (ESA) Airborne Multi-Annual
Imaging Spectrometer Campaign DAISEX (Contract #15343/01/NL/MM).

F.J. Perales et al. (Eds.): IbPRIA 2003, LNCS 2652, pp. 134-141, 2003.
© Springer-Verlag Berlin Heidelberg 2003
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is that the learning process heavily depends on the quality of the training data
set and the input space dimensionality. Certainly, these are main issues to be ad-
dressed, given the high cost of true sample labelling, the high number of spectral
bands, and the high variability of the earth surface. In practice, a pre—processing
stage (feature selection/extraction) is time—consuming, scenario—dependent and
needs a priori knowledge.

Therefore, the last objective in such a scheme is to process the data in order
to extract valid, novel, potentially useful, and ultimately understandable struc-
ture in data, which constitutes a data mining approach [1]. In this context, we
propose the use of Support Vector Machines (SVM) [10] to develop crop cover
classifiers and to obtain a thematic map of the crops on the scene. SVM are not
affected by the curse of dimensionality and offer solutions with an explicit depen-
dence on the most informative patterns in the data. Previous works have shown
succesful classification performance of hyperspectral data [5, 11] but further work
must be carried out in order to study robustness in noisy situations (irrelevant
bands) and changing environments (several images). We compare SVM to other
well-known machine learning methods such as multilayer perceptrons (MLP),
Radial Basis Functions (RBF) [6] and Co-Active Neural Fuzzy Inference System
(CANFIS) [7]. Robustness and suitability to real-time working conditions are
evaluated by considering models with and without a preprocessing stage.

The paper is outlined as follows. In Section 2, data collection and the exper-
imental setup is presented. SVM are described in Section 3 and results shown in
Section 4. We end up with some conclusions and further work.

2 DMaterial and Experimental Setup

We have used six hyperspectral images acquired with the 128-bands HyMap spec-
trometer during the DAISEX-99 campaign (http://io.uv.es/projects/daisex/).
More information about the data collection, Hymap calibration and atmospheric
correction can be retrieved from [3, 4]. Six different classes were considered in the
area (corn, sugar beet, barley, wheat, alfalfa, and soil), which were labelled from
#1 to #6, respectively. In this sense, the task is referred to as a multiclassification
pattern recognition problem. However, we are not only interested in the accu-
racy provided by each method but also in their suitability to real-time working
conditions whenever a feature selection stage is not possible. This scenario is
simulated by considering models without a pre-processing stage and thus using
128 bands. In addition, previous work [3, 4] in feature selection yielded three
subsets of representative features (6, 3 and 2 bands), which induce three dif-
ferent pattern recognition problems, respectively. Two data sets (training and
validation sets) were built (150 samples/class each) and models were selected
using the cross-validation method. Finally, a test set consisting of the true map
on the scene over complete images was used as the final performance indicator.
In each one of the six images (700x670 pixels), the total number of test samples
is 327,336 (corn 31,269; sugar beet 11,322; barley 124,768; wheat 53,400; alfalfa
24,726; and bare soil 81,851) and the rest is considered unknown.
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Fig. 1. Diagram of the hyperspectral data classification process. A training data
set is extracted from the the six collected images and then a CART-based feature
selection stage yields three representative subsets (consisting of 6, 3 and 2 bands,
respectively) [4], which constitute three different pattern recognition problems,
respectively. An additional scenario considering the whole training data set (128
bands) incorporates. Four classifiers are thus implemented and tested in the six
whole images

Once the desired input-output mapping for training and validation are de-
fined, usually a feature selection stage is used to reduce dimension of the input
space. This can make the training process feasible and improve results by re-
moving noisy irrelevant bands. However, design and application of a dimension-
reduction techniques is time-consuming and scenario-dependent, which are evi-
dent problems to circumvent. In fact, we are not only interested in the classifica-
tion accuracy provided by each method but also in their suitability to real-time
working conditions whenever a feature selection stage is not possible. This sce-
nario is simulated by considering models with and without a feature selection
stage. The proposed learning scheme is shown in Fig. 1.

3 Support Vector Machines

Support Vector Machines have been recently proposed as a method for pattern
classification and nonlinear regression. Their appeal lies in their strong connec-
tion to the underlying statistical learning theory where an SVM is an approxi-
mate implementation of the method of structural risk minimization [10]. SVM
has many attractive features. For instance, the solution of the quadratic pro-
gramming (QP) problem [2] is globally optimized while with neural networks
the gradient based training algorithms only guarantee finding a local minima.
In addition, SVM can handle large feature spaces (specially convenient when
working with hyperspectral data), can effectively avoid overfitting by controlling
the margin and can automatically identify a small subset made up of informative
points, namely support vectors (SV). Consequently, they have been used for par-
ticle identification, face recognition, text categorization, time series prediction,
bioinformatics, texture classification, etc. Visit http://www.kernel-machines.org
for publications and application resources.

In the following, we summarize the “one-against-the-rest procedure” for clas-
sification purposes, in which, a classifier is obtained for each class. Given a labeled
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Fig. 2. Left: The Optimal Decision Hyperplane in a linearly separable problem.
Right: Linear decision hyperplanes in nonlinearly separable data can be handled
by including slack variables ;. Figures adapted from [9]

training data set ((x1,¥1), - - -, (Xn,Yn), where x; € R? and y; € {+1, —1}) and

a nonlinear mapping, ¢(-), usually to a higher dimensional space, R? e0) RH

(H > d), the SVM method solves:
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min {—IIWI|2+CZ£Z} (1)
w,&ib | 2 Z
subject to the following constraints:

yi(@" ()W +0) 21§ Vi=1,...,n )
§&=>0 Vi=1,...,n (3)

where w and b define a linear regressor in the feature space, nonlinear in the
input space unless ¢(x;) = x;. In addition, & and C' are, respectively, a positive
slack variable and the penalization applied to errors (Fig. 2). The parameter C'
can be regarded as a regularization parameter which affects the generalization
capabilities of the classifier and is selected by the user. A larger C' corresponds
to assigning a higher penalty to the training errors.

An SVM is trained to construct a hyperplane ¢” (x;)w + b = 0 for which the
margin of separation is maximized. Using the method of Lagrange multipliers,
this hyperplane can be represented as:

> amid(x) - $(x) =0 @)

where the auxiliary variables «; are Lagrange multipliers. Its solution reduces
to: Mazimize:

Li=) i % > aiajyiyd(xi) - ¢(x;) (5)
i i

subject to the constraints:

0<a; <C, (6)
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Zaiyi = 0 (7)

Using the Karush-Kuhn-Tucker Theorem, the solution is a linear combination
of training examples which lie closest to the decision boundary (the correspond-
ing multipliers are non-zero). Only these examples, affect the construction of
hyperplane.

The mapping ¢ is performed in accordance with Cover’s theorem which guar-
ranties that patterns, non-linearly transformed to a high—dimensionality space,
are linearly separable. Working with high dimension converted patterns would,
in principle, constitute an intractable problem but all the ¢ mappings used in
the SVM occur in the form of an inner product. Accordingly, the solution is to
replace all the occurrences of an inner product resulting from two mappings with
the kernel function K defined as:

K(xi,x5) = ¢(x;) - @(x;). (8)
Then, without considering the mapping ¢ explicitly, a non-linear SVM can be
constructed by selecting the proper kernel.

In order to solve problems with k classes we must reformulate the problem.
Given a classifier (w7,07), j € {0, ...,k — 1} for each class, to assign a sample x
to a certain k class we must calculate the output of the k classifiers and select
the one with the highest output. We then proceede as in the binary case. Full
details on the solution can be found in [8].

4 Classification Results

4.1 Training an SVM

Nonlinear classifiers are obtained by taking the dot product in kernel-generated
spaces. Some common kernels are the linear (K (x;,x;) = X; - X;), polynomial
(K(xi,x;) = (x;-x; +1)%), and Gaussian (RBF) (K (x;,x;) = e~ (xix;)* /0%y
Note that one or more free parameters must be previously settled in the nonlin-
ear kernels (polynomial degree d, Gaussian width o) together with the trade-off
parameter C, usually known as the penalization factor. Selection of the best sub-
set of free parameters are usually done by cross validation methods but this can
lead to poor generalization capabilities and lack of representation. We alleviate
this problem using the V-fold cross-validation method' with the training data
set.

Many discriminative methods, including neural networks and SVM, are often
more accurate and efficient when dealing with two classes only. For large number
of classes, higher-level multi-class methods utilize these two-class classification
methods as the basic building blocks, namely “one-against-the-rest” procedures.
However, such approaches lead to suboptimal solutions when dealing with multi-
class problems and to the well-known problem of the “false positives”. Therefore,
we have used a multi—classification scheme for all the methods.

! The 8-fold cross validation uses 7/8 of data for training and 1/8 for validation pur-
poses. This procedure is repeated eight times with different validation sets.
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Table 1. Average recognition rates (RR [%]) of the six images in training,
validation, and test sets for different models. The four subsets (128, 6, 3, 2 bands)
are evaluated (except for neural networks in which the computational burden
involved made training with 128 bands unfeasible), all of them containing 150
samples per class

METHOD FEAT. TRAIN VALID TEST

SVM128 Poly 100 98.78  95.53
SVMeé6 Poly 99.79 99.44  96.44
SVM3 RBF 91.22 91.00 85.16
SVM2 RBF 89.11 89.11  82.68

MLP6 6x5x6 99.33 99.44  94.53
MLP3 3x25x6 90.22 87.67  82.97
MLP2 2x27x6 88.00 85.67  81.95

RBF6 6x16x6 98.88 98.80  94.10
RBF3 3x31x6 88.20 87.00 81.44
RBF2 2x18x6 87.33 85.25 81.62

CANFIS6 6x2x7x6  98.68 96.66 94.22
CANFIS3 3x3x12x6 89.20 88.77  81.64
CANFIS2 2x8x15x6 86.33 86.00 81.82

4.2 Model Comparison

Table 1 shows the average recognition rate (RR[%]) of the six images in training,
validation, and test sets. In all cases, we considered equiprobable classes for
training and validation and thus no individual penalization parameter [8] in the
case of SVM or heuristic rule in neural networks were necessary. However, test
set contains highly unbalanced classes and thus, the latter practice could improve
results if the training process was intentionally driven by priors. However, this
would not be a fair assumption for our purposes, i.e. achiving an automatic
scenario-independent classifier.

Some conclusions can be drawn from Table 1. SVM performs better than
neural networks in all scenarios. Moreover, when a feature selection stage is not
possible (128 bands used), the computational burden involved in the training
process of neural networks make these methods unfeasible. Contrarily, SVM
are not affected by input dimension and presence of noisy bands. Additionally,
as the dimension of the input space is lower, neural networks degrade more
rapidly than SVM do. In that sense, complexity? of all models increases as the
input dimension decreases. In fact, RBF kernels and more than 15% of SVs are
strictly necessary to attain significant results with less than six bands. Despite

2 We evaluate model’s complexity in terms of the kernel used and the number of SV
in the SVM approach and in terms of the number of hidden neurons in the neural
networks.
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Fig.3. Left: HyMap RGB composition, Barrax, Spain. Right: Classification
of the whole scene yielded by the best SVM classifier

polynomial kernel has been claimed to be specially well-suited for hyperspectral
data classification [5], it has yielded similar results to the linear kernel in our
case (see next section for details). Finally, no numerical (RR<3%) or statistical
(k scores in the range [0.6,0.8]) differences are found between SVM with and
without a step for dimensionality reduction prior to classification. This indicates
that noisy bands have been successfully identified and their contribution to the
final decision attenuated without decreasing the recognition rate.

Table 2 shows the confusion matrix of the best SVM. High recognition rates
(RR[%]>90%) are achieved for all classes but SVM misclassify almost 6% of corn
(class #1) as bare soil (class £6). This is due to that corn is in an early stage of
maturity. Figure 3 shows the original and the classified samples for one of the
collected images.

Table 2. Confusion matrix and recognition rate [RR %] in each class yielded
by the best SVM classifier in the TEST set (whole scene)

Desired class Predicted class RR[%]
f1 12 £3 f4 £5 £6
Corn [Sugar beet|Barley|Wheat|Alfalfa| Soil
1, corn 31,188 67 7 1 0 6 99.74
#2, sugar beet| 23 11,256 43 0 0 0 99.42
13, barley 732 702 120,874 1993 18 449 || 96.88
4, wheat 12 108 320 | 52,956 4 0 99.17
5, alfalfa 28 106 140 36 24,413 3 98.73
6, soil 4914 1003 1539 190 15 |74,190|| 90.64
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5

Conclusion

In this communication, we have proposed the use of kernel methods for both
hyperspectral data classification. SVM have revealed very efficient in different
situations when a preprocessing stage is not possible. This method can tolerate
the presence of ambiguous patterns and features in the data set. Future work
will consider boosting methods and combined forecasters.

References

1]

2]

3]

[4]

[5]

[6]
[7]

8]

[9]

[10]

[11]

P. S. Bradley, U. M. Fayyad, and O. L. Mangasarian. Mathematical programming
for data mining: formulations and challenges. INFORMS Journal on Computing,
11(3):217-238, 1999. 135

R. Fletcher. Practical Methods of Optimization. John Wiley & Sons, Inc. 2nd
Edition, 1987. 136

L. Gémez, J. Calpe, J. D. Martin, E. Soria, E. Camps-Valls, and J. Moreno.
Semi-supervised method for crop classification using hyperspectral remote sens-
ing images. In Ist International Symposium. Recent Advantages in Quantitative
Remote Sensing., Torrent, Spain., Set 2002. 135

L. Gémez-Chova, J. Calpe, E. Soria, G. Camps-Valls, J. D. Martin, and J. Moreno.
CART-based feature selection of hyperspectral images for crop cover classification.
In IEEFE International Conference on Image Processing, 2003. 135, 136

J. A. Gualtieri and S. Chettri. Support vector machines for classification of hy-
perspectral data. In International Geoscience and Remote Sensing, 2000. 135,
140

S. Haykin. Neural Networks: A Comprehensive Foundation. Prentice Hall, 1999.
135

Jang Jyh-Shing Roger, Sun Chuen-Tsai, and Mizutani Eiji. Neuro—Fuzzy and
Soft-Computing. Prentice Hall, 1997. 135

Y. Lin, Y. Lee, and G. Wahba. Support Vector Machines for classification in non-
standard situations. Department of Statistics TR 1016, University of Wisconsin-
Madison, 2000. 138, 139

B. Scholkopf and A. Smola. Learning with Kernels — Support Vector Machines,
Regularization, Optimization and Beyond. MIT Press Series, 2001. Partially
available from http://www.learning-with-kernels.org. 137

V. N. Vapnik. Statistical Learning Theory. John Wiley & Sons, New York, 1998.
135, 136

J. Zhang, Y. Zhang, and T. Zhou. Classification of hyperspectral data using
support vector machine. In IEEE International Conference on Image Processing,
pages 882-885, 2001. 135



Vehicle License Plate Segmentation
in Natural Images*

Javier Cano and Juan-Carlos Pérez-Cortés

Instituto Tecnolégico de Informédtica, Universidad Politécnica de Valencia
Camino de Vera, s/n 46071 Valencia (SPAIN)
{jcano,jcperez}Qiti.upv.es

Abstract. A robust method for plate segmentation in a License Plate
Recognition (LPR) system is presented, designed to work in a wide
range of acquisition conditions, including unrestricted scene environ-
ments, light, perspective and camera-to-car distance. Although this novel
text-region segmentation technique has been applied to a very specific
problem, it is extensible to more general contexts, like difficult text seg-
mentation tasks dealing with natural images. Extensive experimentation
has been performed in order to estimate the best parameters for the task
at hand, and the results obtained are presented.

1 Introduction

Text-region segmentation has been largely studied over the last years, [9], [8], [7],
[2], [1], however, even today it remains an open field of work, interesting for many
different applications in which complex images are to be processed. Reasonable
advances have been actually achieved in the task of extracting text from some
kind of restricted images, as in the case of scanned documents, artificially edited
video, electronic boards, synthetic images, etc. In all of them, the text included
in the image has a number of ”a priori” defined properties (localisation, intensity,
homogeneity) that makes possible to tackle the segmentation task using filters,
morphology or connectivity based approximations.

Historically, the methods devised to solve the text segmentation problem
fall into one of two different branches: a morphology and/or connectivity ap-
proach, most useful for dealing with the kind of images previously described,
and a textural (statistical) approach that has been successfully used to find text
regions over non-restricted natural images. This is the problem that arises in the
segmentation phase of an LPR system, where images are composed of a great
variety of objects and affected by illumination and perspective variations. All
these variable environment conditions result in a complex scene, where text re-
gions are embedded within the scene and nearly impossible to identify by the
methods employed in the morphology approximation.

Thus, the task of text (license plate) segmentation in a LPR system is in-
cluded in the second category. Moreover, due the nature of images (as we will

* Work partially supported by the Spanish CICYT under grant TIC2000-1703-C0O3-01

F.J. Perales et al. (Eds.): IbPRIA 2003, LNCS 2652, pp. 142-149, 2003.
© Springer-Verlag Berlin Heidelberg 2003
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see in Section 2), it is also desirable to use a segmentation method capable of
generating various hypothesis for each image in order to prevent the loss of any
possible license plate region. In this way, it is possible to design a subsequent
recognition phase that filters the final results without discarding beforehand any
reasonable segmentation hypothesis.

The segmentation method proposed can be also useful for detecting any kind
of text regions in natural and complex images. However, since we are concerned
with a very particular task, all the parameters have been specifically adapted to
improve the detection of text regions which match the constraints imposed by
the shape and content of a typical vehicle license plate.

As it will be shown in the experiments section, very promising results have
been achieved for the segmentation phase, therefore the next step in the design of
a complete license plate recognition system requires further work on the design
of a complementary recognition phase able to take advantadge of the multiple
data (multiple hypothesis) provided by this segmentation.

The rest of the paper is organized as follows: Section 3 describes the data and
their acquisition conditions. In Section 2, the proposed methodology is presented.
Extensive experimentation and results are reported in Section 4, and finally, in
Section 5, some conclusions are given and future work is proposed.

2 Corpus

A number of experiments have been performed in order to evaluate the per-
formance of the novel segmentation technique. In other application areas, there
are typically one or more standard databases which are commonly used to test
different approaches to solve a specific task, and it is possible to compare re-
sults among them. This is not the case for our application, as far as we know,
perhaps because license plate segmentation in non-restricted images is a fairly
recent topic of interest in the pattern recognition community.

Therefore, we have used a locally acquired database. It is composed of 1307
color images of 640 x 480 pixels randomly divided into a test set of 131 and
a training set of 1176 images. The experiments were carried out using only the
gray-level information.

The scenes have been freely captured without any distance, perspective, il-
lumination, position, background or framing constraints, except that the plate
number has to be reasonably legible for a human observer. Several examples of
images in the database are shown in Figure 1. In applications such as parking
time control or police surveillance, the camera can be located in a vehicle and
the images captured may be similar to the ones in this database. In other appli-
cations, such as access control or traffic surveillance, cameras are typically fixed
in a place and thus the scene features (perspective, distance, background, etc.)
are easily predictable.

A specific preprocessing step has to be performed prior to the training and
test phases. This preprocessing task consists of a manual labelling, where each
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Fig.1. Four real example images from the test set. Different acquisition con-
ditions are shown, as illumination, perspective, distance, background, etc.

license plate is located in the image and a four-sided polygon corresponding to
the minimum inclusion box of the plate is defined and associated to that image.

3 Methodology

The aim of the segmentation phase is to obtain a rectangular window of a test
image that should include the license plate of a vehicle present in a given scene.
The task of detecting the skew and accurately finding the borders of the plate
is left for the next phase, as well as the recognition proper, which is beyond the
scope of this paper.

The method proposed for the automatic location of the license plate is based
on a supervised classifier trained on the features of the plates in the training set.
To reduce the computational load, a preselection of the candidate points that are
more likely to belong to the plate is performed. The original image is subject to
three operations. First, an histogram equalization is carried out to normalize the
illumination. Next, a Sobel filter is applied to the whole image to highlight non-
homogeneous areas. Finally, a simple threshold and a sub-sampling are applied
to select the subset of points of interest. The complete procedure is depicted in
Figure 2.
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Fig. 2. Test image preprocess example. Upper-left: Original image. Upper-right:
Equalization. Lower-left: Horizontal Sobel filter and Lower-right: Threshold bi-
narization

3.1 Multi-hypothesis Scheme

Ideally, one segmentation hypothesis per image should be enough to detect a sin-
gle vehicle plate, but because of the unrestricted nature of the images, it is pos-
sible that false positives appear when particular areas have features typically
found in a license plate, like signs, advertisements and many other similarly
textured regions. Therefore, it is important to save every hypothesis that can
represent a plate region and leave the decision of discarding wrong hypotheses
for the recognition phase, where all the details about the task are taken into
account.

There is an additional important reason to adopt a multi-hypothesis scheme.
Images have been acquired at different distances from the camera to the vehicle
and, as a result, different sizes of plates can be seen in the images. This variability
can be overcome using size-invariant features, including in the training set fea-
tures from images of various sizes or using a multi-resolution scheme producing
additional hypotheses. Informal tests have been performed that suggest that the
first two options give rise to less accurate models of the “license plate texture”
and thus lead to more false positives. For this reason, the third option has been
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Fig.3. Different hypothesis in a multi-resolution segmentation scheme. The
brighter points indicate pixels classified as “license plate”

chosen. In Figure 3, an example of this multi-hypothesis detection procedure is
shown.

3.2 Feature Vectors

A feature extraction technique that has proven its success in other image recogni-
tion tasks [3], [6] has been used in this case. It consists on using the gray values of
a small local window centered on each pixel and applying a PCA transformation
to reduce its dimensionality.

Each feature vector of the training set is labelled as belonging to one of
two classes: positive (pixel in a license plate region), or negative (any other
region). Obviously this gives rise to a huge set of negative samples, compared
to the relatively small set of vectors of the “plate” class. Many of the negative
samples can be very similar and add very little value to the “non-plate” class
representation if they come from common background areas such as car bodies,
buildings, etc.

To reduce the negative set, editing and condensing procedures can be prob-
ably used with good results, but we have applied a simpler and more efficient
method that can be regarded as a bootstrapping technique. The procedure starts
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up with no negative samples in the training set and then proceeds by iteratively
adding those training samples that are misclassified in each iteration. In the first
iteration, since the train set it is only composed by positive samples, the classifi-
cation relies on a threshold on the average distance of the k-nearest neighbours.

We have found that a more compact and accurate training set is built if
another distance threshold is used to limit the number of misclassified samples
included at each iteration.

3.3 Classification

A conventional statistical classifier based on the k nearest neighbours rule is
used to classify every pixel of a test image to obtain a pixel map where well-
differentiated groups of positive samples probably indicate the location of a li-
cense plate.

In order to achieve a reasonable speed, a combination of a “kd-tree” data
structure and an “approximate nearest neighbour” search technique have been
used. This data structure and search algorithm combination has been success-
fully used in other pattern recognition tasks, as in [7] and [1]. Moreover, the
“approximate” search algorithm provides us with a simple way to control the
tradeoff between speed and precision.

4 Experiments

The results of the proposed segmentation technique are highly dependent on
the classifier performance, which in turn depends on the use of a complete and
accurate training set. Several parameters in this regard have been varied in initial
tests.

In Figure 4, the segmentation results are shown for four iterations of the
bootstrap process. A clear improvement is found in the 3 first iterations, but
after that the results do not improve significantly. In this experiment, a window
size of 40 x 8 pixels and the training images scaled so as the plate has a similar
size, have been tested. Larger values of the window size proved to add little
classification improvement.

However, the most promising results have been obtained for a window size of
40 x 8 pixels and the training images scaled so as the plate is around three times
as large in each dimension, as suggest the results in Figure 5. In the experiments
reported in that figure, as receiver operating curves, the size of the window is
fixed to 40 x 8 pixels, while the normalized plate size ranges from 40 x 8 to
160 x 40.

The best tradeoff between segmentation accuracy and cost is probably for
a plate size of 100 x 25 pixels. Only slightly better results are found for higher
plate sizes.

All the results are given at the pixel level. A simple post-processing procedure
that isolates areas with a large number of pixels labelled as “license plate” with
the correct size has to be applied before the plate recognitions phase. The shape
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Fig. 4. Improvement of the classification performance in four bootstrap itera-
tions

of that area must also be taken into consideration to minimize the number of
false positives at the plate segmentation level.

5 Conclusions and Further Work

A robust text segmentation technique has been presented. This technique seems
to be able to cope with highly variable acquisition conditions (background, illu-
mination, perspective, camera-to-car distance, etc.) in a License Plate Recogni-
tions task.

From the experiments performed, it can be concluded that a good tradeoff
between segmentation accuracy and computation cost can be obtained for a plate
normalization size of 100x25 pixels and a local window of 40x8 pixels for the
feature vectors. In this conditions, a ratio of 0% False Positive Rate against
a 40% True Positive Rate can be obtained with the most restrictive confidence
threshold, that is, a 100% of classification reliability at the pixel level.

According to visual inspection of the whole set of 131 test images, the segmen-
tation system has correctly located all the plates but two. Due to the unrestricted
nature of the test set this can be considered a very promising result.

The computational resource demand of this segmentation technique is cur-
rently the main drawback, taking an average of 34 seconds the processing of
a single 640x480 image on a AMD Athlon PC, at 1.2GHz in the conditions of
the experiments reported. With some code and parameter optimizations, how-
ever, much shorter times, of only a few seconds are being already obtained in
our laboratory.
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Fig.5. Classification performance for a fixed local window size and a range
of plate normalizations. Only the results of the last bootstrap iteration are pre-
sented
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Abstract. This paper presents a vision-based localization approach for
an underwater robot in a structured environment. The system is based
on a coded pattern placed on the bottom of a water tank and an on-
board down-looking camera. Main features are, absolute and map-based
localization, landmark detection and tracking, and real-time computa-
tion (12.5 Hz). The proposed system provides three-dimensional posi-
tion and orientation of the vehicle. The paper details the codification
used in the pattern and the localization algorithm, which is illustrated
with some images. Finally, the paper shows results about the accuracy
of the system.

1 Introduction

The localization of an underwater robot is a big challenge. Techniques involving
inertial navigation systems, acoustic or optical sensors have been developed for
this purpose. However such techniques, which have been designed to be used
in unknown and unstructured environments, are inaccurate and have drift prob-
lems [3]. On the other hand, in structured environments the localization problem
can be drastically reduced allowing the experimentation with underwater robots
to be possible.

This papers proposes a vision-based localization system to estimate the posi-
tion and orientation of an underwater robot in a structured environment. Main
features of this system are absolute and map-based localization, landmark de-
tection and tracking, and real-time computation. The components of the system
are an onboard down-looking camera and a coded pattern placed on the bottom
of a water tank. The algorithm calculates the three-dimensional position and
orientation referred to the water tank coordinate system with a high accuracy
and drift-free.

The aim of the proposed localization system is to provide an accurate es-
timation of the position of URIS Autonomous Underwater Vehicle (AUV) in
the water tank, see Figure 1. The utility of this water tank is to experiment in
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a) b)

Fig.1. a) URIS’s experimental environment. b) Visually Coded pattern. The
absence of a dot identifies a global mark. The dots marked here with a circle are
used to find the orientation of the pattern

different research areas, like dynamics modelling or control architectures [1], in
which the position or velocity of the vehicle are usually required.

The rest of the paper details the localization system in depth. Section 2
describes the experimental setup, emphasizing the down-looking camera and
the visually coded pattern. In section 3, the algorithm phases are described and
illustrated. And finally, some results and conclusions are given in section 4.

2 Experimental Setup

The robot for which has been designed the localization system is URIS. Its hull is
composed of a stainless steel sphere with a diameter of 350mm. On the outside
of the sphere there are two video cameras (forward and down looking) and 4
thrusters (2 in X direction and 2 in Z direction). Experiments with URIS are
carried out in a water tank, see Figure 1,a. The shape of the tank is a cylinder
with 4.5 meters in diameter and 1.2 meters in height. The localization system is
composed by a coded pattern which covers the whole bottom of the tank and a
down-looking camera attached on URIS.

2.1 Down-Looking Camera Model

The camera used by the localization system is an analog B/W camera. It provides
a large underwater field of view (about 57° in width by 43° in height). The camera
model that has been used is the Faugeras-Toscani [2] algorithm in which only
a first order radial distortion has been considered. This model is based on the
projective geometry and relates a three-dimensional position in the space with
a two-dimensional position in the image, see Figure 2a. These are the equations
of the model:
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Fig.2. Down-Looking camera model: a) Camera projective geometry. b) Ac-
quired image in which the center of the dots has been marked with a round.
After correcting the radial distortion the center of the dots has changed to the
one marked with a cross
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where, (¢ X, Y,C Z) are the coordinates of a point in the space respect the
camera coordinate frame {C} and (z, ,y,) are the coordinates, measured in
pixels, of this point projected in the image plane. And, as intrinsic parameters
of the camera: (ug,vg) are the coordinates of the center of the image, (k,,k,) are
the scaling factors, f is the focal distance, ky is the first order term of the radial
distortion. Finally, r is the distance, in length units, between the projection of
the point and the center of the image.

The calibration of the intrinsic parameters of the camera was done off-line
using several representative images. In each of these images, a set of points
were detected and its correspondent global position was found. Applying the
Levenberg-Marquardt optimization algorithm, which is an iterative non-linear
fitting method, the intrinsic parameters were estimated. Using these parameters,
the radial distortion can be corrected, as it can be seen in Figure 2b. It can be
appreciated that the radial distortion influences in more degree the pixels that
are far from the center of the image (ug,vo).

2.2 Visually Coded Pattern

The main goal of the pattern is to provide a set of known global positions to
estimate, by solving the projective geometry, the position and orientation of
the underwater robot. The pattern is based on grey level colors and only round
shapes appear on it to simplify the landmark detection, see Figure 1,b. Each
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Fig.3. Features of the pattern, a) the main lines of the target and details
about the absolute marks are shown, b) the three orientation dots of a global
mark indicate the direction of the X and Y axis

one of these rounds or dots will become a global position used in the position
estimation. Only three colors appear on the pattern, white as background, and
grey or black in the dots. The dots have been distributed among the pattern
following the X and Y directions. All lines that are parallel to X and Y axis are
called the main lines of the pattern, see Figure 3a.

The pattern contains some global marks, which encode a unique global po-
sition. These marks are recognized by the absence of one dot surrounded by 8
dots. From the 8 dots that surround the missing one, 3 are used to find the
orientation of the pattern and 5 to encode the global position. The 3 dots which
mark the orientation, appear in all the global marks in the same position and
with the same colors. In Figure 3 a, these 3 dots are marked with the letter ”o”.
Also, in Figure 3 b it can be seen how depending on the position of these 3 dots,
the direction of the X and Y axis changes.

The global position is encoded in the binary color (grey or black) of the 5
remainder dots. Figure 3 a shows the position of these 5 dots and the methodol-
ogy in which the global position is encoded. The maximum number of positions
is 32. These global marks have been uniformly distributed on the pattern. A
total number of 37 global marks have been used, repeating 5 codes in opposite
positions on the pattern. In order to choose the distance between two neighbor
dots several aspects were taken into account, like: the velocities and oscillations
of the vehicle, the camera field of view and the range of depths in which the
vehicle can navigate. The distance between each two neighbor dots that was
finally chosen is 10 cm. The range of distances, between the center of the robot
and the pattern, that were used in the design are from 50 cm to 80 cm.

3 Localization Procedure

Each position estimation requires a set of sequential tasks. Next subsections
describe the phases that constitute the whole localization procedure.
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3.1 Pattern Detection

The first phase consists in detecting the dots of the pattern. Binarization is
first applied to the acquired image, see Figure 4a and 4b. Due to the non-
uniform sensitivity of the camera in its field of view, a correction of the pixel
grey level values is performed before binarization. This correction is based on
the illumination-reflectance model [4] and provides a robust binarization of the
pattern also under non-uniform lighting conditions.

Once the image is binarized, the algorithm finds the objects and checks the
area and shape of them, dismissing the ones that do not match the characteristics
of a dot object. Finally, for each detected dot, the algorithm classifies its grey
level labelling them in three groups: grey, black or unknown. In case the label is
unknown, the dot will be partially used in next phases, as Section 3.3 details.
Figure 4c shows the original image with some marks on the detected dots.

3.2 Dots Neighborhood

The next phase in the localization system consists in finding the neighborhood
relation among the detected dots. The first step is to compensate the radial
distortion that affects the position of the detected dots in the image plane. In
Figure 4d, the dots before distortion compensation are marked in black and,
after the compensation, in grey. The new position of the dots in the image is
based on the ideal projective geometry. This means that lines in the real world
appear as lines in the image. Using this property, and also by looking at relative
distances and angles, the main lines of the pattern are found. Figure 4d shows
the detected main lines of the pattern. To detect the main lines, at least 6 dots
must appear in the image.

Next step consists in finding the neighborhood of each dot. The algorithm
starts from a central dot, and goes over the others according to the direction of
the main lines. To assign the neighborhood of all the dots, a recursive algorithm
was developed which also uses distances and angles between dots. After assigning
all the dots, a network joining all neighbor dots can be drawn, see Figure 4e.

3.3 Dots Global Position

Two methodologies are used to identify the global position of the detected dots.
The first one is used when a global mark is detected, what means that, a missing
dot surrounded by 8 dots appears on the network and, any of them has the
unknown color label, see Figure 4e. In this case, the algorithm checks the three
orientation dots to find how the pattern is oriented. From the four possible
orientations, only one matches the three colors. After that, the algorithm checks
the five dots which encode a memorized global position. Then, starting from the
global mark, the system calculates the position of all the detected dots using the
dot neighborhood.

The second methodology is used when any global mark appears on the image,
or when there are dots of the global mark which have the color label unknown.
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d) e) f)
Fig.4. Phases of the localization system: a) acquired image, b) binarization,

¢) detection of the dots, d) main lines of the pattern, e) dots neighborhood, f)
estimated position and orientation

It consists on tracking the dots from one image to the next one. The dots that
appear in the same zone in two consecutive images are considered to be the
same, and therefore, the global position of the dot is transferred. The high speed
of the localization system, compared with the slow dynamics of the underwater
vehicle, assures the tracking performance. The algorithm distinguishes between
grey and black dots, improving the robustness on the tracking.

3.4 Position and Orientation Estimation

Having the global positions of all the detected dots, the localization of the robot
can be carried out. Equation 4 contains the homogeneous matrix which relates
the position of one point (X;,Y;, Z;) respect the camera coordinate system {C'},
with the position of the same point respect to the water tank coordinate sys-
tem {T'}. The parameters of this matrix are the position (¥ X, Y¢,T Z¢) and
orientation (711, ...,733) of the camera respect {T'}. The nine parameters of the
orientation depend only on the values of roll, pitch and yaw angles.

T T c
X ri1 T2 113~ Xc X

T T c
Y; T21 T22 T23 ~ YC Y;

T = T e} (4)
Zi T31 732 133 = ZC Z;

1 0 0 0 1 1
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For each dot 4, the position (7 X;,7Y;,T Z;) is known, as well as the ratios:

c c
X Yi
oz and oz, (5)

which are extracted from Equations 1 and 2. These ratios can be applied to
Equation 4 eliminating ¢ X; and ¢Y;. Also, ©Z; can be eliminated by using next
equation:

(X =" X))+ (i -"v)*+ "z =" 25 =
(X = X))+ (V=Y + (2 - zy)° (6)

in which the distance between two dots, ¢ and j, calculated respect {T} is

equal to the distance respect {C'}. Using Equation 6 together with 4 and 5
for dots 7 and j, an equation with only the camera position and orientation is
obtained. And repeating this operation for each couple of dots, a set of equations
is obtained from which an estimation of the position and orientation can be
performed. In particular, a two-phase algorithm has been applied. In the first
phase, T Z¢, roll and pitch are estimated using the non-linear fitting method
proposed by Levenberg-Marquardt. In the second phase, T X, TY¢ and yaw
are estimated using a linear least square technique. Finally, the position and
orientation calculated for the camera are recalculated for the vehicle. Figure 4f
shows the vehicle position in the water tank marked with a triangle. Also the
detected dots are marked on the pattern.

4 Results and Conclusions

The vision based localization system, that has been presented in this paper, of-
fers a very accurate estimation of the position and orientation of URIS inside the
water tank'. Main sources of error that affect the system are the imperfections
of the pattern, the simplification on the camera model, the intrinsic parameters
of the camera, the accuracy in detecting the centers of the dots and, the error
of least-square and Levenberg-Marquardt algorithms on its estimations. After
studying the nature of the source of errors, it has been assumed that the local-
ization system behaves as an aleatory process in which the mean of the estimates
coincides with the real position of the robot. It is important to note that the
system estimates the position knowing the global position of the dots seen by the
camera. In normal conditions, the tracking of dots and the detection of global
marks never fails, what means that there is not drift in the estimates. By normal
conditions we mean, when the water and bottom of the pool are clean, and there
is indirect light of the Sun.

To find out the standard deviation of the estimates, the robot has been placed
in 5 different locations. In each location, the robot was completely static and
a set of 2000 samples was taken. Normalizing the mean of each set to zero and

! Some videos showing the performance of the system can be seen at:
http://eia.udg.es/~marcc/research
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Fig.5. Histogram of the estimated position and orientation

grouping all the samples, a histogram can be plotted, see Figure 5. From this
data set, the standard deviation was calculated obtaining these values: 0.006[m]
in X and Y, 0.003[m] in Z, 0.2[°] in roll, 0.5[°] in pitch and 0.2[°] in yaw.

The only drawback of the system is the pattern detection when direct light
of the Sun causes shadows to appear in the image. In this case, the algorithm
fails in detecting the dots. Any software improvement to have a robust system
in front of shadows would increase the computational time, and the frequency of
the algorithm would be too slow. However, the algorithm is able to detect these
kind of situations, and the vehicle is stopped. The system is fully integrated on
the vehicle’s controller, giving new measures 12.5 times per second. Due to the
high accuracy of the system, other measures like the heading from a compass
sensor, or the depth from a pressure sensor, are not needed.
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Abstract. Humans are interested in the knowledge of honeybee pollen
composition, which depends on the local flora surrounding the beehive,
due to their nutritional value and therapeutical benefits. Currently,
pollen composition is manually determined by an expert palynologist
counting the proportion of pollen types analyzing the pollen of the hive
with an optical microscopy. This procedure is tedious and expensive for
its systematic application. We present an automatic methodology to
discriminate pollen loads of various genus based on texture classification.
The method consists of three steps: after selection non-blurred regions
of interest (ROIs) in the original image, a texture feature vector for each
ROI is calculated, which is used to discriminate between pollen types.
An statistical evaluation of the algorithm is provided and discussed.

Keywords: Image analysis, Texture classification, Blurring, Pollen
loads, Honeybee pollen

1 Introduction

Humans use products coming from the hive such as honey, royal jelly or api-
cultural pollen for different purposes. Despite of their nutritional value as nu-
tritional complement for humans, they are appreciated for their therapeutical
characteristics. Hence, they are recommended to treat many human complaints.
Nowadays, honeybee pollen is sold in health food shops, supermarkets or food
superstores. Their consumption in Spain and other countries is relatively recent,
but in the last years it has been become economically very important.
Corbicula pollen is the essential feeding for the hive. The worker bees collect
the pollen in the flower, form small balls, stick them to the corbiculas of their
back legs and carry them to the hive. The pollen loads collected come from plants
placed in the surrounding of the hive. So, the local flora surrounding the beehive
influences the palynological composition of pollen loads. The presence of a spe-
cific combination of pollen types in a sample indicates its geographical origin.
As a result, analyzing the proporcional representation of different pollen types

F.J. Perales et al. (Eds.): IbPRIA 2003, LNCS 2652, pp. 158-167, 2003.
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allows the characterization of pollen from different areas. The current method to
determine the floral origin is analyzing the pollen by an optical microscopy and
then counting the number of pollen of vegetal species [3]. This procedure is te-
dious and requires expert personal. Industries are interested in the development
of methodologies, which can systematically be applied on a chain of production,
to classify pollen loads.

Investigations of the composition of pollen loads collected by honeybee have
demonstrated [15] that bees forms pollen loads with monospecific pollen grains,
i.e. pollen grains of only one plant specie. Each pollen plant has special physical
characteristics such as colour, size, shape, texture, etc [4]. In particular, texture
has qualitatively been described by some authors using stereoscopic microscope
as thick, medium and thin texture [9], [8]. Differences in visual texture of pollen
loads are due to the microtexture associated to pollen grain of each vegetable
specie, which is related to the structure of its exine and the nature of pollenkit
that covers it. So, pollen loads texture must be characteristic of each plant specie.

Our attempts are to design a methodology to characterize honeybee pollen
marked in the northwestern of Iberian Peninsula (Galicia). In a preliminary
work, [1], we have tested the performance of well-known texture classification
features to discriminate Rubus and Cytisus pollen loads. The sensitivity reached
was 78%. Unfortunately, when increasing the number of specie plants, system
performance decreases until it is no useful for pollen load classification. Improve-
ments of the methodology are presented. Results to discriminate pollen loads of
the five most common specie plants of the northwestern Iberian Peninsula (Gali-
cia) [14] (Rubus, Cytisus, Castanea, Quercus and Raphanus) are provided and
discussed.

The paper have been organized as follows: section 2 presents a briefly descrip-
tion of previous research developed for this application. The proposed method is
described in section 3. The results and discussion are included in section 4 and
conclusions are provided in the last section.

2 Previous Research

In an initial work [1], we have tested a method to discriminate between Rubus and
Cytisus genus. It is composed of the stages shown in figure 1. Images acquisition
of pollen loads is carried out using the infrastructure of Biology Lab (a Nikon
SMZ800 magnifying glass connected to a general purpose digital camera Nikon
Coolpix E950). Afterwards, images are transferred to the PC by a serial cable.
Curbicula pollen are digitized at spatial resolution of 480 point per mm, yielding
an image of 1600 x 1200 pixels. Figure 2 shows images of every genus.

The pre-processing stage transforms the digital data into a suitable form to
the next stage. As it can be observed in figure 2, pollen images are blurring in
some parts due to corbicula pollen is not flat over the acquisition area. Then, the
pre-processing step tries to extract non-blurring regions of interest (ROIs) in the
original image. A texture feature extractor computes image properties on those
ROIs that will be used for pollen load classification. First-order and second-order
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Fig.1. The basic stages involved in the system operation
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Fig.2. Digital images of Cytisus (a), Castanea (b), Quercus (c), Rubus (d),

Raphanus (e) pollen loads of the hive of Lobios and Castanea (f) pollen load of
the hive of Viana

statistical features or wavelet packet signatures was used to discriminate between
Rubus and Cytisus genus [1]. In particular, the following texture feature vectors
were tested [1]: Haralick’s coefficients (HC) (7 features) [0], [7], Grey Level
Run Length Statistics (GLRLS) (5 features) [17], [16], Neighboring Gray Level
Dependence Statistics (NGLDS) (5 features) [16], First-order statistics (FOS)
(11 measures) [19], and energy and entropy features computed for three levels
of decomposed wavelet packets (feature vectors WE and WH respectively with
12 features) [12], [10] using Daubechies wavelet of filter length 20 (Dgg) [2].

The classifier uses these features to assign the pollen load to a specific plant
genus. A minimum distance classifier was used.
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3 Methods

As we have mentioned above, pollen images present random burred areas. Added
to this fact, image grey level shade (visual appearance of pollen loads) can be
influenced by many factors such as humidity, dried treatment, etc [4]. This fact
can be observed comparing pollen loads coming from hives of different places
(see images b and f of figure 2 for genus Castanea).

Our previous methodology consisted of three steps: ROIs extraction, texture
feature generation and classification. The overall performance of the system may
be improved redesigning some steps of this scheme and/or adding some one. In
particular, we propose to normalize images before processing and we present
some approaches to improve non-blurring ROI selection and to compute texture
features. These approaches are described in the following subsections.

3.1 Image Normalization

The collection process of honeybee pollen and/or the geographical place of col-
lection have an effect in the final appearance of grey level intensities of the final
image. Nevertheless, palynologists believe that spatial structure of image is re-
tained. This fact lead us to define a technique for image normalization that avoids
the influence of this external conditions without biasing its spatial properties.
The normalization process is inspired by the methods used to remove the effect
of varying illumination environments [18]. Let f(z,y) be the original image of
size N x M and let u and E are respectively the mean and energy of f(x,y)
given by

D IED =g S ()’ 0

The normalized image is computed by

_ Sy —p

3.2 Non-blurring ROIs Selection

The non-flat surface of pollen loads cause degradations on some parts of images.
We are not interested in restoring that images but also in selecting non-degraded
regions of interest (ROIs), which will be used for the pollen load texture classifica-
tion. In spite of the methods proposed to image restoration in the literature [17],
there is no measures to find non-degraded areas. These degradations look like
smoothed or blurred areas, which present properties like smoother edges, lower
entropy or lower spatial frequencies. We define the following three measures to
quantify the level of blurring in a ROI, which can be respectively fallen into the
categories of statistical, edge-based and filtering approaches:
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a b C

Fig. 3. ROIs extracted from an image of Castanea pollen load using the measure
(a)Fourth Statistical Moment, (b)Edge Strength and (c)High Frequency

4SM: Fourth Statistical moment, which is a measure of histogram sharpness,
has been satisfactory used in a previous work [1].

Edge Strength (ES): we define the edge strength as the mean value of an edge
map, which is computed applying an edge operator to the original image (we
use Sobel operator). ES will be higher when the image presents many sharp
edges, i.e. images are less blurred.

High Frequency (HF): a discrete wavelet transform is based on the pyrami-
dal algorithm which splits the image spectrum into four spatial frequency
bands I, lh, hl and hh (I means low and h means high) [12]. Each filtering
is followed by a down-sampling by a factor of two which finally yields the
four octave subbands. This procedure is repeatedly applied to each result-
ing low-frequency band resulting in a multiresolution decomposition. We use
Daubechies family bases to define filters [2]. For each resolution 4, only the
wavelet coefficients hh; (highs/highs) matrix were retained and these are
relocated into a final matrix HH (with the same dimensions as the original
image) given by:

n
HH =" ¢(hhi) (3)

i=1
where n is the maximum depth of the pyramidal algorithm (we assume n = 3)
and ¢(.) is a matrix operation which returns an up-sampled copy of the input
matrix hh;. HF, which is a measure of the strength of high frequencies over
every scale, is computed taking the mean value of HH. HF will be higher

when the image presents sharp and lots of edges.

The method works as follows: images are sweeping out left to right and top to
down and it is taken overlapping regions of N x N pixels (a shifting of 150 pixels
is used and N is fixed to 256 pixels). Next, the mentioned measures are computed
on every ROIs of an image and a set of ROIs, which have the highest values of
the measures (4SM, ES and HF), are chosen. Figure 3 shows an example of the
ROIs selected by each measure, where overlays of the boundary of regions are
overlapped to the original image.
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3.3 Texture Features Generation

Second-order statistics features exploit the spatial dependencies that character-
ize the texture of an image. Alternative possibilities to extract texture-related
spatial dependencies is applying Local Linear Transformations (LLT) to an im-
age. The first-order statistics of the transformed image encode texture proper-
ties. Laws [11], [17] suggests the following three basic convolution vectors: V4 =
[1,2,1], Vg = [-1,0,1] and Vg = [—1,2, —1] for kernel size, L = 3. The first one
corresponds to a local averaging operator, the second one to an edge detection
operator and the third one to a spot detector. Calculating their cross-products
(one each other) yield nine 2-D linear and shift-invariant (LSI) filters.

If we consider V4, Vg and Vg as elementary vectors, higher dimensional
vectors can be easily built from the elementary masks. Convolving these vectors
with themselves and each other, one-dimensional vectors of the following order
(B, L =5) results:

BY =V;xV;  i,j=AFE,S (4)

Convolution of these vectors Béj with each elementary vectors (Va, Vg
and Vg) yields the next order vectors (Br, L = T7), and so on. In all cases,
mutual multiplication of these vectors (B}) for each order L, considering the
first term as a column vector and the second one as a row vector, yields 2-D
masks of size L x L.

What statistics and what neighbourhood (L) are suitable for solving our
texture discrimination problem is a critical decision. It is basically due to the
lack of intuitive understanding that humans have about texture parameters. This
implies that many texture features are suggested in the literature and the only
way to choose the best one for a specific application will be by experimental
testing.

We compute for each image the following first order statistics: variance
(p2), 3" (us) and 4" (ju4) central moments, energy (ms) and entropy (Ent.).
Several texture feature vectors, LLT(L), are computed as a function of filtering
neighbourhood (L = 3,5,7,...).

3.4 Classification

Once textural feature are computed, the next issue is how to assign each query
case to a pre-established class (in our case, Rubus, Cytisus, Castanea, Quercus
and Raphanus genus). Minimum distance classifier is the simplest one in the
literature [5]. Let M be the number of classes, L the number of corbicula pollens
and J the number of regions of interest extracted from each corbicula pollen. Lets
also 27 = [211, 212, ..., Tijn] be the feature vector of n elements that identifies
uniquely the ROI j of image [. The metric used to measure the similarity between
a query case and the mean class prototypes is the Mahalanobis distance to each
class i, D;, defined as:

D = (afy —m)" 27 oy —my) i=1,..,M (5)
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where Y is the covariance matrix in the training set and m; is the mean class
prototype for each class i. Prototype class is calculated taking the mean vector
on the training set. We assume the same covariance matrix for all classes. The
training set is performed using L —1 pollen loads and the test is carried out using
the excluded one (leave-one-image-out approach). If this is correctly classified
a hit is counted. This is repeated L times, each excluding a different pollen load.
The class of excluded one is derived by majority voting among the set of J ROIs
extracted from each pollen load image. The percentage of correct classified pollen
loads give us the sensibility of the system.

Some of texture features may have meaningless classification capabilities or
do not improve overall system performance or even decrease it. In a previous
work [1], we have tested different approaches to reduce or select the optimal
features. They fall into three categories: global approaches (principal compo-
nent analysis), scalar aproaches (maximum individual sensitivity) and vector
approaches. Vector feature selectors have reported the best results. These ap-
proaches measure the capabilities of feature vectors (or subsets of the set of
available features). We use the Floating Search Method (FSM) proposed by
Pudil et al. [13]. FSM searches subsets of k elements out of the n available
features (k < n). We assume k as the maximum between n and 20 features. The
main drawback of FSM method is that it can drop in cicles. In this case, the
algorithm is stopped.

4 Results and Discussion

System performance is tested using a dataset of 200 pollen loads collected in
two places (Viana and Lobios). There are 40 pollen loads of each genus stud-
ied: Rubus, Cytisus, Castanea, Quercus and Raphanus. Of these 40 samples, 20
come from Viana and 20 from Lobios. Afterwards, 5 non-blurring 256 x 256
ROIs are extracted using the measures presented in section 3.2 from both the
original image and the normalized image (see section 3.1). This procedure yields
6 possibilities (shown as columns in table 1) to extract the ROIs from each
orignal image. It is very difficult to separately asses the performance of ROIs
extraction process and the only way to quantify it is through the global sys-
tem performance for pollen genus discrimination. Next, for each ROI, various
texture feature vectors are compute. In this study, we test three filtering neig-
bourhoods (L = 3, 5, 7) (see section 3.3). So, there are five features by filtered
image times 9, 25 and 36 masks result respectively in LLT(3)=45, LLT(5)=125
and LLT(7)=180 features. Results are also compared with those obtained using
the texture features mentioned in section 2. Results are summarized in Table 1.
The main conclusions derived from table 1 are:

— Texture features based on local linear transformations (LLT) achieve nor-
mally higher sensitivities of the system than other texture features in all
cases. The highest sensibility reached is 73%.
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Table 1. Percentage of correct pollen loads classification

ROIs selection
Original image Normalized image
Texture features| N | 4SM ES HF|4SM ES  HF
FOS 11| 57 52 53| 46 53 33
HC 7| 55 52 40| 48 47 45
NGLDS 5| 47 47 38| 51 46 39
GLRLS 5| 48 42 36| 52 51 40
SF 28| 65 65 59| 62 64 53
WE 12| 55 63 49| 44 56 36
WH 12| 55 61 43| 47 45 45
LLT(3) 45| 65 72 55| 57 64 50
LLT(5) 125 65 73 60| 64 66 51
LLT(7) 180 67 73 57| 66 67 54

N: Number of texture features
SF: union of FOS, HC, NGLDS and GLRLS

— Edge strength (ES) measure to extract the ROIs always provides better per-
formance than other ones for every texture features or image pre-processing
(original or normalized image).

— We believed that the normalization of images before processing must improve
system performance. The experimental test led us to the contrary result.
That may be due to this normalization process destroys partially structural
properties of image, decreassing their capabilities to texture discrimination.

Confusion matrices help us to exactly determine how is system behavior in
relation to both different pollen types and geographical locations of beehives.
Table 2 shows the confusion matrix to the best method in table 1 (marked in
bold type). Items in this table represent percentage of correct and error pollen
loads classification of the observed class (class provided by the classifier) in
relation to the expected class (true or actual classes). The percentage of correct
pollen load classification provided by the system for every genus and every hive
is quite uniform. Partial sensitivities range from 65% to 100% except to the
Cytisus pollen of the hive of Viana.

5 Conclusion

A novel methodology to determine the genus of pollen loads using digital im-
ages taken by a magnifying glass is presented. It consists of four steps: image
normalization, non-blurring ROIs extraction, texture feature generation, feature
selection and classification. The highest sensibility reached to discriminate the
five most common plants in the northwestern of Iberian Peninsula is 73%. It
is achieved combining the measure of edge strength to extract ROIs with the
texture filtering features. System behavior is quite uniform for every class.
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Table 2. Confusion matrix of the combination that provides the highest sen-
sitivity in table 1 (73%). Sucesses are in bold type and errors are in normal

type

Actual Class
Predicted class| Cytisus Rubus Castanea Quercus Raphanus

L v|L VIL VvV |[L V |L V
Cytisus 65 4510 155 0 (0 O | O 0
Rubus 35 45|8085|15 0 |5 5 |0 5
Castanea 0 5|0 0|60 80 (15 0 | O 0
Quercus 0 0|10 015 10 |70 65| 0 20
Raphanus 0 5|0 05 10 |10 30 |100 75

L and V mean respectively the hive of Lobios and Viana

The approach described is generic and flexible and it could be useful to other
texture classification problems.
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Abstract. Previous work has shown that a simple recurrent neural model called
RECONTRA is able to successfully approach simple text-to-text Machine
Translation tasks in limited semantic domains. In order to deal with tasks of
medium or large vocabularies, distributed representations of the lexicons are
required in this translator. This paper shows a method for automatically ex-
tracting these distributed representations from perceptrons with output context.

1 Introduction

A simple neural translator called RECONTRA (REcurrent CONnectionist TRAnsla-
tor) has recently shown to successfully approach simple text-to-text limited-domain
Machine Translation (MT) tasks [3]. In this approach the vocabularies involved in the
translations can be represented according to (simple and clear) local codifications.
However, in order to deal with large vocabularies, local representations would lead to
networks with an excessive number of connections to be trained in a reasonable time.
Consequently, distributed representations of both source and target vocabularies are
required, as this type of codification can help to reduce the size of the networks. In
previous experiments with RECONTRA [2][3], the distributed codifications adopted
were hand-made and were not compact representations.

This paper focuses on how to automatically create adequate and compact distrib-
uted codifications for the vocabularies in the RECONTRA translator. The method
presented in the paper approaches the problem through a multilayer perceptron (MP)
in which output delays are included in order to take into account the context of the
words to be coded.

The rest of the paper is organized as follows: Section 2 describes the connectionist
architectures employed to infer the lexicons representations and to translate the lan-
guages, as well as the procedures used to train them, and the method used to extract
the translations. Section 3 presents the tasks to be approached in the experimentation
and Section 4 reports the translation performances obtained. Finally, Section 5 dis-
cusses the conclusions of the experimental process.

* Partially supported by the Spanish Fundacién Bancaja, project P1-1B2002-1.

F.J. Perales et al. (Eds.): IbPRIA 2003, LNCS 2652, pp. 168-175, 2003.
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2 The RECONTRA Translator and the Codification Generator

2.1 Network Architectures

The neural topology of the RECONTRA translator is a simple Elman network [8] in
which time delays are included in the input layer, in order to reinforce the information
about past and future events. Figure 1 illustrates this connectionist architecture.

OUTPUT UNITS
""""""""""" HIDDEN UNITS

| conTEXT UNITS | | le] lq| INPUT UNITS |

Fig. 1. Elman simple recurrent network with delayed inputs

In order to automatically obtain the lexicons representations for the RECONTRA
translator, several neural techniques can be employed. It could be convenient to ob-
tain representations with similar codifications for words which have similar syntactic
and/or semantic contexts. Taking this into account there are several possible methods
using artificial neural networks, as Elman networks [4] [7], RAAM (Recursive
AutoAssociative Memory) machines [10] [6] or FGREP (Forming Global Represen-
tations with Extended backPropagation) [9].

The method adopted in this paper to encode the vocabularies uses a MP to produce
the same output as the input (a word of the vocabulary to be encoded). The MP has as
many input and output units as the number of words in the vocabulary, since we use a
local codification of the vocabulary. When the MP is trained enough, the activations
of the hidden units have developed its own representations of the input/output words
and can be considered the codifications of the words in the vocabulary. Consequently,
the size of the (unique) hidden layer of the MP determines the size of the distributed
codifications obtained.

In order to take into account the context in which a word appears, the correspond-
ing previous and following words in a sentence are also shown at the output of the
MP. In addition, the importance of the input word over its context can be made equal,
decreased or increased. When the emphasis is placed on the context of the input
word, each output window includes one instance of the input word as well as one
instance of the previous and following words in its context. According to this, the
format of an output window of size 5 for an input word x is x-2 x-1 x x+1 x+2, where
x-2, x-1 are the two previous words in its context and x+/, x+2, the two following
words. On the other hand, when the emphasis in the codification process is (equated
or) on the input word over its context, such input word is repeated several times at the
output window.

2.2 Training Procedure

The MP encoder was trained to produce the same output word (and its context) as the
word presented at the input layer. To this end, an on-line version of the Backward-
Error propagation (BEP) algorithm [11] was employed.
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In the RECONTRA translator, the words of every input sentence were presented
sequentially at the input layer of the net, while the model should provide the succes-
sive words of the corresponding translated sentence, until the end of such output
sentence (identified by a special word) was recognized. The model was trained
through an on-line and truncated version of the BEP algorithm mentioned above [11].
With regard to the translated message provided by RECONTRA, the net continuously
generated (at each time cycle) output activations, that were interpreted by assuming
that the net supplied the output word for which the pre-established codification in the
target lexicon was nearest (using the Euclidean distance) to the corresponding output
activations.

For the training of both the MP and the RECONTRA, the choice of the learning
rate and momentum was carried out inside the bidimensional space which they de-
fined, by analyzing the residual mean squared error of a network trained for 10 ran-
dom presentations of the complete learning corpus (10 epochs). Training continued
for the learning rate and momentum that led to the lowest mean squared error over the
learning corpus. The learning process stopped after a certain number of epochs (1000
epochs for the encoder and 500 for the translator). A sigmoid function (0,1) was as-
sumed as the non-linear function. Context activations of RECONTRA were initial-
ized to 0.5 at the beginning of every input-output pair of sentences.

3 The Experimental Machine Translation Tasks

3.1 The MLA-MT Task

The first task chosen for testing the encoder described in the previous section was an
extension of a simple pseudo-natural task called Miniature Language Adquisition
Machine Translation (MLA-MT) task [5]. This task consisted in translating (from
Spanish into English and vice versa) descriptions of simple visual scenes as well as
removals of objects to or from a scene. Since many of the sentences are worded by
using the passive voice, the degree of asynchrony between the Spanish and the corre-
sponding English sentence is substantial. The sizes of the vocabularies involved in
the original MLA-MT task were slightly increased for our experimentation, leading to
50 Spanish words and 38 English words. The medium sizes of the Spanish and Eng-
lish sentences were 16 and 15 words, respectively. Figure 2 shows one example of
this task.

Spanish: se elimina el circulo grande que esta encima del cuadrado y del tridangulo claro
English: the large circle which is above the square and the light triangle is removed

Fig. 2. A pair of sentences from the MLA-MT task
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3.2 The Traveller Task

The second task chosen in this paper was a subset of the Traveller MT task de-
signed in the EuTrans project [1] which had larger vocabularies than the above task.
The medium size of the sentences in Spanish is 8.6 and 8 for the English sentences.
The task approaches typical situations of a Traveller at the reception of a hotel in a
country whose language he/she does not speak. The subtask includes (Spanish to
English) sentences in which the Traveller notifies his/her departure, asks for the bill,
asks and complains about the bill and asks for his/her luggage to be moved. The sub-
task has 132 different Spanish words, and 82 English words. Both vocabularies in-
clude the categories $DATE and $HOUR which respectively represent generic dates
and hours. Some examples of this subtask are shown in Figure 3.

Spanish: ;Esta incluido el recibo del teléfono en la factura?
English: Is the phone bill included in the bill?

Spanish: Me voy a ir el dia SDATE a $HOUR de la maiiana .
English: I am leaving on $DATE at $HOUR in the morning .

Fig. 3. Pairs of sentences from the Traveller task

4. Experimental Results

First, the MLA-MT task was approached using automatic codifications for the Span-
ish vocabulary provided by MPs in which the emphasis was placed on the context of
the input word; the codifications of the English vocabulary was manually derived
from the automatic Spanish ones. The experiment was repeated by using codifications
in which the emphasis was equated or put on the input word to be encoded over its
context. Later, the Traveller task was tackled adopting for the codifications of the
Spanish vocabulary the kind of MPs which led to the best performances in the previ-
ous experiments. In a subsequent experiment, both Spanish and English codifications
were automatically obtained. All these experiments were done using the Stuttgart
Neural Network Simulator [12].

4.1 Training and Test Corpora

The corpora adopted in the translation tasks were sets of text-to-text pairs which
consisted of a sentence in the source language and the corresponding sentence in the
target language. For the MLA-MT task, a learning sample of 3,000 pairs was adopted
to train the RECONTRA translators. The learned models were evaluated later on a
different test set of 2,000 sentences. For the Traveller translation task a learning set of
5000 pairs of sentences and a test set of 1000 sentences were adopted.

The corpora used for the training of the MP encoders were sets of text-to-text
pairs, each of them consisting of an input word and the same input word together with
its context (the preceding and following words in a sentence) as output. All pairs
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were extracted from sentences which appeared in the training corpus employed for
the translation task. All the repeated pairs extracted from the translation corpus ap-
peared only once in the training set of the MP. If the context was zero, there were as
many training pairs as words in the vocabulary, and as the context size increased, the
number of pairs did too. There were no test corpora for the codification process; it
was indirectly evaluated later in the translation process.

4.2 Features of the Networks

The MP for encoding the Spanish vocabulary in the ALM-MT task had a single hid-
den layer of 10 units (lower number of hidden neurons were also tried although they
led to worse translation rates). An input word and several output words (1, 3, 4, 5, 6
or 8 words) were presented to the network using local codifications of 50 units for
each one. If there was no right or left context of the input word, empty words were
used instead.

The number of hidden units used in the above encoders (10 units) determined the
size of the input and output layer of the RECONTRA translator to approach the
ALM-MT task. In addition, 140 hidden units and an input window of 14 delayed
words (with 6 words for the left context and 7 words for the right context) were
adopted, since previous results obtained to approach this task with this architecture
[2] led to adequate translation rates.

With regard to the features of the networks for tackling the Traveller task, previous
experiments [3] showed that 50 and 37 units were adequate to (manually) encode the
words of the Spanish and English vocabularies, respectively. In order to go further, in
the experiments reported in this paper we tried to automatically encode both vocabu-
laries with 25 units. Consequently, a MP with 132 inputs and 132 outputs (according
to a local representation of the vocabulary), 25 hidden units and several (4, 6 or 8)
output word delays was adopted for the Spanish vocabulary; a MP with 82 inputs, 82
outputs, 25 hidden neurons and 8 output delays was considered for the English vo-
cabulary.

Due to the size of these encoders, the RECONTRA model used for approaching
the Traveller MT task was a network with 25 input units and 25 outputs. In addition,
taking previous experiments on this task [3] as a reference, the translator had 140
hidden neurons and a window of 6 delayed inputs (with 2 words for the left context
and 3 words for the right context).

4.3 Results for the ALM-MT Task with One Instance of the Input Word
into the Output of the MP Encoder

The first step in our approach to the ALM task was to obtain adequate codifica-
tions for the vocabularies. To this end, MPs with the features described in the previ-
ous section and with different output window sizes were trained. Each output window
included one instance of the input word as well as one instance of the previous and
following words in the context in which it appears. The codifications (of size 10)
were then extracted from the learned MPs and used for representing the words in the
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RECONTRA translator described above. The translators were later trained using the
learning corpus of the translation task. The resulting learned networks were finally
evaluated on the test corpora.

Table 1 shows the test sentence accuracy translation rates obtained. The results of
two experiments using manual binary codifications are also included. One of them
includes knowledge about parts of speech (gender and number) introduced by a hu-
man expert, and the other one corresponds to a random codification. The results of
the table reveal that very poor translation performance rates were achieved with the
codifications provided by the encoders.

Table 1. Test translation rates for the ALM-MT task using codifications provided by a MP
with one instance of the input word into the output and using two manual codifications

MP Encoder Accuracy Rates
| Output window|  Output window format Word Sentence
1 X 50.40 0.30
3 x-1 x x+1 86.90 20.70
5 x-2 x-1 x x+1 x+2 83.26 10.60
Hand-made codifications 96.39 78.40
Random codifications 80.50 21.60

4.4 Results for the ALM-MT Task with Several Instances of the Input Word
into the Output of the MP

The previous experiments were repeated, but this time the importance of the input
word over its context was made equal or increased in the codification process.

Table 2 shows the test translation rates obtained. These results show that transla-
tion accuracies were considerably increased and were only slightly lower than those
obtained using human knowledge.

Table 2. Test translation rates for the ALM-MT task using codifications provided by a MP
with several instances of the input word into the output

MP Encoder Accuracy Rates
| Output window| Output window format Word Sentence
4 x-1 x x x+1 93.66 61.80
6 x-1 XX X x x+1 95.21 72.70
8 Xx-2 X-1 X X X X X+1 x+2 96.06 74.40
8 X-1 XXX XXX x+t1 94.46 70.30

4.5 Results for the Traveller Task

Taking into account the results achieved in the two previous sections, the Traveller
task was approached using MPs in which several instances of the input word were
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presented at the output. Different MPs (described in Section 4.2) were trained and
codifications (of size 25) were extracted for the Spanish and English vocabulary. In a
first experiment, only the codifications obtained for the Spanish words were used.
The codifications for the English vocabulary were manually derived from them (as in
the experiments presented in the two previous sections). The RECONTRA translators
with the features proposed in Section 4.2 for this task were trained and evaluated
later. Table 3 shows the test accuracy translation rates obtained as well as the results
of an experiment with (binary) manual codifications of the vocabularies.

Table 3. Test translation rates for the Traveller task using manual and automatic codifications
for the Spanish vocabulary

MP Encoder Accuracy Rates
| Output window| Output window format Word Sentence
4 x-1 x x x+1 99.48 97.30
6 X-1 X X X x x+1 99.30 97.70
8 x-2 Xx-1 X X X X X+1 x+2 99.39 96.30
8 X-1 XXX XXX X+t1 99.49 97.10
Hand-made codifications 99.72 98.40

In a second experiment, both the Spanish and the English codifications which were
automatically obtained from the MPs were used to train RECONTRA translators.
These translators had the same features as those adopted in the previous experiment.
Table 4 shows the test translation rates achieved. Very good rates (near to those ob-
tained using manual codifications) were achieved; indeed using MPs to encode the
English and Spanish lexicons the results seemed to be slightly better than those ob-
tained using only automatic codifications for Spanish.

Table 4. Test translation rates for the Traveller task using automatic codifications for the
Spanish and English vocabularies

MP Encoder Accuracy Rates
| Output window| Output window format Word Sentence
4 x-1 x x x+1 99.64 98.00
6 x-1 XX X x x+1 99.59 97.70
8 x-2 X-1 X X X X X+1 x+2 99.54 97.60
8 X-1 XX XXX X x+t1 99.51 96.70

5 Conclusions and Future Work

This paper proposes a method for automatically creating distributed codifications of
the lexicons involved in a text-to-text MT task to be approached by the RECON-TRA
translator. The method extracts such codifications of the hidden layer of a MP with
output delays and the translation accuracies achieved are quite encouraging.
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The results in this paper open an important area to be studied in the future: how to
determine the size of the resulting codifications; algorithms for prunning the hidden
neurons in the MP could be adopted for this subject. Further studies on the format of
the output context of the MP encoder should be carried out. Finally, more complex
text-to-text M T tasks with larger vocabularies will be approached.
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Abstract

Facial image processing is becoming widespread in human-computer applica-
tions, despite its complexity. High-level processes such as face recognition or
gender determination rely on low-level routines that must effectively detect and
normalize the faces that appear in the input image. In this paper, a face detec-
tion and normalization system is described. The approach taken is based on a
cascade of fast, weak clasifiers that together try to determine whether a frontal
face is present in the image. The system is also able to obtain the position of
facial features, such as mouth and eyes, and it operates in real-time. Compre-
hensive experiments carried out with real video sequences show that the system
is faster than other approaches and effective in detecting frontal faces.

Keywords: computer vision, face detection, facial analysis, face recognition.

1 Introduction

Faces are the center of human-human communication, and have been object of
analysis for centuries. It is evident, that the face conveys to humans such a wealth
of social signals, and humans are expert at reading them. They tell us who is
the person in front of us or help us to guess features that are interesting for
social interaction such as gender, age, expression and more. That ability allows
us to react differently with a person based on the information extracted visually
from his/her face. For these and other reasons, computer-based facial analysis is
becoming widespread, covering applications such as identity recognition, gender
determination, facial expression detection, etc.

This work focus on real time face detection. Face detection must be a neces-
sary preprocessing step in any automatic face recognition [1] or face expression
analysis system [2]. However, the face detection problem commonly has not been
considered in depth, being treated as a previous step in a more categorical sys-
tem. Thus, many face recognition systems in the literature assume that a face has
already been detected before performing the matching with the learned models
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[1]. This is evidenced by the fact that face detection surveys are very recent in
the Computer Vision community [4,10].

The standard face detection problem given an arbitrary image can be defined
as: to determine any face -if any- in the image returning the location and extent
of each [4,10]. The whole procedure must perform in a robust manner for illu-
mination, scale and orientation changes in the subject. It should be noticed that
trying to build a system as robust as possible, i.e., detecting any possible facial
pose at any size and under any condition, seems to be an extremely hard and cer-
tainly not trivial problem. As an example, a surveillance system can not expect
that people show their faces clearly. Such a system must work continuously and
should keep on looking at the person until he or she offers a good opportunity
for the system to get a frontal view, or make use of multimodal information with
an extended focus. Thus, robustness is a main aspect that must be taken into
account, by any system.

Face detection methods can be classified according to different criteria, and
certainly some methods overlap different categories under any classification [4,10].
In this paper, these techniques are classified into two main families according to
the information used to model faces:

Pattern based (Implicit): These approaches work mainly on still gray images.
They work searching a pattern at every position of the input image, applying
the same procedure to the whole image.

— Knowledge based (Explicit): These approaches reduce processing costs tak-
ing into account face knowledge explicitly, exploiting and combining cues
such as color, motion, face and facial features geometry, facial features ap-
pearance and temporal coherence for sequences.

The system presented here can be related to both categories, as it makes use
of both implicit and explicit knowledge. The paper is organized as follows: in
Section 2 the proposed system is described, in Section 3 results of experiments
carried out with it are analyzed. Finally, in Section 4 the main conclusions of
the work are outlined, as well as directions for future research.

2 The ENCARA system

Some facts have been considered during the development of the ENCARA face
detection system. They can be summarized as follows:

1. ENCARA is designed to detect frontal faces in video streams. ENCARA
is developed for providing fast performance in human-computer interaction
applications where just soft recognition would be necessary.

2. ENCARA makes use only of visual information provided by a single camera.
Its performance must be good enough using standard webcams.

3. ENCARA makes use of explicit and implicit knowledge.

4. ENCARA is based on a cascade hypothesis/verification classification schema.
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Figure 1. ENCARA general modules

5. Finally, the system is open to integrate new modules or modify the existing
ones. This feature allows the system to incorporate improvements.

The process launches an initial face hypothesis on selected areas in the im-
age. These areas present some kind of evidence that make them valid to assume
that hypothesis. Later, the problem is tackled making use of multiple simple tech-
niques applied opportunistically in a cascade approach in order to confirm /reject
the initial frontal face hypothesis. In the first case, the module results are passed
to the following module. In the second, the area is rejected. Those techniques
are combined and coordinated with temporal information extracted from a video
stream to improve performance. They are based on contextual knowledge about
face geometry, appearance and temporal coherence.

ENCARA is described in terms of the main modules described in Figure 1.
For each module the literature offers many valid techniques but in this imple-
mentation, the attention was paid to process at frame rate. The process is as
follows:

1. Tracking (M0): ENCARA processes a video stream, if there was a recent
frontal face detection, the system tries first to track facial features instead
of detecting them again. If any of these tests is passed, the candidate is
accepted as frontal. In any other case, the process continues.

(a) Last eye and mouth search: The last detected patterns are searched in
new frames.

(b) Test with previous: If the tracked positions are similar to the one in
previous frame, ENCARA applies the appearance test.
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Figure 2. Example of resulting blob after neck elimination.

Majority test: If the test with the previous frame is not passed, an ex-
tra test is performed to check if most patterns corresponding to facial
features have not been lost and are located close to the previous position.

2. Face Candidate Selection, M1: The following steps are carried out to select
areas of interest:

(a)

Color Blob Detection: Once the normalized red and green [9] image has
been calculated, a simple schema based on defining a rectangular discrim-
ination area on that color space is employed for skin color classification.
Dilation is applied to the resulting blob image using a 3 x 3 element.

3. Facial Features Detection, M2: ENCARA searches facial features:

(a)

(b)
(c)

(d)

Ellipse Approzimation: Major blobs detected as skin are fitted to a gen-
eral ellipse using the technique described in [8] that returns the area,
orientation and axis lengths of the ellipse in pixel units.

Refusing Ellipses: Before going further, some face candidates are rejected
based on the dimensions of the ellipse detected and the axis.

Rotation: For this problem, it has been considered that a face can be
rotated from its vertical position no more than 90 degrees, i.e., the hair
is always over the chin. The orientation obtained from the ellipse fitted
is employed for rotating the source image in order to get a face image
where both eyes should lie on a horizontal line.

Neck Elimination: The quality of ellipse fitting mechanism is critical for
the procedure. Clothes and hair styles affect the shape of the blob. If all
these pixels that are not face such as neck and shoulders are not avoided,
the rest of the process will be influenced by a bad estimation of the face
area. This blob shape uncertainty will later affect the determination of
possible positions for facial features, with higher risks of error.

For eliminating the neck the system takes into account a range of possible
ratios among the long and short axis of a face blob. On this range, the
search is refined for the current subject. First, it is considered that most
people present a narrower row in skin blob at neck level. Thus, starting
from the ellipse center, the blob widest row is searched. Finally, the
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narrowest blob row, that should be upper to the widest row, is located.
A new ellipse is approximated to the cropped blob, see Figure 2.
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(e) Eyes Detection: At this point, the candidate has been rotated and cropped.
As faces present geometric relations for features positions, the system
searches each eye as a gray minimum in specific areas that have a coher-
ent position for a frontal face. The search for each eye is bounded also
by integrating integral projections. Each hemiface integral projection de-
fines the upper y boundary of the search area, trying to avoid eyebrows.
The minimal intereyes distance accepted in current version is 30 pixels.

(f) Too Close Eyes Test: If eyes detected using gray minima are too close
in relation to ellipse dimensions, the closest one to ellipse center is re-
fused. The search area x’s is modified avoiding the subarea where it was
detected previously, searching the eye again.

(g) Geometric tests: Some tests are applied to gray level detected eyes:

i. Horizontal test: Resulting eye candidates in transformed image should
lie almost on a horizontal line if the ellipse orientation was correctly
estimated. Using a threshold adapted to ellipse dimensions, candi-
date eyes that are too far from an horizontal line are refused.

ii. Intereye distance test: Eyes should be at a certain distance coherent
with ellipse dimension.

iii. Lateral test: Face position is considered lateral if the distance from
eyes to the closest border of the ellipse differs considerably.
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4. Normalization, M3: A candidate set that verifies all the previous require-
ments is scaled and translated to fit a standard position and size (59 x 65).
Finally, this normalized image is masked using an ellipse defined by means
of normalized eye positions.

5. Pattern Matching Confirmation, MJ: The appearance of the normalized im-
age is tested in two steps.

(a) Eye appearance test: A certain area (11 x11) around both eyes in the nor-
malized image is projected to a PCA eigenspace and reconstructed. The
reconstruction error [3] provides a measure of its eye appearance, and
could be used to identify uncorrect eye detections. The PCA eigenspace
was built off-line using eyes marked manually from three different indi-
viduals.

(b) Face appearance test: A final appearance test applied to the whole nor-
malized image in order to reduce false positives makes use of a Haar
based operator [6].

For candidate areas that have reached this point, the system determines that

they are frontal faces. Then some actions are taken:

(a) Between eyes location: The middle position between the eyes is com-
puted.

(b) Mouth detection: Once eyes have been detected, the mouth, i.e. a dark
area, is searched down the eyes line according to intereyes distance. The
located mouth position is accepted only if it fits the prototypical distance
of the face from the eyes line.

(c) Nose detection: Between eyes and mouth, ENCARA searches for another
dark area using gray values for detecting nostrils. From nostrils upwards
the brightest point found is selected as the nose.

3 Experimental results

In order to carry out empirical studies of the system, different video streams
were acquired and recorded using a standard webcam (320 x 240 pixels) at 15
Hz during 30 seconds. These sequences, labelled S1-S11, were acquired on differ-
ent days without special illumination restrictions. The sequences, of 7 different
subjects, cover different gender, face sizes and hair styles. Ground data were
manually marked for each frame in all sequences for eyes and mouth center in
any pose. This gives 11 x 450 = 4950 images manually marked. All the frames
contain one individual but the pose is not restricted.

ENCARA performance is compared both with humans and a face detec-
tor system. On the one hand, the system is compared with manually marked or
ground data providing a measure of facial features detection accuracy in terms of
human precision. Whenever ENCARA detects a face, it provides eye positions.
These returned positions are compared with the manually marked. A correct
face detection is considered when for both eyes the distance to ground data or
manually marked eyes is lower than a threshold that depends on the actual dis-
tance between the eyes, ground data inter eyes distance/8. This threshold
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is more restrictive than the one presented in [5] where the threshold established
is twice the one presented here. Therefore, even if a face is roughly detected but
its eyes are not correctly localized, this face detection will be considered incor-
rect. On the other hand, an excellent and widely used automatic face detector
for frontal and profile faces [7] has been applied on these images.

The results achieved with both face detectors are provided in Figure 3. Top
graph shows for all the sequences, S1-S11, the detected faces and correct de-
tected faces for both approaches. Bottom graph indicates the rates for correctly
detected eye pairs according to two different criteria as described above. For each
sequence, the first two bars are referred to Rowley-Kanade’s approach, while the
last two to ENCARA performance. The polylines plotted present the average
processing time in milliseconds using the standard C clock() function in a PIII
1Ghz for both approaches.

According to this Figure, ENCARA performs for the worst case, S10, 16.5
times and in the best case, S4, 39.8 faster than Rowley-Kanade’s technique.
Calculating the average excluding the best and the worst times gives and average
of 22 times faster than Rowley’s technique. However, the face detection rate is
worst for ENCARA except for S3, S4 and S7.

This performance for ENCARA is accompanied by a correct eye pairs loca-
tion rate according to Jesorsky’s criterium greater than 97.5% (except for S5
which is 89.7%). This rate is generally better than the one provided by Rowley’s
technique, this fact can be explained due to this technique does not provide eye
detections for every face detected.

For most sequences Rowley’s technique detects more faces, however that
difference is reduced if the comparison is carried out with the number of faces
detected with both eye positions. Previous Figure reflects a performance for
ENCARA that detects an average of 84% of the faces detected using Rowley-
Kanade’s technique but 22 times faster using standard acquisition and processing
hardware. ENCARA provides also the added value of detecting facial features
for each detected face.

4 Conclusions and future work

The current system implementation presents promising results in desktop scenar-
ios providing frontal face detection and facial features localization data valid to
be used by face processing techniques. The main goal established in the require-
ments of the system was real time processing. The final experiments present
a rate of 20-25 Hz for the image sizes used in the experiments, using a PIII
1Ghz. Its performance is much faster but still not so reliable in comparison with
Rowley-Kanade’s technique. This rates are reached thanks to the combination
of different fast techniques such as skin color detection and tracking. The sys-
tem has been designed to be updated and improved according to ideas and/or
techniques that could be integrated.

The development of a real time robust face detector system is a hard task.
There are many different aspects that can be considered to improve ENCARA
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performance. Future work will necessarily pay attention to increasing color detec-
tion performance and adaptability. Current version depends on a first detection
based on color which can be affected by illumination conditions and the exis-
tence of skin color in the background. In those situations the system avoids false
detections thanks to the use of the appearance confirmation step.
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Abstract. The design of new medical drugs is a very complex process
in which combinatorial chemistry techniques are used. For this reason,
it is very useful to have tools to predict and to discriminate the pharma-
cological activity of a given molecular compound so that the laboratory
experiments can be directed to those molecule groups in which there is
a high probability of finding new compounds with the desired properties.
This work presents an application of Artificial Neural Networks to the
problem of discriminating and predicting pharmacological characteristics
of a molecular compound from its topological properties. A large amount
of different configurations are tested, yielding very good performances.

1 Introduction

The design of new medical drugs possessing desired chemical properties is a chal-
lenging problem in the pharmaceutical industry. The traditional approach for
formulating new compounds requires the designer to test a very large number of
molecular compounds, to select them in a blind way, and to look for the desired
pharmacological property. Therefore, it is very useful to have tools to predict
and to discriminate the pharmacological activity of a given molecular compound
so that the laboratory experiments can be directed to those molecular groups
in which there is a high probability of finding new compounds with the desired
properties.

The tools that have been developed for this purpose are based on finding the
relationship between a molecule’s chemical structure and its properties. Given
that the properties of a molecule come from its structure, the way the molecular
structure is represented has special relevance. In this work, the molecular struc-
ture is described by a reduced set of 62 topological indices. This paper describes
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a nefiural network based approach for solving the problem of activity prediction
and discrimination based on the structural representation of the molecule.

Two discrimination problems and two prediction problems are studied, us-
ing multilayer perceptrons to discriminate/predict. A large amount of different
configurations are tested, yielding to very good performances.

2 The Molecular Representation

The chosen set of molecular descriptors should adequately capture the phenom-
ena underlying the properties of the compound. It is also important for these
descriptors to be obtained without a lot of computational effort since they have
to be computed for every molecule whose property needs to be predicted or
discriminated.

The molecular topology is an alternative to the methods based on the “exact”
description of the electronic attributes of a molecule calculated by mechanical-
quantum methods. These molecular descriptors, which are based on graph the-
ory, allow us to describe a molecule as a set of quantized numerical indices and it
requires a lower calculation effort than other methods. They consider molecular
structure as planar graphs where atoms are represented by vertices and chemical
bonds are represented by edges. The topological indices have information about
the number and kind of bonds that exist between the atoms as well as other

structural attributes (size, branching factor, cycles, etc.) [1, 2, 3]. Searching for
the set of indices which best adjust to this problem is a very complex task.
In this work, a set of 62 indices has been selected [4, 5]. Fourteen of these

indices are related to the molecular attributes of the compound; for example, the
total number of atoms of a certain element (carbon, nitrogen, oxygen, sulphur,
fluorine, chlorine, ...), the total number of bonds of a certain type (simple,
double or triple), the number of atoms with a specific vertex degree, distance
between the bonds, etc. ..

The remaining forty-eight topological indices include different topological
information, such as the number of double bonds at distance 1 or 2, and the
minimum distance between pairs of atoms, which are counted as the number
of bonds between atoms. These indices are classified into six groups which are
associated to the most frequent elements that constitute the molecules with
pharmacological activity: nitrogen, oxygen, sulphur, fluorine, chlorine, bromine,
and a general group in which the distances between pairs of atoms are considered
without identifying the type of atom.

As an example, the set of topological indices of a chemical compound so
well-known as the acetylsalicylic acid (aspirin) is shown in Figure 1.

3 Activity Discrimination and Prediction Problems

The case studies are of interest in the field of medicine. Two discrimination prob-
lems and two prediction problems were studied using the topological descriptors
of the molecules explained above.
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Fig.1. Top. Molecular structure of the acetylsalicylic acid (aspirin). The
hydrogen-suppressed graph is shown, in which every unlabeled vertex repre-
sents a carbon atom and every double edge represents a double bond. Bot-
tom. The set of topological indices: 9 carbon atoms, 4 oxygen atoms, 8 simple
bonds, 5 double bonds, 4/5/4 atoms with a vertex degree equal to one, two and
three, respectively, 4 double bonds at distance one, 2 double bonds at distance
two, 5/10/8/11/7/7 atoms with a distance of one/two/three/four/five/six from
the oxygen atoms, 13/17/16/15/11/6 atoms with a distance of one/two/three/
four /five/six between them (Null values are skipped.)

3.1 Activity Discrimination Problems

The properties studied were analgesic and antidiabetic discrimination. The ob-
jective was to train a classifier and evaluate it.

— Analgesic discrimination problem. The purpose of this experiment was to
determine whether a molecule has analgesic activity or not. A dataset of 985
samples with potential pharmacological activity was used.

— Antidiabetic discrimination problem. In this case, we wanted to determine
whether a molecule presents antidiabetic activity. A dataset of 343 samples
was used.

3.2 Activity Prediction Problems

The properties considered were antibacterial activity and solubility. The objec-
tive of the case studies was to implement a predictor and evaluate its perfor-
mance.

— Antibacterial activity prediction problem. We wanted to predict the minimum
inhibitory concentration of antibacterial activity. A dataset of 111 samples
was used.

— Solubility prediction problem. In this case, we were interested in predicting
the solubility capability of the molecules. A dataset of 92 samples was used.
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Table 1. Datasets for the experimentation. For the activity discrimination prob-
lems, the active and inactive molecule percentages for each dataset are indicated
in parenthesis

Number of samples

Problem Active Inactive Total
Activity Analgesic 172 (17.5%) 813 (82.5%) 985
discrimination  Antidiabetic 180 (52.5%) 163 (47.5%) 343
Activity Antibacterial 111
prediction Solubility 92

3.3 Leaving-One-Out

The datasets for the four problems are shown in Table 1. In order to obtain
statistically significant results, four different partitions (composed of 25% of
the data) of each database were done for the final experiments. The partitions
were performed randomly, taking into account that the percentages of active and
inactive samples were homogeneous for the datasets of the activity discrimination
problems.

The final experiments for each problem entailed four runs, using the Leaving-
One-Out scheme [0]: training the neural model with the data of three partitions
(out of this data, one partition was selected for validation) and testing with the
data of the other partition. Therefore, the classification rates of the test sets
reported in Section 5 are the average result of the four runs of each experiment.

4 Artificial Neural Networks for Structure-Activity
Relationship Modeling

Classification of complex data has been addressed by various statistical and ma-
chine learning techniques. Although these methodologies have been successfully
applied in a variety of domains, there are some classification tasks, particularly
in medicine or chemistry, which require a more powerful, yet flexible and robust
technique to cope with extra demands concerning limited datasets and complex-
ity of interpretation. In this context, the use of artificial neural networks becomes
an excellent alternative.

We used multilayer perceptrons (MLPs) for structure-activity discrimination
and prediction. The number of input units was fixed by the number of topological
descriptors of the molecules (62 topological indices). The input data of each
dataset was discretized by dividing by the maximum value of all the indices.

There was only one output unit corresponding to the property being dis-
criminated or predicted. The data for the activity discrimination problems were
labeled with 1, —1, or 0: a value of 1 indicates that the molecule has pharmaco-
logical activity, a value of —1 indicates that the molecule is inactive, and a value
of 0 indicates undetermined activity. Therefore, we use the hyperbolic tangent
function, defined in the interval [—1, 1], as the activation function.
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Table 2. MLP topologies and learning algorithms studied

Topology: One hidden layer: 2, 4, 8, 16, 32, 64
Two hidden layers: 2-2, 4-4, 8-8, 16-16, 32-32, 64-64
Training algorithm: Backpropagation without momentum term

Learning rate: 0.10.2040.709 1.5 2.0
Training algorithm: Backpropagation with momentum term
Learning rate: 0.10.2040.70.9

Momentum term: 0.1 0.2 0.4 0.7 0.9
Training algorithm: Quickprop

Learning rate: 0.10.20.3

Quick rate: 1.75 2 2.25

The concentration and solubility levels for the activity prediction problems
were discretized between 0 and 1, so we used the sigmoidal activation function.

The training of the MLPs was carried out using the neural net software pack-
age “SNNS: Stuttgart Neural Network Simulator” [7]. In order to successfully use
neural networks, a number of considerations has to be taken into account, such
as the network topology, the training algorithm, and the selection of the algo-
rithm’s parameters [3, 7, 9]. Experiments were conducted using different network
topologies: a hidden layer with 2, 4, 8, 16, 32 and 64 units or two hidden layers
with an equal number of hidden units (2, 4, 8, 16, 32 or 64). Several learning
algorithms were also studied: the incremental version of the backpropagation
algorithm (with and without momentum term) and the quickprop algorithm.
Different combinations of learning rate (LR) and momentum term (MT) as well
as different values of the maximum growth parameter (MG) for the quickprop
algorithm were proved (see Table 2). In every case, a validation criterion was
used to stop the learning process.

In order to select the best configuration of MLP for each problem, we per-
formed all the above proofs using three partitions of the data: two partitions for
training and one partition for validation. When we got the best configuration of
topology, training algorithm and parameters (according to the validation data),
we made the four-runs experiment: training an MLP of that configuration with
the data of three partitions (two for training, one for validation) and testing
with the data of the other partition.

In the experimentation with potential analgesic activity, the best perfor-
mance on the validation data was achieved using an MLP of one hidden layer
of 16 units, trained with the standard backpropagation algorithm with a learn-
ing rate equal to 0.1. For the antidiabetic activity discrimination problem, we
reached the best performance on the validation data with an MLP of two hidden
layers of 4 units each, trained with the backpropagation algorithm (LR=0.2 and
MT=0.1).

The best performances on the validation data for the activity prediction prob-
lems were achieved, in both cases, by training with the standard backpropagation
algorithm, using a learning rate equal to 0.1. For the antibacterial prediction,



Prediction and Discrimination of Pharmacological Activity 189

Table 3. Best configurations for every problem

Best configuration
Problem MLP topology, algorithm and parameters
Activity Analgesic {62—16—1} Backpropagation (LR=0.1)
discrimination Antidiabetic {62—4—4—1} Backpropagation (LR=0.2, MT=0.1)
Prediction Antibacterial {62—64—1} Backpropagation (LR=0.1)
problem Solubility {62—32—1} Backpropagation (LR=0.1)

the best topology was one hidden layer of 64 units; for the solubility prediction
problem, the best performance on the validation data was achieved with an MLP
of one hidden layer of 32 units.

For all the experiments, the best configurations of topology, training algo-
rithm and parameters for the validation data are shown in Table 3.

5 Experimental Results

5.1 Activity Discrimination Problems Experiments

For the activity discrimination problems, the output values of the MLPs are
between —1 and 1 (due to the hyperbolic tangent activation function). In the
learning stage, —1 is assigned to the molecule that does not have pharmaco-
logical activity (analgesic or antidiabetic) and 1 to the molecule that do have
it. After training the MLP models for the activity discrimination problems, the
classification criterion was the following: if the molecule is inactive and the out-
put achieved with the MLP is in the interval [—1, —0.5], it is counted as correct;
if the output is in the interval | — 0.5,0[ the result is counted as undetermined;
finally, if the output is in the interval [0, 1], it is an error. When testing an active
molecule the classification criterion was similar: it is considered to be correctly
classified when the output value of the MLP is between 1 and 0.5; if the output
is in the interval ]0.5, 0[, it is counted as undetermined; if the output is between 0
and —1, it is considered an error.

In the experimentation with potential analgesic activity, we trained four
MLPs with the configuration shown in Table 3. We then tested these trained
MLPs with the test data, obtaining the success percentages for the four runs
shown in Table 4. In average, we achieved an overall classification rate equal to
82.44%, with no sample classified as undetermined. If we analyze these results (in
average) considering the group (active or inactive), we get a success percentage
of 54.65% in the active group and a success percentage of 88.31% in the inactive
group.

For the antidiabetic activity discrimination problem, the obtained classifica-
tion rates for each run of the experiment are also given in Table 4. In average, the
percentage of classification was equal to 92.14% on the test data. If we analyze
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Table 4. MLP performance (classification rate in %) for the discrimination
problems

Discrimination Average
problem Runi Runs Runs Rung Active Inactive Total
Analgesic 86.18 76.83 83.33 83.40 54.65 88.31 82.44

Antidiabetic 94.19 88.37 91.86 94.12 91.67 92.61 92.14

the results considering the active and inactive groups we get a success percentage
of 91.67% and 92.61%, respectively.

5.2 Activity Prediction Problems Experiments

Structure-activity prediction was achieved with high accuracy. For the antibacte-
rial prediction problem, of all the networks tested, the most suitable one (on the
validation data) turned out to be an MLP of one hidden layer of 64 units, trained
with the standard backpropagation algorithm, using a learning rate equal to 0.1.
This network was capable of predicting the minimum inhibitory concentration of
antibacterial activity with a root-mean-square error (RMSE) lower (in average)
than 1.66 on unseen data, the test dataset.’

The best performance on the validation data for the solubility prediction
problem was achieved using an MLP of one hidden layer of 32 units, trained also
with the standard backpropagation algorithm with a learning rate equal to 0.1.
This MLP could predict the solubility capacity of a molecule with a RMSE of
0.18 on test data.

The results for each run of the experiment and the average error are shown
in Table 5.

6 Conclusions and Future Work

In this work, the viability of the use of artificial neural networks for structure-
activity discrimination and prediction have been shown based on the structural

! For the prediction problems, the MLPs have been trained using a sum-of-squares
error (SSE) function, whereas for network testing it is more convenient to use a root-
mean-square error (RMSE) of the form:

S llga"sw) — |
>, e~

where g(z";w) denotes the output of the trained MLP given the input pattern z™,
and the sums run over the N patterns in the test set. The target for the n-th pattern
is denoted as t™ and t is defined to be the average test set target vector. The RMSE
has the advantage, unlike the SSE, that its value does not grow with the size of the
test set. If it has a value of unity then the network is predicting the test data “in
the mean” while a value of zero means perfect prediction of the test data [9].

RMSE =
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Table 5. MLP root-mean-square error (RMSE) for the prediction problems

Precdiction RMSE RMSE
problem Runi Runs Runs Runa Average

Antibacterial 0.52 0.97 4.47 0.69 1.66

Solubility 0.14 0.21 0.20 0.17 0.18

representation of the molecules. Two discrimination problems and two prediction
problems were studied, using multilayer perceptrons to discriminate and predict
different properties of the molecular compounds.

The experiments performed with the analgesic group allow to determine
whether a given molecule is active or inactive with a classification percentage of
82.44%. Better results were obtained with the antidiabetic group, with a success
classification rate of 92.14%.

On the other hand, structure-activity prediction was achieved with high ac-
curacy: antibacterial activity can be predicted with a root-mean-square error of
1.66; the solubility capacity of a molecule can be predicted with a 0.18 root-
mean-square error.

Before ending we would like to remark that this work is only the first step
towards an automatic methodology for designing new medical drugs. Thus, the
following step will be the inverse problem of constructing a molecular structure
given a set of desired properties [10].
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Abstract. In this paper, a new frequency-based approach to motion
segmentation is presented. The proposed technique represents the se-
quence as a spatio-temporal volume, where a moving object corresponds
to a three-dimensional object. In order to detect the “3D volumes” cor-
responding to significant motions, a new scheme based on a band-pass
filtering with a set of logGabor spatio-temporal filters is used. It is well
known that one of the main problems of these approaches is that a filter
response varies with the spatial orientation of the underlying signal. To
solve this spatial dependency, the proposed model allows to recombine in-
formation of motions that has been separated in several filter responses
due to its spatial structure. For this purpose, motions are detected as
invariance in statistical structure across a range of spatio-temporal fre-
quency bands. This technique is illustrated on real and simulated data
sets, including sequences with occlusion and transparencies.
Keywords: Motion segmentation, motion representation, motion pat-
tern, logGabor filters, spatio-temporal models

1 Introduction

The motion segmentation, i.e. the process of dividing the scene into regions
representing moving objects, is one of the most important problems in image
sequence analisys. It has applications in fields such as optical flow estimartion,
video coding or objects tracking.

The most common proposals to this problem relies on frame by frame analysis
(for example, techniques based on optical flow estimates). Althought this kind
of approaches works fine in many cases, it is well known they have problems
in the presence of noise, occlusions or transparencies [1]. To overcome these
problems, some authors propose to use extended features to find correspondeces
beetween frames. None the less, the success of these models depends on the
stability of detection of such features over multiple frames, and the way of solving
the correspondence problem [2].

Unlike frame by frame analisys (or analisys over small number of frames),
some approaches represents the sequence as a spatio-temporal volume. From this
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point of view, a moving object may be observed as a three-dimensional object,
where the axis x and y correspond to the spatial dimensions, and the third
axis corresponds to the temporal dimension [3]. In this kind of methods, some
important proposals are based on a band-pass filtering operation with a set of
spatio-temporal filters [4, 5, 6, 7]. These approaches are derived by considering
the motion problem in the Fourier domain, where the spectrum of a spatio-
temporal translation lies in a plane whose orientation depends on the direction
and velocity of the motion [8, 9]. Although these filters are a powerful tool to
separate the motions presented in a sequence, it is nevertheless true that one of
the main problems of these schemes is that components of the same motion with
different spatial characteristics are separated in different responses. Moreover,
a filter response will change if the spatial orientation or scale vary.

In this paper, we develop a methodology to motion segmentation on the ba-
sis of a spatio-temporal volumes detection. For this purpose, a new tehcnique
based on a spatio-temporal filtering in the frequency domain is proposed. To
solve the problems described above, we propose a new approach that groups
the separated responses obtained by the filters in order to extract coherent and
independent motions. Using a new distribution of 3D logGabor filters over the
spatio-temporal spectrum, a motion is detected as an invariance in statistical
structure across a range of spatio-temporal frequency bands. This new scheme
recombines responses that, even with different spatial characteristics, have con-
tinuity in its motion.

2 The Proposed Method

The figure 1 shows a general diagram describing how the data flows through
the proposed model. This diagram illustrates the analysis on a given sequence
showing a clap of hands. The endpoint of analyzing this sequence is to separate
the two hand motions. In a first stage, a three-dimensional representation is per-
formed from the original sequence and then its Fourier transform is calculated.
Given a bank of spatio-temporal logGabor filters, a subset of them is selected
in order to extract significant spectral information. These selected filters are ap-
plied over the original spatio-temporal image in order to obtain a set of active
responses.

In the second stage, for each pair of active filters, their responses are com-
pared based on the distance between their statistical structure, computed over
those points which form relevant points of the filters. As a result, a set of dis-
tances between active filters is obtained.

In a third stage, a clustering on the basis of the distance between the active
filter responses is performed to highlight invariance of responses. Each of the
cluster obtained in this stage defines a motion. In figure 1, two collections of
filters have been obtained for the input sequence.
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| (0,9) |
(0.52,0.00) |/(—0.62,—0.53)|| (—1.29,0.45)
(0.62,0.53) || (—1.08,0.97) || (—1.05,0.00)
(1.08,0.97) || (1.08,—0.97) ||(—=1.29, —0.45)
(—1.08,0.97)|| (0.62,—0.53) || (1.29,—0.45)
(—0.62,0.53)|| (1.05,0.00) (1.57,0.00)
(—0.52,0.00)|| (1.29,0.45)

Table 1. Angular coordinates of the bank of filters (over an sphere of ratio 1)

2.1 Bank of Spatio-temporal Filters

To decompose the sequence, a bank of logGabor filters is used. A logGabor
function can be represented in the frequency domain as:

(10a(£))* o2 o o?
T R T S s S,

2(109(‘;—(’]’))2
where og , 0, and o, are the angular and radial standard deviation, (6,,¢,) is
the orientation of the filter, and p, is the central radial frequency. The bank of
filters should be designed so that it tiles the frequency space uniformly. Hence
we consider a bank with the following features:

P(p,0,¢) = e{

1. For each radial frequency, 17 spherical orientations over dynamic planes are
considered. Table 1 shows the angular coordinates used in the proposed bank.

2. The radial axis is divided into 3 equal octave bands. The wavelength in each
orientation is set at 3, 6 and 12 pixels respectively.

3. The radial bandwidth is chosen as 1.2 octaves

4. The angular bandwidth is chosen as 30 degrees

The resultant filter bank is illustrated in the top of figure 1. Due to the conjugate
symmetry in the Fourier domain, the filter design is only carried out on the half
3D frequency space.

Active Filters In order to reduce the number of filter responses that have to be
evaluated, a selection of filters that isolate spectral information corresponding
to significant motions is performed. This selection allows to reduce the computa-
tional cost and it avoids the noisy or less relevant filter responses. Given a filter
¢;, a measure of its relevance is defined as:

Wi \F(P»(‘)»SON (2)

1
= Card[V(i)] 2

(p,0,0)EV (i)

where |F' (p, 0, ¢)| is the amplitude of the Fourier spectrum at (p, 8, ), and V(%)
represents a spectral volume associated with the filter ¢;. To calculate V' (i),
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we consider that a point (p, 6, ¢) in the spatio-temporal frequency domain will
belong to V(i) if

lp—pol < 0p, |0 =bo| < o9y |0 — ol <0 (3)

where oy, 0,, 0, and (6,, p,) are the logGabor filter parameters (let us remark
that it is not necessary to calculate the responses of each filter to obtain these
weights)

Using the filter relevance measure defined in (2), an unsupervised classifica-
tion method is performed for each scale to group the filters into two classes: active
ones and non-active ones. The cluster whose filters have the highest weights will
determine the set of active filters (that will be noted Active). In our implemen-
tation, a hierarchical clustering [10] is used with a dissimilarity function between
classes defined as

6(Ci, C5) = i — (4)
where 1
i = Card [Ck EZC Wy (5)
k

For each active filter, a set of ‘relevant points’ is computed. We calculate
these points as local energy peaks on the filter responses [11]: given the response
FE; of a filter ¢;, the maximal of E; in the direction of the filter will determine
the set of points which will focus our attention in the next stage.

2.2 Distance between Filter Responses

In this section, a distance between the statistical structures of a given pair of fil-
ter responses is proposed. To represent a statistical structure, we use the notions
of separable feature and integral feature introduced in [12]. A separable feature
is defined as any relevant characteristic that may be obtained for a point (phase,
local contrast, energy, etc.). The combination of any subset of separable features
will define an integral feature at a given point (z,y, z) . In this paper, the fol-
lowing five separable features proposed in [12] will be used: phase, local energy,
local standard deviation, local contrast of the local energy, and local entropy.

Let T'(xz,y, z) = [Ti(x,y, Z)]k:1,2,...L be an integral feature at (z,y, z) which
combines L separable features, noted as T}, computed on the response of the
filter ¢;. Let E(Ti, Tj) be the distance between two integral features T%(z,y, z)
and 77 (z,y, z) given by the equation:

~

1

Max
k=1

T’ TJ

Tzi» 1)) (6)

with Maxj being a normalization factor [12], and d(-) a distance between sepa-
rable features (this measure d(-) is defined for each separable feature in [12])

Based on the previous equation, a distance between the responses of two
filters ¢; y ¢; is defined as:
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ﬁ(¢“¢]) = D[ivj]2 +D[.’ ﬂ2 (7)

where

Dir,s] = Card Z ‘d ()

P(r)

with d [T",T%] being the distance between integral features given by (6), and
P(r) the set of relevant points for the filter ¢, .The default value of the exponent
£ in (8) has been fixed to 3.

2.3 Clustering of Active Filters

In order to obtain a partition Cy, Cs, ..., Cy of active filters, with C; representing
a motion, a clustering of the dataset X = {¢; € Actives} into an unknown
number N of clusters is performed. For this purpose, a hierarchical clustering
is used [10] with a dissimilarity function between classes defined on the basis of
distances between statistical structures as

where D(¢;, ¢;) is given by the equation (7). Let us remark that the clustering
is not performed for each point (x,y,t), but over the set of active filters X.

Selection of the Best Partition To select the level [ of the hierarchy which
will define the best partition P! = Cy, Cs, ..., Cy, we propose the following func-
tion of goodness

'Ypl
ex

f(Ph = (10)

Pl
where €%, and 75, are two measures of the congruence and separation of the
partition P! respectively, given by the equations:

ep =max {e, | Cy € P'} (11)

Vi = min {y, | C, € P'} (12)

The congruence degree ¢,, and separation degree -, of a cluster C,, are defined
" en = max {cost(u; ;) | ¢i,d; € Cn} (13)
Yo = min{6(Cy,Cp) | m =1, ..., N with m # n} (14)

where 0(Cp, Cy,) is defined in (9), and cost(p; ;) is the cost of the optimal path
between two elements ¢; and ¢; in (), calculated as follow: let Hl j be the set
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of possibles paths linking ¢; and ¢; in C,; given a path m;; € Hij, its cost is
defined as the greatest distance between two consecutive points on the path:

cost(m;j) = max {ﬁ(¢r7 Gri1) | Ors Ori1 € mj} (15)

where ¢, and ¢,41 are two consecutive elements of 7;;, and ﬁ(qﬁr, ¢s) is defined
in equation (7). The optimum path T € Hij between ¢; and ¢; is then defined
as the path that links both filters with minimum cost:

m; = argmin {cost(m; )} (16)
T, € Hi’j

Due to the merging process of the hierarchical clustering and the distance be-
tween classes used in this case (equation (9)), the congruence degree ¢, equals
to the distance between the two cluster which were merged together to obtain
Cy, [12]. Thus, the calculus of €, do not increase the computational cost of the
clustering.

3 Results

In this section, the results obtained with real and synthetic sequences are showed
to prove the performance of our model. For this purpose, several cases have been
tested, from simple motion to occlusions and transparencies. In all the cases,
the figures show the first and the last frame of the original sequence, and the
motions detected in each case. Each motion, which has associated a cluster of
filters, is represented by the sum of the filters responses (energy) of its cluster. In
this representation, a high level of energy (white colour) corresponds to a high
presence of motion.

A synthetic case of pure translational motion with constant speed is showed
in figure 2(A). Specifically, the example shows three bars with velocities of (1,0),
(-1,0) and (0,-1) pixels/frame respectively. Looking at the 3D representation of
the original sequence, three independent planes can be seen corresponding to the
three bars in motion. Our model separates each one of these planes into three
different spatio-temporal outputs corresponding to the three motions. From this
3D representation, the sequence associated to each motion is extracted.

Figure 2(B) shows another synthetic example with a moving obtect with
velocity of (1,1) pixels/frame. In this case, the object has the same texture that
the background, so only the motion information allows to detect the object. As
figure 2(B) shows, our model generates an output corresponding to the moving
object.

The figure 2(C-D) shows two synthetic sequences which have been generated
with Gaussian noise of mean 1 and variance 0. The first example (figure 2(C))
shows a sequence where a background pattern with velocity (-1,0) pixels/frame
is occluded by a foreground pattern with velocity (1,0). The second example (fig-
ure 2(D)) shows two motions with transparency: an opaque background pattern



200 Jests Chamorro-Martinez et al.
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Fig.2. Output of the model with synthetic sequences

with velocity (1,0), and a transparent foreground pattern with velocity (-1,0). In
both cases, the figure shows the central frame of the sequence and the motions
detected by the model (two in each case).

Figure 3(A-C) shows three examples with real sequences. In all the cases,
boxes around the detected moving objects are showed over the original sequence.
Each box is obtained from the energy representation (that is, the sum of the fil-
ters responses of the cluster associated to the motion) as the box which enclose
the corresponding motion (to select the points with high level of energy a thresh-
olding over the energy representation is performed). The first case corresponds
to a double motion without occlusions where two hands are moving to clap. The
second one shows an example of occlusion where a hand is crossing over another
one. In this case, where the occlusion is almost complete in some frames, the
motion combines translation and rotation without a constant velocity. The third
case shows an example of transparency where a bar is occluded by a transparent
object placed in the first plane. As figure 3 shows, in all the cases our model gen-
erates an output for each motion present in the sequence. Let us remark that the
problem of the occlusion is solved by our model by mean of the spatio-temporal
continuity of forms. Furthermore, this approach is capable of detecting motions
even when different velocities and spatial orientations are present.

Figure 3(D) shows the result obtained with a noisy image sequence. This
example has been generated by adding Gaussiam noise of mean 1 and variance 30
to the sequence of the figure 3(A). As figure 3(D) shows, our model segments the
same two motions that were detected in the original sequence. That enlightens
the consistency of the proposed algorithm in the presence of noise.
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Fig.3. Results with real sequences
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4 Conclusions

In this paper, a new approach to motion segmentation in image sequences has
been presented. The sequence has been represented as a spatio-temporal vol-
ume, where a moving object correspond to a three-dimensional object. Using
this representation, a motion has been identified on the basis of invariance in
statistical structure across a range of spatio-temporal frequency bands. To span
the spatio-temporal spectrum, logGabor functions have been adopted as an ap-
propriate method to construct filters of arbitrary bandwidth. The new approach
allows to recombine information of motions that has been separated in several
filter responses due to its spatial structure; as a result, the proposed model
generates an output for each coherent and independent motion detected in the
sequence, avoiding the classic problem associated with a representation based
on spatio-temporal filters.

The technique has been illustrated on several data sets. Real and synthetic
sequences combining occlusions and transparency have been tested. In all the
cases, the final results enlightens the consistency of the proposed algorithm.
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Abstract. Semantic content implies more than the simple identification
of objects. Techniques for content-based image retrieval are not yet
mature enough to recognize visual semantics completely. Therefore, it is
necessary to use captions or text information attached to photos in the
content-based information access of visual data. However, keyword-
based retrieval is limited to the level of syntactic pattern matching. In
other words, dissimilarity computation among terms is usually done by
using string matching not concept matching. In this paper, we present a
solution for retrieving images semantically, by means of the qualitative
measurement of annotated keywords and also with the use of the spatial
color distribution model.

1 Introduction

With the increasing use of image data, sophisticated techniques have become neces-
sary to enable this information to be accessed based on its content. Indexing and re-
trieval of the visual content from image databases requires sophisticated content ex-
traction techniques, content description methods, multi-dimensional data indexing
methods and efficient similarity measurement techniques. To satisfy the demand for
such advanced methods, recent research has produced many novel techniques for
content-based visual information retrieval (CBVIR). CBVIR has emerged as a prom-
ising yet challenging research area in the past few years. However, as yet, no existing
system is capable of completely understanding the semantics of visual information,
even though the process of matching images, based on generic features such as color,
size, texture, shape and object motion, is well within the realm of the technically pos-
sible.

F.J. Perales et al. (Eds.): IbPRIA 2003, LNCS 2652, pp. 204-211, 2003.
© Springer-Verlag Berlin Heidelberg 2003
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Semantic interpretation of image data would be incomplete without some mecha-
nism for understanding the semantic content that is not directly visible. For this rea-
son, human assisted content-annotation through natural language is the one of most
commonly used methods, particularly in multimedia retrieval applications, and pro-
vides a means of exploiting syntactic, semantic as well as lexical information. A sim-
ple form of human-assisted semantic annotation is the attachment of a textual descrip-
tion (i.e., a keyword, or a simple sentence) to an image. Textual annotations can be
used to convey the name of a visual object, or its properties.

Textual annotations in CBVIR systems are treated as a keyword list and use tradi-
tional text retrieval techniques. However, in classical text information retrieval sys-
tems, the relevant information will not be retrieved in response to a query, if the con-
tent and query representations do not share at least one term. This problem is known
as ‘term mismatch’, and it results in users having to remember all of the keywords
used in the annotation.

To resolve the problem of term mismatch, we propose a method for computerized
conceptual similarity distance calculation in WordNet space. In this paper, we present
a solution allowing for the qualitative measurement of concept-based retrieval of an-
notated images. The proposed similarity model considers edge, depth, link type, link
density, as well as the existence of common ancestors. Therefore, the proposed meth-
ods provide a degree of conceptual dissimilarity between two concepts. We applied
similarity measurement and the spatial distribution model of color to concept-based
image retrieval.

This paper is organized as follows. Section 2 discusses related works. Section 3 de-
scribes semantic similarity measurement between concepts in WordNet. Section 4
presents an example of the application of similarity measurement to concept-based
image retrieval. This paper concludes with Section 5.

2 Related Works

Our previous work presented in [4][8] introduces a semantic integrated visual infor-
mation retrieval system that allows users to post both concepts and visual properties
(i.e., sketch, color, etc.) as search criteria at the same time. Then, the system individu-
ally processes each search option and integrates them as results. Similar query proc-
essing can be found in [5], which proposes a terminology server architecture that man-
ages semantic relations among words. The terminology server returns semantically
similar terms for a semantic query processing operation. Both approaches utilize a
lexical thesaurus as the mechanism for minimizing heterogeneity in keyword annota-
tions, as well as a term rewriting mechanism. In the terminology server described in
[5], terms are maintained using the correspondence between a semantic type and a
relation, (i.e., “apple” is-a fruit). [4] uses WordNet™ [9] as a term management sys-
tem that returns a set of terms considered to be similar (or related) to the given user
search options and corresponding WordNet™ scene relations. With a set of words,
query reformulation is required to process semantic query processing, which still per-
forms pattern matching based query operation. However, query rewriting has some
drawbacks in terms of its practical implementation. Since some abstract concepts,
such as ‘plant’ or ‘product name’, may have hundreds of semantic entities, the result-
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ing large number of logical relations in the WHERE clause may cause the perform-
ance of the associated query processing to be degraded. In addition, browsing and
navigation of a database requires additional operations such as the tracking of seman-
tic hierarchy.

One solution which has been proposed to tackle the above problem is to use simi-
larity-based indexing and semantic distance[1][2] among terms in semantic query
processing. In this approach, triangular inequality may improve the overall perform-
ance of the search. The problem of semantic distance computation on corpus statistics
and lexical taxonomy has been the subject of considerable research over the last dec-
ade. However, only two distinct approaches have been reported in the literature. The
first is the information content-based approach and the second is the edge-based ap-
proach.

3 A Hybrid Conceptual Distance Measure

3.1 The Existing Method

The information content-based approach[2] uses an entropy measure that is computed
on the basis of the child node population. The information content of a conceptual
entity, H(c), is measured by using the number of words that are subsumed by ¢ .

H(c)=~log P(c) @)

where, P(c) is the probability of encountering an instance of concept ¢. As the
node’s probability increases, its information content decreases. If there is a unique top
node in the hierarchy, then its probability is 1, hence its information content is 0.
Resnik[2] proposed the following similarity measure between conceptual entities
using information content.
sim(cy,¢;) = max [—log p(c)] )

ceS(cp,c7)
where, S(c;,c,) is the set of concepts that subsume both ¢, and ¢, . To maximize

the representative, the similarity value is the information content value of the node
whose H(c) value is the largest among those super classes.

The edge based approach is a more natural and direct way of evaluating semantic
similarity in WordNet. It estimates the distance (e.g. edge length) between nodes.
Sussna[1] defined the similarity distance between two conceptual entities as a
weighted path length.

max,—min,

we, —, ¢,)=max,—
( x r y) r n, (X) (3)
A weight between two conceptual entities is defined as follows:
) N+ ) L C.
Werne;) = wic; =, ¢;)+wlc; =, ¢;) @)

2d



Annotated Image Retrieval System Based on Concepts and Visual Property 207

The symbols, —, and — ., represent a relation type 7 and its reverse. max, and

min, are the maximum and minimum weights possible for a specific relation type 7
respectively. n,(x) is the number of relations of type 7 leaving a conceptual entity
X . Therefore, the w(c; >, ¢;) measurement considers both the density of the con-

nections and the connection type. Finally, the similarity distance, d, between two
concepts, is defined as the minimum path length.

3.2 The Combined Method

We propose a combined model that is derived from the edge-based notion by adding
the information content. First of all, if the semantic distance between two adjacent
nodes (one of them is a parent) is the following:

Sups(clciy=d(c ) f(d) (5)

where, f(d)is a function that returns a depth factor. As the depth level increases, the

/

classification is based on finer and finer criteria. d(c_,;) represents the density func-

tion. Since the overall semantic mass is of a certain amount for a given node, the den-
sity effect would suggest that the greater the density, the closer the distance between
the nodes[3]. To explain this, as can be seen in Figure 1, it can be argued that the
parent node, Life form, is more strongly connected with the child nodes, Animal,
Plant, and Person, than with the nodes Aerobe and plankton.

(2.354) (0.973) (7.7) (6.56) (2.54)

Fig. 1. Tree between Life form and its child nodes

We will expand S, (cf,cﬂ_l) to handle the case where more than one edges are in
the shortest path between two concepts. Suppose we have the shortest path, p, from
two concepts, C;and ¢;, such that p ={(ty,c,c)),(1},¢p,¢2)...(¢,1,¢,1,¢,)} . The
shortest path, p, is the sum of the adjacent nodes. Therefore, the distance measure
between ¢; and ¢; is as follows:

n
Sege(€i:¢,) = D(L )+ Y W (1) S 4y (Cinhr) (6)
k=0
where, D(L;_,;) is a function that returns a distance factor between ¢; and ¢;. The

shorter the path from one node to the other, the more similar they are. W(¢,) indicates
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the weight function that decides the weight value based on the link type. The simplest
form of the weight function is the step function. If an edge type is IS_A then W(¢,)

returns 1 and otherwise returns a certain number that is less than 1.

Equation 6 only considers the link types and the number of edges. What is missing
in equation 7 is a slot for shared concepts (as the number of shared concepts increases,
the greater the similarity). To incorporate this into our similarity measurement, we
propose the following equation.

S(Ciacj) = Sedge ’ maX[H(C)] 7

where, H(C) is the information content of the concept that subsumes both ¢; and ¢; .

The above equation tells us that the total amount of similarity is proportional to the
amount of shared information.

3.3  Comparison of the Measures

It would be reasonable to evaluate the performance of similarity measurements be-
tween concepts by comparing them with human ratings. The simplest way to imple-
ment this is to set up an experiment to rate the similarity of a set of word pairs, and
examine the correlation between human judgment and machine calculations.

We used the noun portion of the version 1.6 of WordNet. It contains about 60,000
noun nodes(synsets). To make our experimental results comparable to those of other
pervious methods, we used the results of each similarity rating measure for each word
pair (Table 1). The M&C means are the average ratings for each pair as defined by
Miller and Charles. And the replication means are taken from the special web site for
word similarity.(http://www.cs.technion.ac.il/~gabr/resources/data/wordsim353/ ord-
sim353.html).

Table 1. Comparison of Semantic Similarity Measures

Sim, Sim, .
Replica- | means | means Sim.
. M&C b means
Word pair tion by by by our
means |- eans node | edge s ystem
based | based Y
car | AMOMOT {397 | go4 | 745 | 32 | 11.95
bile
gem jewel 3.84 8.96 12.54 32 14.7
Journey | voyage 3.84 9.29 6.87 31 11.18
boy lad 3.76 8.83 7.44 31 10.86
Rooster | voyage 0.08 0.62 0 0 1

To evaluate the similarity measurement of the proposed method, we use correlation
values. For consistency in comparison, we will use semantic similarity measures rather
than semantic distance measures.
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Table 2. Summary of Experimental Results

Similarity Method | Correlation (r)
Human Judgment | 0.9494
Node Based 0.8011
Edge Based 0.5789
Proposed Method | 0.8262

Note that this conversion does not affect the result of the evaluation, since a linear
transformation of each datum will not change the magnitude of the resulting correla-
tion coefficient, although its sign may change from positive to negative. The correla-
tion values between the similarity ratings and the mean ratings reported by Miller and
Charles are listed in Table 2.

4 Implementation of Concept Based Image Retrieval

In the experiment, we used a sample image database containing nearly 2,300 selected
images. The images we used in our experiments came from Microsoft’s ‘Design Gal-
lery Live(http://dgl.microsoft.com)’. In this site, each image was categorized into one
of approximately 50 categories, such as “Animals”, “Plants”, “Places”, etc. Each im-
age had three or four annotations. The search options selected for these experiments
were:

1. Retrieval based on the proposed semantic similarity measurement
2. Retrieval based on the spatial distribution model of color

Our previous work on the feature extraction technique, called the spatial distribu-
tion model of color[4], is a good indicator of the color contents of images and forms
the basis of an effective method of image indexing. Let us look at a few examples. A
set of two experiments was conducted to search for similar images, (each containing a
rose flower), as the target image. The first query is a simple search for images that
look like the image that contains the picture of a rose(top-left image in Fig. 2). The
search option is set such that we use the ontology with semantic similarity measure-
ment, and the results of the retrieval are presented in Fig. 2. The value of each image
is an average of the similarity measures between the annotated keyword of the image
and the query keyword.

Fig. 3 represents the result of running the query with conceptual relativity and spa-
tial color distribution. Note that, in Fig. 3, to the first 11 images, system rearranges the
images on the basis of the spatial color distribution model. Starting from the 12’th
retrieved image shown in Fig. 3, the images displayed here were relegated to 12’th
place in favor of other images that the system found to be closer matches.



210 Junho Choi et al.

A Image Retrieval Using Color and Similarity Distance in Wordnet

Search Word : [iose| Seaich ¥ Mo Color

Select Color

6.BB167 686167 BBE167 686167 B.B8E167 6.BB167

B MediumSeaGree:
[ELimeGreen B.86167 6.86167 B.86167 6.86167

G.18650 550133 5.14625 479117 4.82933

=10l x|

Search Word © |rose Search [ Mo Color

Select Color
rchid S|
agenta
[ Blucviolet
68616

EDarkPurple
HViolet

EVioletRed 686187 5.8616
[ SpicyPink
[EIMediumVioletRec
[CINeonPink
[EPink
.DustyRusE

B6.86187 .EEHBT B.86167

B 86167 G BR1AT B.86167 686167 6.86167 B 16850

1=}

[lLightGrey

CGrey L
[VerLightGrey =

450433 550133

4682933 .

Fig. 3. Result of ‘rose’ Query using semantic similarity measurement with spatial color tech-
niques for concept-based image retrieval with the spatial color distribution model can be ex-
tended to include multi-modal queries such as query by concept and color, or query by concept
and shape

5 Conclusions

In this paper, we proposed a combined model that is derived from the edge-based
approach by adding the information content. We consider the edge, depth, link type
and density, as well as the existence of common ancestors. In particular, the proposed
method provides a means of determining the link strength of an edge that links a par-
ent node to a child node. The link strengths defined here are (1) the density(the num-
ber of child links that span out from a parent node), and (2) their topological location
in WordNet space.

We also introduced a method of applying similarity measurement and the spatial
color distribution model of color to concept-based image retrieval. With this method,
it is possible to retrieve images by means of a conceptual approach based on keywords
and the color distribution model. This is demonstrated by means of the experiments
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presented in section 4. Furthermore, the proposed method can be extended to include
multi-modal queries, such as query by concept and shape, and query by concept and
texture.
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Abstract. Social robots are receiving much interest in the robotics com-
munity. The most important goal for such robots lies in their interaction
capabilities. An attention system is crucial, both as a filter to center the
robot’s perceptual resources and as a mean of letting the observer know
that the robot has intentionality. In this paper a simple but flexible and
functional attentional model is described. The model, which has been
implemented in an interactive robot currently under development, fuses
both visual and auditive information extracted from the robot’s environ-
ment, and can incorporate knowledge-based influences on attention.

1 Introduction

In the last years the robotics community has sought to endow robots with social
and interaction abilities, with the first survey recently published [6]. Researchers
realized that robots that excelled in certain tasks were by no means consid-
ered intelligent by the general public. Social abilities are now considered very
important in order to make the robots more human. Emotion and multimodal
communication are also two related aspects that are still being researched.

In [11] the authors argue that a robot with attention would have a minimal
level of intentionality, since the attentional capacity involves a first level of goal
representations. Attention is a selection process whereby only a small part of the
huge amount of sensory information reaches higher processing centers. Attention
allows to divide the visual understanding problem into a rapid succession of local,
computationally less expensive, analysis problems. Human attention is divided
in the literature into two functionally independent stages: a preattentive stage,
which operates in parallel over the whole visual field, and an attentive stage, of
limited capacity, which only processes an item at a time. The preattentive stage
detects intrinsically salient stimuli, while the attentive stage carries out a more
detailed and costly process with each detected stimulus. The saliency values of
the attentive stage depend on the current task, acquired knowledge, etc [3, 10].

Probably the first robot that was explicitly designed to include some social
abilities is Kismet [1]. Kismet has had undeniable success in the robotics com-
munity because it has been a serious effort in making a robot sociable. Among
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other diverse modules, Kismet included an attention system, which is based on
Wolfe’s ” Guided Search 2.0 (GS2)” model [15]. GS2 is based on extracting basic
features (color, motion, etc.) that are linearly combined in a saliency map. In
a winner-take-it-all approach, the region of maximum activity is extracted from
the saliency map. The focus of attention (FOA) will then be directed to that
region.

It is a well accepted fact that attention is controlled both by sensory salient
and cognitive factors (knowledge, current task) [2]. The effect of the lower level
subsystem (bottom-up influence) has been comprehensively studied and mod-
elled. In contrast, the effect of higher level subsystems (top-down influence) in
attention is not yet clear [9]. Hewett [8] also suggests that volitive processes
should control the whole attention process, even though some of the controlled
mechanisms are automatic in the human brain. Therefore, high-level modules
should have total access to the saliency map. This would allow the attention
focus to be directed by the point that a person is looking at, deictic gestures,
etc. Fixations to the point that a person is looking at are useful for joint atten-
tion. In [14] an additional feature map is used for the purpose of assigning more
saliency to zones of joint attention between the robot and a person.

In the third version of Wolfe’s Guided Search [16] high-level modules act in
two ways. On the one hand they can modify the combination weights. On the
other hand, they can also act after each fixation, processing (recognizing, for
example) the area of the FOA, after which an ”inhibition of return” (IR) signal
is generated. IR is a signal that inhibits the current FOA, so that it will not win
in the saliency map for some time.

Top-down influences on attention are also accounted for in the FeatureGate
model [5]. In this model, a function is used to produce a distance between the
low-level observed features and those of the interest objects. In [13] the top-
down influence is embedded in the changing parameters that control a relaxation
and energy minimization process that produces the saliency map. Also, in [3]
a neural network, controlled by high-level processes, is used to regulate the flow of
information of the feature maps towards the saliency map. A model of attention
similar to that of Kismet is introduced in [12] for controlling a stereo head.
Besides the feature maps combination (color, skin tone, motion and disparity),
space variant vision is used to simulate the human fovea. However, the system
does not account for top-down influences. Moreover, it uses 9 Pentium processors,
which is rather costly if the attention system is to be part of a complete robot.

In [7] an attention system is presented where high-level modules do influence
(can act on) the whole saliency map. When, after a fixation, part of an object is
detected, saliency is increased in other locations of the visual field where other
parts of the object should be, considering also scaling and rotation. This would
not be very useful in poorly structured and dynamic environments. In the same
system, a suppression model equivalent to IR is used: after a fixation the saliency
of the activated zone is decreased in a fixed amount, automatically.

The objective of this work was not to achieve a biologically faithful model,
but to implement a functional model of attention for a social robot. This paper



214 Oscar Déniz et al.

is organized as follows. Section 2 describes the proposed attention system, im-
plemented for a social robot that is currently being developed. Experiments are
described and analyzed in Section 3. Finally, the main conclusions are summa-
rized in Section 4.

2 Attention Model

In all the citations made above, the effect of high-level modules is limited to
a selection or guiding of the bottom-up influence (i.e. combination weights) and
the modification of the relevance of the object in the FOA. We propose that the
influence of high-level modules on attention should be more direct and flexible.
Inhibition should be controlled by these modules, instead of being an automatic
mechanism. The following situation is an example of such case: if I look at
a particular person and I like her, inhibition should be low, in order to revisit
her soon. There could even be no inhibition, which would mean that I would keep
on looking at her. Note that by letting other processes control the saliency map
joint attention and inhibition of return can be implemented. Also, the mechanism
explained before that increases saliency in the zones where other parts of objects
should be can be implemented. In fact, any knowledge-directed influence on
attention can be included.

The objective of this work was to conceive a functional attention mechanism
that includes sound and vision cues. Therefore, the model proposed here is simple
to implement, being the most complex calculations done in the feature extraction
algorithms. The activation (i.e. saliency) values are controlled by the following
equation:

A(p,t) = Z Fi(v; - fi(p,t)) + Z Gj(s; - gi(p.t)) + K - C(p,t) + T(p,t) (1)

where F and G are functions that are applied to the vision-based (f;) and sound-
based (g;) feature maps in order to group activity zones and/or to account for
the error in the position of the detected activity zones. Spatial and temporal
positions in the maps are represented by the p and ¢ variables. v;,s; and K are
constants. C is a function that gives more saliency to zones near the current FOA:
C(p,t) = e VIP=FOAC=DI T(p,t) represents the effect of high-level modules,
which can act over the whole attention field. The maximum of the activation
map defines the FOA, as long as it is larger than a threshold U:

max, A(p,t) ifmax, A(p,t) > U

FOAQ) = { FOA(t—-1) otherwise (2)

The model is depicted in Figure 1, using sound and vision for extracting
feature maps. Note that a joint attention mechanism would use the component T’
of Equation 1, which for all practical purposes is equivalent to the approach taken
in [14] that used a feature map for that end.
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Sound
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Feature map 1

Feature map 1

|Acﬁvoﬁon map FOA

=T

Fig.1. Model of attention. The feature maps must represent the same physical
space than the activation map. If sensors do not provide such values, a mapping
would have to be done

The implementation presented in this paper will use an auditive feature map:
the localization of a single sound source. Notwithstanding, this scheme can be
used with multiple sources, as long as they are separated by another technique.

The visual feature map is extracted from images taken with an omnidirec-
tional camera, using adaptive background differences. The aim was to detect
blobs pertaining to people around the robot. The first step is to discard part
of the captured image, as we want to watch only the frontal zone, covering 180
degrees from side to side (see Fig. 2). The background model is obtained as the
mean value of a number of frames taken when no person is present in the room.
The model M is updated with each input frame:

M(k+1)=Mk)+U(k)- [L(k)— M(k)], (3)

where [ is the input frame. U is the updating function:

U(k) = exp(—3 - D(k)), (4)
with:

Dk)=a-Dk—1)+ ({1 —a)-|[I(k)—I(k—-1), (5)

for a between 0 and 1. The parameters o and [ control the adaptation rate.
The method of adaptive background differences described above still had

a drawback. Inanimate objects should be considered background as soon as pos-

sible. However, as we are working at a pixel level, if we set the a and [ parameters
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Fig.2. Left: the interactive robot being developed. Center: omnidirectional
camera, placed in front of the robot. Right: image taken by the omnidirectional
vision system. The numbers indicate the estimated height and the angle of the
closest blob (the one with the largest height)

too low we run the risk of considering static parts of animate objects as back-
ground too. This problem can be alleviated by processing the image D. For each
foreground blob, its values in D are examined. The maximum value is found, and
all the blob values in D are set to that level. With this procedure the blob only
enters the background model when all its pixels remain static. The blob does
not enter the background model if at least one of its pixels has been changing.

As for the sound-based feature map, the aim was to detect the direction of
sound sources (i.e. people). The signals gathered by a pair of microphones are
amplified and preprocessed to remove noise. Then the angle in the horizontal of
a sound source is extracted using the expression:

angle = arcsin((s - I/ f)/d), (6)

where s is the sound speed, f is the sampling frequency, d is the distance between
the pair of microphones, and I is the interaural time difference (ITD). The ITD
is a measure of the displacement between the signal gathered at one microphone
and the signal gathered at the other, and is obtained through correlation. The
implemented sound localization system is described in more detail in [4].

3 Implementation and Experiments

The attention model has been implemented on the robot head shown in Figure 2.
This head includes an omnidirectional camera as a presence detector and a sound
localization system based on a pair of microphones placed on both sides of the
head. The feature and activation maps represent a half-plane in front of the
robot. The FOA is used to command the pan and tilt motors of the robot’s
neck. For our particular implementation we decided that sound events should
not change the FOA on their own, but they should make the nearest visual event
win. Also, as a design decision we imposed that the effect of sound events should
have precedence over the effect of C.
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In our particular case the variable p takes values in the range [0, 180] degrees
and F will not be used. v; =1, f; = {0, 1} represents the effect of a visual fea-
ture map that detects foreground blobs using adaptive background differences
and the omnidirectional camera. The visual feature maps are not actually 1-D,
but 1 1/2-D, as for each angle we store the height of the blob, measured by
the omnidirectional vision system. This height is used to move the tilt motor of
the robot’s neck. g1 = {0, 1} represents the output of the sound localization rou-
tine. The vision and sound localization modules communicate with the attention
module through TCP /IP sockets. To account for errors in sound localization, G
is a convolution with a function e(=?"1#D) D being a constant. In order to meet
these conditions the following should be verified:

— 51 < 1 (the FOA will not be directly set by the sound event).

— Suppose that 2 blobs are anywhere in the activation map. Then a sound event
is heard. One of the blobs will be closer to the sound source than the other. In
order to enforce the preferences mentioned above, the maximum activation
that the farthest blob could have should be less than the minimum activation
that the nearest blob could have. This can be put as 1 + K + s; - e(=7%) <
14K -e(=180%7) g, .e(=Db) b and a being the distances from the blobs to the
sound source, the largest and the shortest one, respectively. That equation
does not hold for b < a but it can be verified for b < a — ¢, with a very
small e.

Operating with these two equations the following valid set of values was
obtained: D = 0.01, K = 0.001,s; = 0.9, = 0.15. For those values ¢ = 0.67
degrees, which we considered acceptable.

The effect of high-level processes (T") is not used in the implementation yet,
as the robot is still under development. The simplicity of the model and of the
implementation make the attention system efficient. With maps of 181 values, the
average update time for the activation map was 0.27ms (P-IV 1.4Ghz). In order
to show how the model performs, two foreground objects (a person and a coat
stand) were placed near the robot. A sample image taken by the omnidirectional
camera are shown in Figure 2. Initially, the FOA was at the coat stand. Then
the person makes a noise and the FOA shifts, and remains fixating the person.
In order to see what happens at every moment this situation can be divided into
three stages: before the sound event, during the sound event and after the sound
event.

Figure 3 shows the state of the feature maps and the activation map at each
stage. Note that the vertical axis is shown in logarithmic coordinates, so that
the effect of the C' component, which is very small, can be seen. The exponential
contributions thus appear in the figures as lines.

Before the sound event the FOA was at the blob on the left, approximately
at 75 degrees, because it is the closest blob to the previous FOA (the robot starts
working looking at his front, 90 degrees). This is shown in the first two figures.
The two next figures show the effect of the sound event. The noise produces a
peak near the blob on the right (the person). That makes activation rise near that
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blob, which in turn makes the blob win the FOA. The last two figures show how
the FOA has been fixated to the person. In absence of other contributions the
effect of the C' component implements a tracking of the fixated object/person.

Activation

40 60 80 100
Position (%)

120

140

40 60 80 100
Position (%)

120

Activation

80 100
Posilion (%)

120

160

Activation

Activation

Activation

80 100
Position (%)

120 120 160 180

80 100
Position (%}

120 140 160 180

60

80 100
Positon (%

120 140 160 180

Fig. 3. State of the feature and activation maps. On the left column the figures
show the visual and auditive feature maps. On the right column the figures show

the resultant saliency map
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4 Conclusions

An attentional system is a necessary module in a complex human-like robot.
With it, the robot will be able to direct its attention to people in the environ-
ment, which is crucial for interaction. In this paper a simple yet functional model
of attention has been described, drawing upon previous attentional systems for
interactive robots. The model was implemented using both auditive and visual
features extracted from a zone surrounding the robot. Visual features were ex-
tracted from video taken with an omnidirectional camera, which gives the robot
a 180 degrees attentional span. The attentional system is currently running on
a robotic head

The next step in our work will be to implement the high-level influences
on the attention focus. This influence is to be defined by the robot’s tasks and
knowledge, which obviously need the completion of other modules, such as an
action selection mechanism (with goals), memory and facial analysis.
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Abstract. In this paper, new wavelet-based affine invariant functions
for shape representation are derived. These functions are computed from
the wavelet approximation coefficients of the shape boundary. The first
function is computed from applying a single wavelet transform, whereas
the second function is computed from applying two different wavelet
transforms. All the previously derived affine invariant functions were
based on wavelet details coefficients which are sensitive to noise in the
finer scale levels. The proposed invariant functions are more stable and
less sensitive to noise than the details-based invariant functions.

1 Introduction

Wavelet analysis has become one of the important and powerful tools in many
disciplines [6], [2]. In image processing and pattern recognition areas, wavelet
is used in image enhancement, compression, feature extraction, and much more
applications. One of the applications of wavelet transform is the shape repre-
sentation. Shape representation is a crucial step in shape analysis and matching
systems [9], [2]. If the representation of the shape does not change under certain
geometric transformation, then this representation is said to be invariant to that
transformation. Invariant representation functions can be computed either from
the shape intensity or from the boundary of the shape [2]. Many researchers used
the Wavelet Transform (WT) in shape representation. Some have attempted to
apply the WT in 2-D domains (region-based techniques); others have chosen to
apply the transform to 1-D shape boundary (contour-based techniques). Usually,
region-based algorithms are greatly influenced by background variations (e.g.,
light and shading) and corrupted noise. Moreover, region-based techniques are
usually very time consuming. On the other hand, contour representations provide
better data reduction, and are usually less sensitive to noise than region-based
techniques [7].

Wavelet representation contains information at different scales in which dif-
ferent shapes could have the same representation at a particular scale but not
at all scale levels [13].

F.J. Perales et al. (Eds.): IbPRIA 2003, LNCS 2652, pp. 221-228, 2003.
© Springer-Verlag Berlin Heidelberg 2003
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In this paper, two new affine invariant functions for shape representation are
derived. One of these functions is derived from the approximation coefficients of
the wavelet transform. The second function is derived from the approximation
coefficients after applying two different wavelet transforms .

This paper is organized as follows: Section II gives a quick review of the
related work. In sections III the proposed functions are derived. Section IV il-
lustrates the experimental results. Finally section V gives the conclusions and
the future work.

2 Related Work

In this section, the previously published papers that used wavelet transform in
obtaining invariant shape representation are introduced. Since we are applying
wavelet transform to the shape contour to obtain the affine invariant represen-
tation, the related publications only will be review. The affine invariant wavelet
representations derived till now were based on the details coefficients. A quick
overview of these functions is as follows:

— Alferez and Wang [1] proposed geometric and illumination invariants for
object recognition depending on the details coefficients of the dyadic wavelet
decomposition. They also showed that more complicated invariant functions
could be constructed from more than two wavelet details scales.

— Tieng and Boles tried to derive more than one affine invariant function by
applying the dyadic wavelet transform to the shape contour. In [12], and [13]
they derived a relative invariant function from the approximations and the
details coefficients of the shape contour.

I (i, k) = Az Diyp — Aiyr Dy (1)

where A;xy are the approximation coefficients of the boundary sequence xy,
and D,y are the details coefficients of the boundary sequence yx. They found
that the B-spline was the optimum wavelet function when compared to the
Daubechies and Lamarie-Battle functions. Representation using the B-spline
gave stable matching results and a small number of misclassifications. For
classification purpose, they selected only two levels that have the largest
energies concentrations.
In [10] they used complex Duabechies wavelet functions to calculate the
invariant function. The Invariant function used here is the same as in [12]
except that the approximation and the details are replaced by the real and
the imaginary parts of the details coefficients, respectively.
In [11], they derived another invariant function by taking the wavelet co-
efficients of two different wavelet functions. The invariant function is given
by

Iy(j, k) = Djzx D3y — DjyrD3xy, (2)
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— Khalil and Bayoumi also tried to derive a wavelet-based affine invariant
function using dyadic wavelet transform ([3], [4], and [5]). The invariant
function is derived from the details coefficients generated from the wavelet
transform of the shape boundary. The relative invariant function, using only

two dyadic scale levels, is defined as:
I3(i,j, k) = Dixp D&y, — Dy D2y (3)

where D;Zj and D;g are the details signals of the affine transformed sig-
nals x; and y; at scale ¢ and j respectively.

In [5], they continued their previous work in [4]. They showed that they can
compute the invariant functions using 2, 3 , or 4 dyadic levels.
In [4], they derived an absolute wavelet-based conics invariant function that

uses all the details scale levels (except the first two), which increased the
discrimination power of the invariant function.

3 Wavelet-Based Affine Invariant Shape Representation
Functions

The aim of this paper is to derive stable and robust wavelet-based invariant func-
tions that can be used in shape representation. Wavelet-based invariant functions
derived from the shape boundary were introduced by several authors. These func-
tions were invariant to affine, or projective transformations. The derived affine
and projective invariant functions were based either on the wavelet details coef-
ficients only (as in [4, 1, 5, 12, 3] and [10]) or on the combination of the details
and the approximations coefficients (as in [12, 13]).

A general framework for deriving affine invariant functions from wavelet de-
composition is as follows:

For a 2-D shape represented by its contour sequences (zj and yi) and sub-
jected to affine transformation, the relation between the original and the dis-

torted sequences is
T €11 ¢ x b
~k _ 11 €12 k + 1 (4)
Yk Co1 C22 | | Yk bo
where c11, €12, C21, C22, are the affine matrix coefficients and by, and by rep-
resent the translation parameters. The translation parameters can be easily re-
moved by subtracting the shape centroid from its extracted boundary.

By applying the wavelet transform to the distorted boundary sequences, these
wavelet transformed sequences at scale level (i) are related by:

Wil | _ | e a2 | | Wiz (5)
Wi co1 ¢22 | | Wiy
where Wz, and W,y are the wavelet transformed original sequences at scale

level i, and W;Z; and W,y are the wavelet transformed distorted sequences at
scale level i. (W;xy is either the detail or the approximation coefficients). For
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two different representations of x and yi (i.e at different scale levels, or by two
different coefficients types) and if the wavelet coefficients are subjected to the
same geometric transformation,

Wifk Wji’k C11 C12 Wixk ijk (6)
Wige Wik co1 c22 | | Wiy Wiy

An affine invariant function is computed by taking the determinant of equa-
tion 6, which means that

Wikajﬂk - Wingjfk = det(C’)(Wikajyk — Wiyijxk) (7)

is a relative invariant function. Where C'is the transformation matrix. Equation 7
tells us that almost all the affine invariant functions derived till now (from the
published papers [4, 1, 5, 12, 13] and [3]) are computed from this function,
where Wy, and Wy, are selected to be either the wavelet details coefficients(as
in [4, 1, 5], and [3]) or the approximation and details coefficients (as in [12],
and [13]).

It should be noted that the first 2 or 3 levels of the details coeflicients are
usually small in amplitude and are highly sensitive to noise. To overcome this
problem these levels were avoided in computing the invariant functions that
depend on the details coefficients (all the above systems). A less sensitive to small
variations function is computed by considering the approximations coefficients
only

I4(i, j, k) = Ajar A — Aidi A, = det(O)[A o Aiyr — Aixi Ajyr) (8)

where A;Z, A;T), are the distorted approximations coeflicients of xj, at scales j
and 4, Ajxy, Az are the original ones, A;gr, A;¥r are the distorted approxi-
mations coefficients of y;, at scales j and 4, Ajyr, A;yr are the original one, and
det(C) is the determinant of the transformation matrix.

This function is a relative invariant function (due to the existence of the
determinant det(C)), and it can be made an absolute invariant function by di-
viding by another function computed from (at least one) different scale levels,
or by dividing by any significant (non-zero) value from the same equation. (e.g.
maximum value).

Another invariant function is derived from the approximation coefficients by
applying two different wavelet transforms with different wavelet basis functions.
The invariant function would look like:

I5(i,j, k) = AJEn A7, — A7 5 Afg, = det(C)[Ajap Afyy — Afze Ajye]  (9)

where A}ik and Ajl»ﬂk are the approximation coefficients of the distorted bound-
ary after applying the first wavelet transform, A}xk and A}yk are the approxima-
tions of the original boundary resulted from the same transform, A?ik and A?gjk
are the approximation coefficients of the distorted boundary after applying the
second wavelet transform, and A?xk and A?yk are the approximation coefficients
of the original boundary resulted from the same transform.
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Fig.1. Sample of the shapes used in our experiment, the asterisks show the
boundary starting point

The advantages of using two different wavelet transforms with different basis
functions is that the discrimination between shapes increases. This is because of
the increase in the number of the invariant functions that can be obtained from
this equation, which also helps in deriving higher order invariant functions using
four (or more) different scale levels.

4 Experimental Results

Sample of the shapes used in our experiment are shown in figure 1. Shapes 1 to
6 are the boundaries extracted from 6 different shapes, while shapes 7 and 8 are
noisy versions of shape 6. Shapes 9 to 14 are affine distorted shapes computed
from shape 6 whereas shapes 15 and 16 are the noisy versions of shape 14. The
affine distorted shapes (9 — 14) are obtained by applying the transformation
shown in equation 10 (the translation parameters are removed by calculating
and subtracting the centroid of the shape)

[g} = [Taffine] [y} (10)

where = and y are the pixel locations of the original 2-D shape, £ and gy are the
distorted pixel locations, and Tgf fine [3] is the affine transformation matrix and
is given by

cos(0) —sin(0) | |1 sk
Toffine = SC Lin(g) cos() } {0 1] (11)

Table 1. Affine transformation parameters and SNRs used in our experiment

|Shape[1[2[3[4]5[6] 7 [ 8 [ 9 [10]11]12] 13 [14 ] 15[ 16 |
sc [1ffafafafi] 1 [ 1 1] 1] 1]10.75]0.75]0.75]0.75
6 |ojojolojo]o] 0 | 0 [30°[60°l 0| 0| O [45°]45°[45°
sk |o[olo]ojojo] 0 | 0 [ 0] 0 ]0.3]0.7] 0 [0.4]0.4]0.4
SNR|-|-]-]-]-]-139.2[33.1] - | - [-]-1] -] - [38.3] 32
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Fig. 2. The invariant functions of shapes 2, and 5 computed from scales 3 and 4

where sc is the scale, 6 is the rotation angle, and sk is the skew parameter. The
noisy shapes are obtained by adding a uniformly distributed noise to shapes 6
and 14. Table 1 shows the affine transformation parameters and the signal-to-
noise ratios (SNRs) used in our experiment.

After extracting the boundary of each shape, the boundary sequences x
and y; are normalized to have the same length for all shapes before applying
the WT. All shapes in our experiment are resampled to have 512 points, so the
DWT decomposes the sequences xj and yj, into 9 different scale levels. We used
quadratic spline for the single WT, and quadratic spline and Daubechies (db12)
for the two WT. The functions tested in this experiment are equations 1, 3, 8,
and 9. Figures 2 illustrates the invariant functions computed for shapes 2 and 5
using the scale levels 3 and 4. Figure 3, illustrates these functions for the original
(shape 6), and the affine and noisy (shape 15) shape for the scale levels 2 and
3. This figure shows that the degree of invariance of I; (equations 1), and I3

Shape 6 Shape 15
1 1
0.5
1.(2,3) o5
1
o o
—0.5 o —0.5 k
100 200 300 400 500 100 200 300 400 500
0.4 0.4
0.2 0.2
13(2,3) o o
—o0.2 —o0.2
—0.4 —0.4
K
100 200 300 400 500 ¥ 100 200 300 400 500
0.4 0.4
0.2 0.2
1,23 o o
—o0.2 —0.2
—0.4 K —0.4 K
100 200 300 400 500 100 200 300 400 500
0.4 0.4
0.2 0.2
15(2.3) o o
_o.2 —o0.2
—0.4 N —0.4 «
100 200 300 400 500 100 200 300 400 500

Fig. 3. The invariant functions of shapes 6, and 15 computed from scales 2 and 3
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U (i=6, j=7)

n
10 15 “o 5 10 15

n

Fig.4. The maximum correlation values computed between shape 6 and all
other shapes (n=1 to 16) at different scale levels and differences, the first column
is computed using i — j = 1 while the last column is computed for i — j = 2

(equation 3) decreases in the finer levels, and that these invariants are sensitive
to small variations in these levels (even in the absence of added noise). While Iy
and Iy (equations 8 and 9) appear to be less sensitive to these variations in theses
levels.

The normalized correlation function defined in [4] is used in our experiment to
measure the similarity between any two invariant functions. For two sequences ay,
and by, the normalized correlation equals

_ 22k Wbk (12)
V2R ai 2ok bi

Since the correlation is not translation invariant, one of the functions (ax
or by) is made periodic (for 3 periods) then the maximum value of the correlation
is selected. This will reduce the effect of the starting point variation of the shape
boundary on the calculations.

Figure 4 illustrates the maximum correlation values for the tested shapes.
The shown maximum correlation values were computed between shape 6 and all
other shapes. From these plots, it is clear that the derived functions (equations 8,
and 9) can easily distinguish between different shapes and that equations 1, 3
fail to do this. This is because that equations 1, 3 are based on the the wavelet
details which are highly sensitive to noise and small variations in the first scale
levels. In the coarser scale levels, equation 3 has more discrimination between
different shapes. This is because that the approximation coefficients capture
global features and tends to be equal for globally similar shapes. The second
column in figure 4 shows that the discrimination is improved by taking i —j = 2,
which means that it will increase for large scale level differences (i.e. i —j > 2).

R.p(1)
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Conclusions

In this paper, we derived two affine invariant shape representation functions
based on the approximations of the shape boundary. The experimental results
show that these functions are less sensitive to noise than the details-based func-
tions. Also the discrimination between shapes for these functions is increased by
increasing the scale level differences. New invariant functions could be computed
by combining the details and the approximations invariant functions. These func-
tions will be used in measuring the dissimilarities between different shapes. The
details-based functions will be used for measuring the local dissimilarities, and
the approximations-based will be used in measuring the global dissimilarities.
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Abstract. We propose a feature selection approach for clustering which
extends Koller and Sahami’s mutual-information-based criterion to the
unsupervised case. This is achieved with the help of a mixture-based
model and the corresponding expectation-maximization algorithm. The
result is a backward search scheme, able to sort the features by order
of relevance. Finally, an MDL criterion is used to prune the sorted list
of features, yielding a feature selection criterion. The proposed approach
can be classified as a wrapper, since it wraps the mixture estimation al-
gorithm in an outer layer that performs feature selection. Preliminary
experimental results show that the proposed method has promising per-
formance.

1 Introduction

A great deal of research has been devoted to the feature selection (FS) problem in
supervised learning [1, 2, 3] (a.k.a. variable selection or subset selection [41]). FS is
important for a variety of reasons: it may improve the performance of classifiers
learned from limited amounts of data; it leads to more economical (both in
storage and computation) classifiers; in many cases, it leads to interpretable
models. However, FS for unsupervised learning has not received much attention.

In mixture-based unsupervised learning (clustering [5]), each group of data
is modelled as having been generated according to a probability distribution
with known form. Learning then consists of estimating the parameters of these
distributions, and is usually done via the expectation-mazimization (EM) al-
gorithm [6, 7, 8]. Although standard EM assumes that the number of com-
ponents/groups is known, extensions which also estimate this number are also
available (see recent work in [9] and references therein).

Here, we address the F'S problem in mixture-based clustering, by extending
the mutual-information based criterion proposed in [1] to the unsupervised con-
text. The proposed approach can be classified as a wrapper [2], in the sense that
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the feature selection procedure is wrapped around the EM algorithm. This wrap-
per is able to sort the variables by order of relevance, using backward search. An
MDL criterion is used to prune this sorted list leaving a set of relevant features.

Finally, let us briefly review previously proposed FS methods in unsupervised
learning. In [10], a heuristic to compare the quality of different feature subsets,
based on cluster separability, is suggested. A Bayesian approach used in [11]
evaluates different feature subsets and numbers of clusters for multinomial mix-
tures. In [12], the clustering tendency of each feature is assessed by an entropy
index. A genetic algorithm was used in [13] for F'S in k-means clustering. Finally,
[14] uses the notion of “category utility” for FS in a conceptual clustering task.

2 Mixture Based Clustering and the EM Algorithm

Mixture models allow a probabilistic approach to clustering ([6, 7, 8]) in which
model selection issues (e.g., number of clusters) can be formally addressed.
Given n ii.d. samples YV = {y,...,¥n}, the log-likelihood of a k-component
mixture is

n n k
logp(V|0) = log [[p(vil6) = log > amp(yil6m), (1)
i=1 m=1

i=1

where a1, ..., > 0 are the mizing probabilities (3, om = 1), O, is the set of
parameters of the m-th component, and 6 = {61, ..., 0y, aq, ..., ay } is the full set
of parameters. Each y; is a d-dimensional vector of features [y; 1, ..., y@d]T, and
we assume that all the components have the same form (e.g., Gaussian).

Neither the mazimum likelihood (ML), éML = argmaxg logp()|@), nor the
mazimum a posteriori (MAP), Oyap = arg maxg {logp(YV[0) +logp(8)}, esti-
mates can be found analytically. The usual alternative is the EM algorithm [7,
8, 15, 16], which finds local maxima of logp (Y|0) or [logp (V|0) + log p(0)].

EM is based on seeing ) as incomplete data, the missing part being a set of n
labels Z = {2z, ...,z,}, flagging which component produced each sample. Each
label is a binary vector z; = [2; 1, ..., zi.k), With 2, = 1 and z; , = 0, for p # m,
meaning that y; is a sample of p(-|@,,). The complete log-likelihood (i.e., given
both YV and Z) is

n k
logp(V, 210) = > >~ 2im log [amp(yilm)] (2)

i=1 m=1

The EM algorithm produces a sequence of estimates {a(t), t=0,1,2,..} by
alternatingly applying two steps (until some convergence criterion is met):

e E-step: Compute the conditional expectation W = E[Z|Y, a(t)], and plug it
into log p(Y, Z|0), yielding the so-called Q-function: Q(6, a(t)) =logp (Y, W|0).
Since the elements of Z are binary, their conditional expectations are given by

Wi = B |20 V,00)] = Pr [0 = 1130,80)] & @) p:l0a(t)  (3)
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Yo

Y

Fig.1. Feature y; is relevant to the mixture nature of the data, while y2 is not

(normalized such that ) w;,, = 1). Notice that o, is the a priori probability
that z; ,, = 1 (i.e., that y; belongs to cluster m) while w; ,, is the corresponding
a posteriori probability, after observing y;. R

e M-step: Update the parameter estimates, 6(t + 1) = argmaxg {Q(8,0(t)) +
logp(0)}, in the case of MAP estimation, or without logp(0) in the ML case.

3 Feature Selection for Mixtures

3.1 Likelihood Formulation

Consider the example in Fig. 1: a 2-component bivariate Gaussian mixture. In
this example, ys is clearly irrelevant for the “mixture nature” of the data. How-
ever, principal component analysis (PCA, one of the standard non-supervised
feature sorting methods) of this data would declare y as more relevant because
it explains more data variance than y;.

To address the FS problem for mixtures, we divide the available feature
set y = [y1,...,y4] into two subsets yy and yy. Here, U and N (standing for
“useful” and “non-useful”) are two disjoint sub-sets of indices such that UUN =
{1,2,...,d}. Our key assumption is that the non-useful features are independent
of the useful ones, and their distribution is the same for all classes/clusters, i.e.,

k
p(Y|U,00,0n) = p(yn|On) Y amp(yulOmv), (4)

m=1

where @y is the set of parameters characterizing the distribution of the non-
useful features, and 8y = [01,y, ..., Ok,u] is the set of parameters characterizing
the mixture distribution of the useful features. Notice that we only need to
specify U, because N = {1,2,...,d}\U. The feature selection problem is then to
find U and the corresponding parameter 8 = [y, Oy]. Let us highlight some
aspects of this formulation:
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— Consider maximizing the log-likelihood, given observations Y ={y1,...,yn},

n n k
log p(V|U, 00,0x) = > logp(yin|On)+ Y log > amp(yiv|0muv), (5)

i=1 i=1 m=1

with respect to U, 8y and O . The result would be U = {1, ..., d} (as noted
n [11]), because a mixture is a more general model and so we can never
decrease the likelihood by increasing the number of useful features. This
shows that the problem requires some model selection criterion.

— Testing all possible 27 partitions of {1,2,...,d} into U and N is prohibitive,
even for moderate d. The standard alternative is to use sub-optimal methods,
such as sequential forward/backward search (SF'S/SBS) schemes [3].

3.2 Connection with Feature Selection for Supervised Learning

Assume the class labels and the full feature vector follow some probability func-
tion p(z,y). A subset of features yy is non-useful/irrelevant if it is conditionally
independent of the labels, given the useful features yy (see [1]), i.e., if

p(zly) = p(zlyv,yn) = p(zlyv). (6)

Observation of the model in (4) reveals that we can look at the m-th mixture
component as being p(y|0m) = p(yu|0m,v)p(yn|0n). The outcome of the E-
step of the EM algorithm (3), omitting the iteration counter (¢) and the sample
index ¢ for notational economy, is then

am p(yu|Om,v)p(yn|0 am p(yu|Om,
tm = 2 ulOmu)plyn|On) _ ° yulbmu) X

> aip(yul;0)p(ynlOn) D a;p(yulso)

j=1 j=1

Recalling that w,, = Probly € class m|y, 8], we can read (7) as: given yy, the
probability that an observation belongs to any class m is independent of y .
This reveals the link between the likelihood (4) and the irrelevance criterion (6),
based on conditional independence.

3.3 A Feature Usefulness Measure for Unsupervised Learning

In practice, there are no strictly non-useful features, but features exhibiting some
degree of “non-usefulness”. A natural measure of the degree of independence, as
suggested in [1], is the expected value of the Kullback-Leibler divergence (KLD,
or relative entropy [17]). The KLD between two probability mass functions p (z)
and po(x), over a common (discrete) probability space (2, is

pi(x)
p2()’

Dirlpi() || p2(x Z pi(z) log ?
x€ 2
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and satisfies Di[p1(x) || p2(x)] > 0, and Dgr[p1(z) || p2(x)] = 0, if and only
if p1(x) = pa(x), for all € 2. The relationship between conditional indepen-
dence as stated in (6) and the KLD is given by the following implication

p(zlyv,yn) =p(zlyv) = Dxrp(zlyv.ywn)) || p(zlyv))] =0, (8)

for all values of yy and yn. To obtain a measure of usefulness of a feature set,
we have to average this measure over all possible feature values, according to
their distribution [1]. In practice, both the KLD and its average over the feature
space are approximated by their sample versions on the training samples.

In unsupervised learning we only have the feature samples Y = {y1,...,yn},
but no labels Z = {z1, ..., z,, }. However, after running the EM algorithm we have
their expected values W = {w;m, m=1,...,k, i = 1,...,n}. To build a sample-
based feature usefulness measure, assume that ¥V was obtained using the full
feature set, and let 6 be the corresponding parameter vector. Now let V(NN) =
{vim(N), m=1,..,k, i =1,...,n} be the expected label values obtained using
only the features in the corresponding useful subset U = {1, ...,d}\ N, that is,

-1
k

Vian(N) = G p(yi.010m0) | Y@ p(yiv|0i0) | 9)
j=1

Then, a natural measure of the “non-usefulness” of the features in IV is

n k
1 Wi, m

i=1 m=1

which is the sample mean of KLDs between the expected class labels obtained
with and without the features in N. A low value of 7(IV) indicates that yy is
“almost” conditionally independent of the expected class labels, given yy .

4 A Sequential Backward Feature Sorting Algorithm

4.1 The Algorithm

Of course, evaluating 1 (N) for all 2¢ possible subsets is unfeasible, even for
moderate values of d. Instead, we propose a sequential backward search (SBS)
scheme (Fig. 2) which starts with the full set of features set and removes them
one by one in the order of irrelevance (according to the criterion (10)). This
algorithm will produce an ordered set I = {i1, ..., 14}, which is a permutation of
{1,2,...,d} corresponding to a sorting of the features by increasing usefulness.

4.2 An Illustrative Example: Trunk’s Data

To illustrate the algorithm, we use the problem suggested by Trunk [18]: two
equiprobable d-variate Gaussian classes, with identity covariance and means
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Input: Training data Y = {y™", ..., y(™}
Output: Set I of sorted feature indices.
Initialization:
I {}
U — {1,2,...,.d}
Run EM with all the features to get W = {wim, m=1,...,k, i =1,...,n}
while |I| < d do
Tinin < +o0
for i € U do
Il —{iyulr
Compute Y'(I]) according to (10)
if T(I}) < Xypipn then
Timin < T(I)
imin < ?
end if
end for
I~ {imin} ul
U — U\{ipin}
Update W by running EM using only the features in U.
end while

Fig.2. Feature sorting algorithm. Notice that the sets used in the algorithm
are ordered sets and the set union preserves that ordering (e.g., {c} U {b,a} =

{07 b7 a} # {a’ b’ C})

wy = [1,1/v/2,1/v/3,...,1/Vd]" and py = —p,. Clearly, these features are al-
ready sorted in order of usefulness, and so any feature sorting scheme can be
evaluated by how much it agrees with this ordering. In [3] (for supervised learn-
ing) a measure of the quality of the sorted set I = {iy,...,iq} was defined as

d—1 i . .
1 |[Hn{L, i+ [IE, N {i+ 1, ..., d}|
QU =o—> — T ,
i=1

where I? = {i4, 9441, ..., ip }. Note that Q(I) is a measure of agreement, between [
and the optimal feature ordering {1,2,...,d}, with Q(I) = 1 meaning perfect
agreement. Fig. 3 plots Q(I) versus the sample set size, for d = 20, averaged
over 5 data sets for each sample size. Remarkably, these values are extremely
similar to those reported in [3], although here we are in an unsupervised learning
scenario. Finally, the 17,,;,, values are a measure of the relevance of each feature;
in Fig. 3 we plot these values for the case of 500 samples per class.
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Fig. 3. Trunk data example. Left: feature sorting quality versus training set

size. Right: feature relevance averaged over 20 data sets (vertical bars are + 1

standard dev.)

5 Feature Selection by MDL

5.1 The Criterion

Having features sorted by order of relevance, we may now look for the best place
to cut this sorted list, for a given data set. To this end, we return to the likelihood
formulation (4), and to a comment made above: maximizing the likelihood leads
to the selection of a full feature set. To avoid this over-fitting, we resort to the
minimum description length (MDL) principle [19], criterion:

0 =argmUin{ iy = 1ogp(VIU. 0.0} + "Ug"’Nlog<n>}, (1)

U,UN

where log p(Y|U, 0y, 0y) is given in (5) and |@y| and |6 x| are the total numbers
of parameters in @y and 6y, respectively. Notice that the inner minimization
simply corresponds to the ML estimate of 8y and 8 for a given U, obtained by
the EM algorithm for 8y and by simple maximum likelihood estimates in the case
of . The numbers of parameters |0y | and |6y| depend on the particular form of
p(yn|0n) and p(yu|@m,v). For example, with Gaussian mixtures with arbitrary
mean and covariance, |0y = k(3u + u?)/2. With p(yn|0x) also a Gaussian
density with arbitrary mean and covariance, |@x| = (3(d — u) + (d — u)?)/2.

This MDL criterion is used to select which features to keep, by searching for
the solution of (11) among the following set of candidate subsets, produced by
the feature sorting algorithm of Fig. 2: {I{ = {i1,...,iq}; ¢=1,....d}.

5.2 Illustrative Example

We illustrate the behavior of the feature selection algorithm with a sim-
ple synthetic example. Consider a three-component mixture in 8 dimensions
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