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Preface

IbPRIA 2003 (Iberian Conference on Pattern Recognition and Image Analysis)
was the first of a series of similar events organized every two years, by AER-
FAI (Asociación Española de Reconocimento de Formas y Análisis de Imágenes)
and APRP (Associação Portuguesa de Reconhecimento de Padrões). In 2003
it was hosted by the Universitat de les Illes Balears, Departament de Ciències
Matemàtiques i Informàtica. It provides an international forum for presentation
of ongoing research in computer vision, image analysis, pattern recognition and
speech recognition. Taking into account the new frontiers of information soci-
ety programs where images and audio are fundamental in the communication
process, new applications are also being addressed, namely videoconferencing,
motion detection, human tracking and speech applications. The response to the
call for papers for this conference was very good. From 185 full papers submitted,
130 were accepted, 72 being presented as oral presentations and 58 as posters.
The review process was carried out by the Program Committee, each being pa-
per assessed by at least two reviewers. We are specially indebted to the Program
Committee and the reviewers for the effort and the high quality of the reviews,
which allowed us to prepare this book. An acknowledgement is also due to the
authors for responding to our call and for sharing with us their work, their views
and enthusiasm.

The conference benefited from the collaboration of the invited speakers Prof.
J. Aggarwal from the Computer & Vision Research Center University of Texas
at Austin (USA), Prof. L.I. Kuncheva from the School of Informatics, University
of Wale at Bangor (UK), and Prof. A. Zisserman, Department of Engineering
Science, University of Oxford (UK). We also would like to express to the invited
speakers our sincere gratitude.

We are very grateful to all the members of the organizing committee. Their
intensive work allowed a smooth organization of the conference and of this pro-
ceedings. Finally, we are very pleased to welcome all the delegates who attended
in the conference. For those did not attend, we hope this book provides a broad
but detailed view of the research presented during the conference. Looking for-
ward to meeting you at the next IbPRIA conference, in Portugal, 2005.

June 2003 F.J. Perales and A.J.C. Campilho
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Varona, X. Univ. Autònoma de Barcelona-CVC, Spain
Velhote, M. FEUP, Portugal



Organization IX

Sponsoring Institutions

MCyT (Ministerio de Ciencia y Tecnoloǵıa, Spanish Goverment),
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Jordi Gonzàlez, Javier Varona, F.Xavier Roca,
and Juan José Villanueva
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Estimation of Anti-bacterial Culture Activity from Digital Images . . . . . . . . 354
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Raúl Montoliu and Filiberto Pla

Fusion of Color and Shape for Object Tracking
under Varying Illumination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 580
Francesc Moreno-Noguer, Juan Andrade-Cetto, and Alberto Sanfeliu

Extending Fast Nearest Neighbour Search Algorithms
for Approximate k-NN Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 589
Francisco Moreno-Seco, Luisa Micó, and Jose Oncina
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Abstract. This paper presents a model for the probability of correct
classification for the Cooperative Modular Neural Network (CMNN).
The model enables the estimation of the performance of the CMNN
using parameters obtained from the data set. The performance estimates
for the experiments presented are quite accurate (less than 1% relative
difference). We compare the CMNN with a multi-layer perceptron with
equal number of weights and conclude that the CMNN is preferred for
complex problems. We also investigate the error introduced by one of
the CMNN voting strategies.

1 Introduction

The basic idea behind a modular neural network (MNN) architecture [1,2,3,4,5]
is the combination of several small networks that are trained to solve a spe-
cific part of the full problem. The output of these networks can be combined
using, amongst others, rules such as the simple and weighted averages or the
product [6,7,8] or alternatively, one of the outputs can be selected as the correct
result.

Intuitively, a MNN architecture should perform better than a single network
for problems that can be separated into several subproblems. In this case, there
is a decoupling of the neurons (and weights) used for learning each subproblem
when compared to the case of using a single network to solve the entire problem.
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This paper introduces a model for the probability of correct classification for
the cooperative MNN (CMNN) [1,9,10]. This model enables a better understand-
ing of the way this MNN works. It also enables the estimation of the performance
of the CMNN using parameters estimated from the data set. We show empirically
that these estimates are accurate. We compare the CMNN with a multi-layer
perceptron (MLP) with equal number of weights and conclude that the CMNN
is preferred for complex problems. We also investigate the error introduced by
one of the voting strategies.

Section 2 introduces the CMNN architecture and the model for the probabil-
ity of correct classification (PCC). Section 3 includes the several voting strategies
that can be associated with the CMNN. Section 4 contains experiments, illus-
trating the ideas presented in the previous sections and confirming the validity
of the developed model. In the last section, the results are discussed and the
conclusions posted.

2 CMNN Architecture

In this section we describe the CMNN architecture. Consider a classification
problem with L classes. Cn represents class n. The input feature vector is X .
The CMNN consists of k expert NNs, gi(X), i = 1, . . . , k, that are trained to
solve a particular subproblem of the total problem, and also to recognize when
the input data does not belong to its own subproblem. A classifier gi outputs
a vector of estimates of the posterior probabilities, pi(X ∈ Cn|X),

gi(X) = (pi(X ∈ Cn|X), . . . , pi(X ∈ Cn−1+#Ii |X)), n, . . . , n− 1 + #Ii ∈ Ii (1)

with Ii being the set of indexes that correspond to the classes that classifier gi
can deal with and #Ii the number of corresponding classes.

We define the set containing the indexes of all the experts as

H = {1, . . . , k} (2)

and also
Hj = H\{j}, j ∈ H (3)

Each expert gi has also a set of k − 1 outputs, oi,j , j ∈ Hi, corresponding
to the other experts in the architecture. These outputs have values in [0, 1].
A higher value represents more confidence on the fact that the classifier gj should
be selected to produce the final decision.

For each input X , each expert NN produces a vector of posterior probabili-
ties on the Ii outputs corresponding to the classes of its own subproblem, and
tries to guess which classifier should be used to classify this pattern, using the
remaining k − 1 outputs.

The final decision consists on the class with the largest posterior probabil-
ity from the classifier that is selected by the votes of the oi,j outputs of all
classifiers. Several voting strategies can be considered.

This architecture is represented in figure 1.
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Fig. 1. The CMNN architecture

2.1 General Case

We extend the operator ‘max’ to work with vectors: it outputs the largest com-
ponent of the vector. The set of points in which the event ‘class n has the largest
posterior probability for classifier gi ’ occurs will be represented as Bn,i:

Bn,i = {X : pi(X ∈ Cn|X) = max gi(X)} (4)

The set of points in which the event ‘classifier gi makes a correct classification’
occurs will be represented by Di:

Di =
⋃
n∈Ii

(Bn,i ∩ {X : X ∈ Cn}) (5)

To simplify, will call Bn,i an event and not the set of points where this event
takes place. This will also be done for the set Di and others to be defined below.

The event ‘classifier gi is elected as the one which will output the final deci-
sion’ will be represented by Fi.

This way, the probability of correct classification for this architecture comes
as

PCC = P

(
k⋃
i=1

⋃
n∈Ii

(Bn,i ∩ {X ∈ Cn} ∩ Fi)

)
(6)

Using expression 5 results

PCC = P

(
k⋃
i=1

(Di ∩ Fi)

)
(7)

Since the events Di are disjoint, so is the intersection (Di∩Fi), and expression 7
can be written as

PCC =
k∑
i=1

P (Di ∩ Fi) (8)
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To simplify the last expression we will assume that the events Di and Fi are
independent. This leads to the following expression for PCC

PCC =
k∑
i=1

P (Di)P (Fi) (9)

This assumption can be justified since the fact that classifier gi is the chosen
one for classifying the input (event Fi) is dependent of the majority of the
classifiers, thus not particularly dependent of classifier gi (the dependence that
may exist, since classifier gi also votes, is decreased as the total number of
experts increases). Since the event Di depends exclusively of classifier gi, it is
not a strong assumption to consider its independence from Fi.

The different voting strategies will now be considered.

3 Different Voting Strategies

These are the voting strategies proposed by the original author of the CMNN
architecture [9]. We present them in a formal manner using the events defined
above and also defining new ones.

3.1 Plurality Vote

In this case, each expert gi votes only for one (other) expert: the one with the
highest value of oi,j . The expert with more votes wins.

The number of votes that classifier gi receives is Ti:

Ti =
∑
j∈Hi

I{maxn∈Hj
oj,n=oj,i} (10)

where I{A} denotes the indicator function, which gives one if the event A is
true and zero otherwise.

Using this definition, we can write Fi = {Ti = maxj∈H Tj}.

3.2 Borda Count

The oj,i are ranked and a value of k − 2 is assigned to the largest output of
classifier gj, k− 3 to the second largest and so on, such that the smallest output
receives a value of zero.

The values are summed for each classifier and the one with the largest sum
is elected.

We define the function r(oj,i) : H ×H �→ {1, . . . , k − 1} that gives the rank
of oj,i.

The total value assigned to classifier gi is

BCi =
∑
j∈Hi

(k − 1− r(oj,n)) (11)

The event Fi is thus Fi = {BCi = maxj∈H BCj}.
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3.3 Fuzzy Vote

In this case, the elected classifier is the one with the largest summation over all
values of the votes oj,i.

We define

Si =
∑
j∈Hi

oj,i (12)

In this case, the event Fi comes as Fi = {Si = maxj∈H Sj}.

3.4 Nash Vote

Nash vote is similar to fuzzy vote but instead of having a sum of the oj,i we have
the product.

We define

Pdi =
∏
j∈Hi

oj,i (13)

In this case, we have Fi = {Pdi = maxj∈H Pdj}.

4 Experiments

4.1 A 17 Class Artificial Problem

An artificial problem with 2 features and 17 classes that are roughly clustered in
5 groups was produced. The classes were generated using Gaussian distributions.
The data is plotted in figure 2. Each class has 150 data points, hence, the data
set has 2550 data points.

The CMNN architecture consists of 5 MLPs with topologies [2:22:7] for the 3
groups with 3 classes (the other 4 outputs are for the voting scheme) and [2:20:8]
for the 2 groups with 4 classes (again using 4 outputs for the voting scheme).
The voting strategy used was the plurality vote. We trained a single multi-layer
perceptron (MLP) with the same number of weights as the CMNN architecture
(topology [2:56:17]) to give an idea of the improvement that can be obtained
with the CMNN over a single MLP. Since both the CMNN and the MLP use the
same number of weights, the differences of performance are related to the way
the weights are connected and not to their number. All networks were trained
using resilient back-propagation for 100 epochs.

Table 1 presents the average classification error and standard deviation, both
in percentage, for the 10 repetitions of the leave-k-out cross-validation, with
k = 255.

Notice that there is a third line in the table for an CMNN-IV. This is the
same as the CMNN but assuming that the voting was ideal, i.e., that the experts
always made the correct choice of the expert that should made the final decision.
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Fig. 2. The data set for the artificial problem

Table 1. Average classification errors and corresponding standard deviations,
for the artificial problem

Architecture Error [%] St. Dev. [%]

MLP 17.61 2.95

CMNN 14.55 3.26

CMNN-IV 13.80 3.22

It has slight better performance than the CMNN giving an idea of the error
introduced by the voting scheme, which is about 0.75%.

During testing, the values of P (Di) and P (Fi) were estimated. These values
were then used with the model for the PCC, yielding the value of 86.44%. This
is equivalent to an error of 100-86.44=13.56% . This is in good agreement with
the obtained value of 14.55% error for the CMNN (the difference is 0.89% out
of 14.55%), thus asserting that the model developed is accurate.

4.2 A 2 Group, 4 Class Real Problem

To test the prediction capabilities of our bounds on real problems we used a data
set for a vowel discrimination problem. The data consists of the first and second
formants of the vowels ‘i’,‘I’,‘a’ and ‘A’ produced by 76 speakers (33 males, 28
females and 15 children). Each vowel was repeated twice by each speaker, giving
a total number of 608 data points. It is a subset of the Peterson and Barney
data set referred in [3] and is represented in figure 3. Both features were linearly
scaled by dividing by 1000.

The CMNN architecture consists of 2 multi-layer perceptrons (MLPs) with
topologies [2:15:3] - 2 outputs for each class in each group and the other for
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Fig. 3. Data set for a 4 class, 2 group problem

Table 2. Average classification errors and corresponding standard deviations,
for the real problem

Architecture Error [%] St. Dev. [%]

MLP 6.41 2.04

CMNN 8.39 3.22

CMNN-IV 8.22 2.88

the output used for the voting strategy. The voting strategy used was again the
plurality vote. We trained a single multi-layer perceptron (MLP) with the same
number of weights as the CMNN architecture (topology [2:26:4]) to give an idea
of the improvement that can be obtained with the CMNN over a single MLP.
The networks were again trained using resilient back-propagation for 100 epochs.
Table 2 presents the average classification error and standard deviation, both in
percentage, for the 8 repetitions of the leave-k-out cross-validation, with k = 76.

The CMNN-IV has again, and as expected, a slight better performance than
the CMNN. In this case, the error introduced by the voting scheme against the
CMNN with the ideal voting scheme is 0.17%.

With the estimated values of P (Di) and P (Fi) replaced in the model, we
obtain an estimate for the PCC of 91.64%. This is equivalent to an error of
100-91.64=8.36% . This is again in good agreement with the obtained value of
8.39% error for the CMNN. Once again the model for the PCC yields a good
estimate: the difference of the estimate to the true value is only 0.03%.

In this case the MLP outperformed the CMNN. We believe that this hap-
pened because the problem was too simple for the CMNN. Some of the weights
used in the voting scheme were better used by the MLP in approximating the
problem as a whole.
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5 Conclusions

This paper presents a model for the probability of correct classification for the
cooperative modular neural network (CMNN) architecture. The validity of the
presented model was confirmed by experiments using both artificial and real data
sets. Its predictions of the CMNN error rates, using some estimated parameters
from the data sets, were in good accordance with the empirical errors.

The error introduced by one of the voting strategies, the plurality vote, as
compared with the ideal vote was also investigated. We concluded that the error
the voting scheme introduces is small when compared with the error of the
experts in their subproblems.

Finally, a multilayer perceptron (MLP) with equal number of weights as the
CMNN was used. This makes the differences in accuracy of these two classifiers
to be only due to the way the weights are connected and not to their number. The
results suggest that the CMNN produces better results with problems involving
several groups, i.e., if the problem is simple, a simple architecture should be
used.
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Abstract. The Mixture of Experts model (ME) is a type of modular
artificial neural network (MANN) whose architecture is composed by dif-
ferent kinds of networks who compete to learn different aspects of the
problem. This model is used when the searching space is stratified. The
learning algorithm of the ME model consists in estimating the network
parameters to achieve a desired performance. To estimate the parame-
ters, some distributional assumptions are made, so the learning algorithm
and, consequently, the parameters obtained depends on the distribution.
But when the data is exposed to outliers the assumption is not longer
valid, the model is affected and is very sensible to the data as it is showed
in this work. We propose a robust learning estimator by means of the
generalization of the maximum likelihood estimator called M-estimator.
Finally a simulation study is shown, where the robust estimator presents
a better performance than the maximum likelihood estimator (MLE).

Keywords: Artificial Neural Networks, Mixtures of Experts, Robust
Learning.

1 Introduction

Artificial Neural Networks (ANN) are a very useful and important model with
many applications in a broad field, they have been very successful in areas like
classification, diagnosis, regression, compression, feature selection, time series
modeling, and others. ANN are capable of modeling many non-linear functions.
Some of the task cannot be modeled by a single network and it is very difficult
to incorporate an a priori knowledge of the problem.

The brain is formed by a collection of modules, where each one is special-
ized to an specific function. This theory has two important hypothesis: there
� This work was supported in part by Research Grant Fondecyt 1010101 and 7010101,
in part by Research Grant CHL-99/023 from the German Ministry of Education and
Research (BMBF) and in part by Research Grant DGIP-UTFSM
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exists a correspondence between structure and function, i.e., there exist diverse
structural regions in the brain, where the function takes place. The second hy-
pothesis considers that different brain regions compete for the capacity of doing
some task. So, different regions of the brain become very specialize in the task
where its structure is more adequate [5].

Based on this idea, a modular architecture known as Mixture of Experts (ME)
was developed by Jacobs, Jordan, Nowlan and Hinton [6]. This Architecture
consists of two types of neural networks with different functions, the experts and
the gating neural network. The experts networks compete for the learning of the
training data and the gating network decides which expert networks are more
capable to model the pattern. The learning process of the ME model combines
associative and competitive aspects of the learning.

The learning problem can be seen as a parameter estimation problem based
on the gradient ascent algorithms. An alternative method to estimate the max-
imum likelihood (ML-estimate) was presented by Jordan and Jacobs [8]. They
introduced an expectation maximization algorithm (EM) for the ME models.

There are several factors affecting ML-estimate. First of all, the selection of
training samples as initial estimates can affect the convergence to a great extent.
Another factor that affects the performance of the ML-estimate is the presence
of statistical outliers. Statistical outliers are defined as those observations that
are substantially different from the distributions of the mixture models. The
problem of outliers is not uncommon in practical applications. For example, in
remote sensing, a scene usually contains pixel of unknown origin which form ”in-
formation noise”, the statistical distributions of theses pixels may be significantly
different from those of training classes and constitute statistical outliers.

Unfortunately, the ME models are very sensitive to the presence of the out-
liers as it is shown in this work, motivating the research of robustness for this
models. We propose to robustify the learning process of the ME models by using
a special function that is insensible to the presence of outliers in the model’s
parameter estimation process.

In recent years there have been studies on Robustness of feedforward artificial
neural networks, [1], [2]) but the authors are unaware of the existence of any
study of the robustness of the ME models, in particular, when the estimation is
based on the M-estimators.

2 Mixture of Experts Models Architecture

The modular architecture, specified in [7], consists in K modules called experts
or local experts, where each one solves an approximation problem over a local
region of the input space. Each expert has a probability model that associated an
input vector x ∈ IRn with an output vector y ∈ IRm, P (y|x,wj), j = 1, 2, . . .K,
where wj represents the parameter of the expert j.

Consider the figure 1, where each expert εi generates the output μ
i

=
f(x,wi) with probability P (y|x,wi), where μ

i
is the conditional expectation,

μ
i
= E[y|x,wi] under the probability model P (y|x,wi).
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Fig. 1. Mixtures of Experts Architecture (ME): This architecture consists
in a set of experts networks and a gating network. The experts compete for the
learning of the problem and the gating mediates the competence

We suppose that different kinds of neural networks are appropriate in dif-
ferent regions of the domain space, so such form that the architecture needs
a mechanism to identify for each input x which experts are more adequate to
model the desire output. This is done by a gating network, which divides the
input space in regions by a set of scalar coefficients gi (output of the gating
network) which depends on the input x, and the output is the mixture of the
contribution of each expert. There exists a probability vector [g1, g2, . . . , gK ]T for
each data point of the input space. Generally, the network implements a param-
eterized function ξ(x, η) and a normalize function gi(ξ) which maps from IRK

to IRK . The objective is to force the probability restrictions as was presented
in [6], where a softmax function was used given by gi = exp ξi∑

j exp ξj
. So, it is easy

to check that the gi’s are non-negative and their sum is one. The probabilistic
interpretation of the ξi is that they are discriminant surfaces for a classification
problem and the gating network is a classification system which maps the input
x to the probabilities of some experts being able to generate the desire output
(based only on the knowledge of x), where gi ≥ 0 and

∑K
i=1 gi = 1.

2.1 Mixture of Experts Model Specification

Assuming that the training set χ = {(x(n), y(n))}Nn=1 is generated by the fol-
lowing procedure: given a data point x, an expert εi is chosen with probability
P (εi|x, η∗), given the expert εi and the input x, it is assumed that the desired
output y is generated with probability P (y|x,w∗i ). The data is assumed to be
independent and identically distributed.

The experts model different processes and the gating network models the
decision of using some of these different processes. The output y can be gener-
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ated by the total probability of y given x obtained by the sum of the weighted
contribution of all experts εi:

P (y|x,Θ∗) =
K∑
i=1

P (εi|x, η∗)P (y|x,w∗i ) (1)

where Θ∗ denotes the true parameter vector (Θ∗ = [w∗T1 , w∗T2 , . . . , w∗TK , η∗T ]T ).
The density in the equation (1) is known as finite mixture density.

The gating network task is to model the probabilities P (εi|x, η∗), constructed
as a probability class in a multi-classification problem of the input x, parame-
terizing by softmax function obtaining g∗i = P (εi|x, η∗).

The moments of the mixture density are directly calculated. The conditional
media μ∗ = E[y|x,Θ∗] is obtained by taking the expectation of the equation (1),

μ∗ =
∑
i

g∗i μ
∗
i

(2)

where μ∗
i

is the conditional media associated to the probability distribution
P (y|x,w∗i ) corresponding to the experts output εi. The modular architecture
output is a weighted sum of the experts output.

3 Learning Algorithm

The learning problem is treated as parameter estimation process of the ME
architecture. The parameters are chosen in the way that they maximize the
joint probability given in the equation (1). This process is known as maximum
likelihood estimation (MLE). The data of the learning set χ are assumed to be
generated independently by the mixture density. The likelihood function of the
learning set for a specific sample vector χ = {(x(n), y(n))}Nn=1 is given by

L(χ,Θ) = P ({y(n)}N1 |{x(n)}N1 ) =
∏N

n=1 P (y(n)|x(n))∏N
n=1

∑K
i=1 gi(x, η)P (y(n)|x(n), wi)

(3)

The MLE consists in maximize the equation (3) or equivalently, maximize
the log-likelihood

l(χ,Θ) =
N∑
n=1

log
K∑
i=1

gi(x, η)P (y(n)|x(n), wi) (4)

To estimate the ME model parameters Θ∗, techniques based on gradient
ascent are applied (see [6] and [7]). An alternative method is the algorithm of
expectation maximization (EM) that was generalized to the ME architecture by
Jordan y Jacobs in [8]. This algorithm is very useful to Models where the experts
and the gating networks have a simple parametric form.
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4 Robust Learning Algorithm

The learning process of the ME model is done by means of the maximum likeli-
hood estimator (MLE) described by the equation (3).

The robust learning process based on the random sample {(x(n), y(n))}Nn=1

with common distribution P (y|x), consists in minimizing the functional cost

given by the equation (5) to find the parameter M-estimator Θ̂
M

N of the param-
eters Θ∗ in the ME model by the equation (6).

RLN(χ,Θ) =
∑N

n=1 ρ(y
(n), Θ|x(n))

=
∑N

n=1 ρ

(∑K
i=1 gi(x, η)P (y(n)|x(n), wi)

)
(5)

Θ̂
M

N = arg min
Θ∈IRd

{RLN(χ,Θ)} (6)

where ρ is the robust function that introduces a bound to the influence due to
the presence of the outlier in the data.

Assuming that ρ is differentiable whose derivative is given by ψ(y,Θ|x) =
∂ρ(y,Θ|x)

∂Θ , or, alternatively, the estimated parameter can be obtained by solving
the first order equation:

N∑
n=1

ψ(y(n), Θ̂
M

N |x) =
N∑
n=1

ψ

( K∑
i=1

gi(x, η)P (y(n)|x(n), wi)
)

= 0 (7)

4.1 Selecting the Robust Function

In [4] some special functions for M-estimation are discussed. The goal is to
weight each observation according to the magnitude of likelihood evaluated at
the observation. Samples with low likelihood are likely to be regarded as outliers
and are downweighted. In particular, for the location problem, data that are
far away must have a bounded impact in the estimation algorithm, so there are
several functions that can be use, for example the Huber function given by

ρH(z) =
{
z + 1

2 log(2π) if z ≥ 1
2 (−k2 − log(2π))

−k{−2z − log(2π)} 1
2 − 1

2k
2 otherwise

(8)

ψH(z) =
{

1 if z ≥ 1
2 (−k2 − log(2π))

k{−2z − log(2π)}− 1
2 otherwise

(9)

where z is the log-likelihood given by the equation (4) evaluated at the point
(x, y).
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4.2 Robust Learning Algorithm Based on the Gradient Techniques

To obtain the neural networks parameters, the function given by the equation
(5) must be minimized through a neural network learning process. In this work
gradient descent is applied to minimize the equation (5).

Let ζ =
∑

i gi(x, η)P (y(n)|x(n), wi), so by taking derivatives of RLN(Θ) with
respect to μ

i
and ξi, the following expression are obtained:

∂RLN (Θ)
∂μi

=
∑

n ψ(ζ)giP (y(n)|x(n), wi)
∂
∂μi

ln
{

(P (y(n)|x(n), wi)
}

∂RLN (Θ)
∂ξi

=
∑

n ψ(ζ)gi

{
P (y(n)|x(n), wi)−

∑
k gkP (y(n)|x(n), wk)

} (10)

where ψ = ∂ρ
∂ζ , gi is the softmax function, and

∂gk
∂ξi

=

⎧⎪⎨⎪⎩
− exp ξk exp ξi

(
∑

j exp{ξj})2
= −gkgi if i �= k

gi −
(

exp ξi∑
j exp{ξj}

)2

= gi − g2i if i = k
(11)

The parameter estimation problem in ME-models has been addressed in [9],
[11] and [12], in particular they considered that, the experts and the gating net-
works are linear. Furthermore the ME-models is assumed with multidimensional
Gaussian conditional densities, in this case, the conditional density satisfy:

P (y|x,wi) = 1
(2π)m/2|Σi|1/2 exp{− 1

2 (y
(n) − μi)TΣ−1i (y(n) − μi)},

where μ
i
= f(x,wi) = wi

Tx is the output of the i-th expert. The gating network
is also considered linear, ξ = ηTx, and then a softmax function is applied to
obtain the output of this network that weight the experts output. When the
covariance matrix is the identity matrix Σi = I, the conditional distribution

is P (y|x,wi) = 1
(2π)m/2 exp{− (y−μi)

T (y−μ
i
)

2 }. Finally by using gradient ascent
in the functional cost, we obtain the parameter update of the net given by the
following expression:

Δwi = αψ(ζ)gi 1
(2π)m/2 exp

{
− (y(n)−μi)

T (y(n)−μ
i
)

2

}
(y(n) − μ

i
)x(n)

T

Δη
i
= αψ(ζ)gi

{
P (y(n)|x(n), wi)−

∑
k gkP (y(n)|x(n), wk)

}
x(n)

T
(12)

where α is the learning rate.

5 Simulations Results Applied to the Building Data

The robust learning of the ME models where evaluated on a real life data con-
sisting on a prediction problem. The Building2 data set was obtained from the
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Table 1. Results obtained for the ME and robust ME models for the second
experiment

#experts Train. ME Train. robust ME Test ME Test robust ME

3 0.0081 0.0037 0.0082 0.0042

4 0.0069 0.0036 0.0076 0.0040

10 0.0039 0.0034 0.0043 0.0038

20 0.0036 0.0034 0.0040 0.0038

25 0.0035 0.0034 0.0039 0.0038

30 0.0034 0.0035 0.0039 0.0039

PROBEN1 benchmark set [10]. The problem is to predict the hourly consump-
tion of electrical energy, hot water, and cold water, based on the date, day of
the week, time of day, outside temperature, outside air humidity, solar radia-
tion, and wind speed. The data set is spread over six month from September to
February. So, the input vector is dimension 14 and the output vector is 3. The
data consists in 4208 samples.

The experiment consisted in that the data set was divided in three groups: the
learning set with 1462 samples, the validation set with 1464 samples and the test
set with 1282 samples. The performance of the networks obtained was evaluated
by using the mean square error (MSE). The importance of this experiment is
that the learning and the validation sets belong to different phase of the year
(Winter - Spring). The results obtained are shown in the table 1 for the ME,
using the classical MLE for the learning algorithm, and robust ME models, using
the Huber function introduced in the subsection 4.1.

As can be observed, the robust ME model outperforms the model proposed
in [11], it is shown that MELG obtained a MSE of 0.0072. The mean square
error for the ME model is correlated to the number of experts, if the number of
experts is increased, the MSE decreased. In [11] it is shown that the number of
experts can be found in an adaptive form, but this algorithm is time consuming
and depends on the initialization.

For the robust ME model, empirically can be seen that with a robust learning
the model complexity is lower, because the number of experts needed to obtain
a desire performance is much less than the classical ME model as can be appre-
ciated in the figure 2.

6 Concluding Remarks

In this work it is shown that the ME models with robust learning outperforms
the results presented in similar works where ME models based on the gradient
ascend techniques were used. On the other side, we extend our comparative study
to the localized ME model for the gating network, by showing that if the softmax
function is used, then the function is decomposed in different soft regions in the
way that each expert network models some region. For the experiments studied
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in this work, it is not necessary to introduce more complexity by using localized
model with robust learning, because less numbers of experts are required to
obtain a desired performance, and the convergence of the learning algorithm is
faster.

It may be observed that, from the point of view of Fuzzy logic, the weighted
sum (of experts outputs), if normalized, represents a form of aggregation (see
e.g. [3]). This suggest the possibility to generalize the ME model by considering
other aggregation operations and evaluating their performance.
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1 Universidad Técnica Federico Santa Maŕıa
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Abstract. The learning process of the Feedforward Artificial Neural
Networks relies on the data, though a robustness analysis of the param-
eter estimates of the model must be done due to the presence of outlying
observations in the data. In this paper we seek the robust properties in
the parameter estimates in the sense that the influence of aberrant ob-
servations or outliers in the estimate is bounded so the neural network
is able to model the bulk of data. We also seek a trade off between ro-
bustness and efficiency under a Gaussian model. An adaptive learning
procedure that seeks both aspects is developed. Finally we show some
simulations results applied to the RESEX time series.
KEYWORDS: Feedforward Artificial Neural Networks, Robust Learn-
ing, Effective parameter estimate.

1 Introduction

In the last decades there have been a widespread interest in the use of artificial
neural networks (ANN) in many different problems ranging from pattern classi-
fication to control engineering. A very important and widely applicable class of
ANN models are the feedforward artificial neural networks (FANN) because they
have been remarked as universal approximators of continous, bounded, nonlinear
functions that can be trained from examples of input-output data.

The ANN are seen by researches as either highly parameterized models or
nonparametric structures. ANN models are flexible, and have a demonstrated
success in a variety of applications in which linear models fail to perform well.
A statistical analysis has been made by considering ANN as nonlinear regres-
sion models and by casting network learning as a statistical estimation prob-
lem [6], [10].
� This work was supported in part by Research Grant Fondecyt 1010101 and 7010101,
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The learning algorithm for the parameters estimation of the neural model
relies on the data. When the data are contaminated with outliers, for example,
observations that are substantially different to the bulk of data due to gross er-
rors, they can influence badly bringing degradation in the estimates [1], [2], [5].
Full effectiveness can be achieved only when the data agree with the assump-
tions underlying the data generating process but not when deviations from them
occurs (See [8]), aspect widely investigated in statistics, but very poorly in the
ANN literature [2], [3], [4], [5]. In this work we seek a compromise in terms of
statistical efficiency and robustness of learning procedures by applying M esti-
mators introduced by Huber [8].

This paper is organized as follows. In section 2, we introduce the notation
and architecture of the feedforward neural networks (FANN). In section 3, we
develop a robust analysis of the Learning Algorithm for the FANN, and then we
propose a robust and effective estimator for the FANN parameters (weights). We
will give simulation results in section 4 where the procedure is applied to Time
Series modeling, and a comparative analysis based on the performance of the
different learning algorithms is made. Concluding remarks and future extensions
are presented in section 5.

2 Feedforward Artificial Neural Networks

A FANN consists of elementary processing elements called neurons, organized
in three type of layers, the input, the output and the hidden layers, where the
latter is located between the input and the output layers. The number of input
and output units are determined by the application. The links of the neurons are
from one layer to the successive without any type of bridge, lateral or feedback
connections. For simplicity, a single-hidden-layer architecture is considered in
this paper, consisting in only one hidden layer and one output neuron, this class
of neural models can be specified by the number of hidden neurons by Sλ =
{gλ(x,w) ∈ IR, x ∈ IRm, w ∈ W}, where W ⊆ IRd, gλ(x,w) is a non-linear
function of x with w = (w1, w2, ..., wd)T being its parameter vector, λ is the
number of the hidden neurons and d = (m + 2)λ + 1 is the number of free
parameters. The results presented in this paper can be easily extended to FANN
with a higher number of layers and output neurons.

Given the sample of observations, the task of neural learning is to construct
an estimator gλ(x,w) of the unknown function ϕ(x) by

ŷ = gλ(x,w) = γ2

⎛⎝ λ∑
j=1

w
[2]
j γ1

(
m∑
i=1

w
[1]
ij xi + w

[1]
m+1,j

)
+ w

[2]
λ+1

⎞⎠ (1)

where w is a parameter vector to be estimated, γ′s are linearity or non-linearity
and λ is a control parameter (number of hidden units). An important factor
in the specification of neural models is the choice of the ’activation’ function
γ′s, these can be any non-linearity as long as they are continuous, bounded
and differentiable. The activation function of the hidden neurons γ1 typically
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is a squashing or a radial basis function. A special type of squashing function is
the logistic function γ1(z) = [1 + exp{−z}]−1 and is one of the most commonly
used. For the output neuron the function γ2 could be a linear function f(z) = z,
or squashing function.

The estimated parameter ŵLS
n is obtained from the sample {xt, yt}t=1..n of

size n by minimizing iteratively a loss function Ln(w), given for example by
the ordinary least squares function (2). The loss function gives us a measure of
accuracy with which the estimated model fits the observed data.

Ln(w) =
1
2n

n∑
t=1

(
yt − gλ(xt, w)

)2 (2)

3 Robust Analysis of FANN

In some earlier works is shown that FANN models are affected with the presence
of outlying observations, in the way that the learning process and the prediction
have a very poor performance (See [2], [5], [9]).

Let the data set χ = {xt, yt}t=1..n consists of an independent and identi-
cally distributed (i.i.d) sample of size n coming from the probability distribu-
tion F (x, y). A nonlinear function y = ϕ(x) is approximated from the data by
a feedforward artificial neural network, i.e., y = gλ(x,w∗) + r, where y ∈ IR is
the desired output, x ∈ IRm is the input vector, w∗ ∈ W ⊂ IRd is the unknown
parameters vector and r ∈ IR is the residual error.

Assuming that W is an open convex set and rt are independent to the xt,
t = 1..n, with symmetric density h(r/σr), where σr > 0 is the scale parameter
and k(x) is the density function of the x, then the joint density function f(x, y)

is given by f(x, y) = 1
σr
h

(
y−gλ(x,ŵn)

σr

)
k(x).

An M-estimator ŵM
n is defined by ŵM

n = arg min{RLn(w) : w ∈ W},W ⊆
IRd, where RLn(w) is a robust functional cost given by the following equation,

RLn(w) =
1
n

n∑
t=1

ρ
(
yt − gλ(xt, w)

)
(3)

where ρ is the robust function that introduces a bound to the influence due
to the presence of outliers in the data. Assuming that ρ is differentiable whose
derivative is given by ψ(r, w) = ∂ρ(r,w)

∂r , an M-estimator ŵM
n can be defined

implicitly by the solution of the following equation,

n∑
t=1

ψ

(
yt − gλ(xt, w)

σr

)
Dgλ(xt, w) = 0 (4)
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where ψ : IR×W → IR, rt = yt − gλ(xt, ŵM
n ) is the residual error and

Dgλ(x,w) =
(

∂

∂w1
gλ(x,w), . . .,

∂

∂wd
gλ(x,w)

)T

(5)

is the gradient of the FANN. We will denote Dgλ = Dgλ(x,w) for short.

3.1 The Influence Function of the M-estimator of the FANN

In order to study the robustness and effectiveness aspect of the M-estimator, we
should analyze the influence function (IF) . The IF is a local measure introduced
by Hampel [7] and describes the effect of an infinitesimal contamination at the
point (x, y) on the estimate.

The IF of the M-estimator applied to the FANN model, ŵM
n , and calculated

at the distribution function F (x, y) is given by the following equation,

IF (x, r;w,F ) = ψ(r, w)M−1Dgλ(x,w) (6)

where r is the residual, Dgλ(x,w) is given by equation (5) and

M =
∫
IR

(ψ′(r, w)DgλDgTλ − ψ(r, w)D2gλ)dF (x, y) = EF [H(r, x, w)] (7)

where H(r, x, w) = (ψ′(r, w)DgλDgTλ − ψ(r, w)D2gλ) is the Hessian of ρ(·) with
respect to the parameters w and D2gλ = [∂

2gλ(x,w)
∂wi∂wj

] is the Hessian matrix of
the FANN of side d × d. In practice, M is not observable and must be esti-
mated, White [10] demonstrated that a consistent estimator of M is M̂n =
1
n

∑n
t=1H(rt, xt, ŵ

M
n ), where ŵM

n are the parameters obtained from the data by
the minimization of the risk function (3). With this result, we can estimate the in-
fluence at the point (x∗, y∗) by ˆIF (x∗, r∗; ŵM

n ) = ψ(r∗, ŵM
n )M̂−1n Dgλ(x∗, ŵM

n )T .

3.2 Analyzing the Gaussian Case

As a special case we studied the case when the residual distribution is the
standard normal, i.e., h(r/σr) = φ(r/σr), so the density function is given by
f(x, y) = φ(r/σr)k(x). If we assume a Gaussian model for the residuals and ψ
is odd, then the second term in (7) can be neglected, so we get:

M = E[ψ′]E[DgλDgTλ ] =
(∫

IR

ψ′(r)dΦ(r)
)(∫

IR

DgλDgTλ dK(x)
)

(8)

From the equation (6) and (8) we can realize that the IF can be decomposed
as the product of two factors, one dependent on the residual known as residual
influence (IR) and the influence due to the position (IP), obtaining the total
influence:

IF (x, r;w,F ) = IT (x, r;w,F ) = IR(r;w,Φ)IP (x;w,K) (9)
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where IR(r;w,Φ) = ψ(r)/E[ψ′(r)] and IP (x;w,K) = (E[DgλDgTλ ])−1Dgλ.
An important summary value based on the IF is the gross error sensitiv-

ity that measures the worst (approximate) influence which a small amount of
contamination of fixed size can have on the value of the estimator. The gross
outlier sensitivity is defined as γ∗u(ŵ

M
n , F ) := supx,r{‖IF (x, r; ŵM

n , F )‖}. It is
a desirable feature that γ∗u(ŵ

M
n , F ) be finite obtaining a B-robust estimator.

In the Gaussian case, the gross error sensitivity is due to the residual and the
position influence, i.e., γ∗u(ŵ

M
n , F ) = supx,r{|IR(r; ŵM

n , Φ)|‖IP (x; ŵM
n ,K)‖}.

When the classical Least Square estimator is used, the gross error sensitivity
is γ∗u(ŵ

LS
n , F ) = supx,r{|r|‖IP (x; ŵLS

n , F )‖} = ∞, i.e., this procedure lacks of
robustness by being sensible to the contamination in the residual error that relies
on the data.

To obtain a B-robust estimator we analyzed the influence due to the position
(IP) and the influence due to the residual (IR). The influence due to the position
is bounded (supx{‖IP (x;w,K)‖} < ∞), when γ1 is a logistic function and
γ2 is a logistic or a linear function, because the gradient of the FANN model,
Dgλ(x,w), has four types of derivatives:

∂gλ(x,ŵn)

∂w
[1]
ij

= γ′2(·)w[2]
j γ′1,j(·)xi, i = 1..m, j = 1..λ;

∂gλ(x,ŵn)

∂w
[1]
m+1,j

= γ′2(·)w[2]
j γ′1,j(·), j = 1..λ;

∂gλ(x,ŵn)

∂w
[2]
j

= γ′2(·)γ1,j(·), j = 1..λ; and,
∂gλ(x,ŵn)

∂w
[2]
λ+1

= γ′2(·),
because γ′2 is a constant if γ2 is linear and maxz{γ′2(z)} = 0.25 if γ2 is a lo-
gistic function. Similarly for γ′1. These factors decrease faster than xi grows.
The influence due to the residual must satisfy that supr{|IR(r; ŵM

n , Φ)|} =
supr{|ψ(r)/E[ψ′(r)]|} < ∞ to obtain a robust learning estimator that is insen-
sible to the presence of outlying observations. For example the Huber and the
Bisquare functions, given by equation (10) and (11) respectively, satisfy these
requirements.

ψH(r, c) = sgn(r)min{|r|, c} (10)

ψB(r, c) =
{
r(1 − (r/c)2)2 r ∈ [−c, c]

0 r < −c or r > c
(11)

By putting a bound on γ∗ will often conflict with the aim of asymptotic
effectiveness. In order to obtain an effective and robust estimator the value of
the constant c of the ψ − function should be estimated.

It is a well know fact that the LS estimator is the most effective estimator of
the mean under a Gaussian model. By assuming that the residual has a distri-
bution close to the Gaussian and outliers should appear in regions further than
3σr. By assuming that E[r] = 0 and by considering a robust estimation of σr
given by σr = 1.483median{|r−median{r}|}, we should look for a constant c
such that the distance between ψ·(r∗, c) and ψLS(r∗) = r∗ is not bigger than
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Fig. 1. a)(left) LS estimator. b)(right) Robust Learning Algorithm

a desired constant k > 0 given at some point r∗ obtaining almost full efficacy
inside the [−r∗, r∗] region, and outside that point, the robust estimator start to
have less efficacy than the LS estimator under Gaussianity.

The value of the constant c could be obtained analytically or by numeric
methods, for example, in the Huber case, we choose k = 0, so the value of the
constant is c = r∗ and for the Bisquare case, we take some small value for k and
after some calculations and by using the absolute value as the distance metric,

i.e., |ψB(r, c)− r| = k, we obtained c = r∗/(
√

1−√
1− k/r∗).

Due to the fact that the estimation process is an adaptive learning algorithm
σr varies while the model is approaching the training data, implying that σr =
σr(t) depends on the iteration t. The same holds for the constant c = c(t).

4 Simulations Results Applied to the RESEX Data

In this section the procedure is applied to the Residence Telephone Extensions
Inward Movement (Bell Canada) known as RESEX data. The chosen series is
a monthly series of ”inward movement” of residential telephone extensions of
a fixed geographic area in Canada from January 1966 to May 1973, a total of
89 data points [1]. This serie has two extremely large values in November and
December 1972 as it is shown in Figure 1. The two obvious outliers have a known
cause, namely a bargain month (November) in which residence extensions could
be requested free of charge. Most of the orders were filled during December, with
the remainder being filled in January. This serie was identified as an ARIMA
(2, 0, 0)×(0, 1, 0)12 model with the form xt = φ1xt−1+φ2xt−2+xt−12+φ1xt−13+
φ2xt−14 + at

After analyzing the performance of different architectures where the input
and the hidden neurons where changed, good results were obtained for the FANN
with lags Xt−1, Xt−2, Xt−12, Xt−13, Xt−14 to predict Xt, i.e., five input neurons
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and one output neuron with linear activation function, and only one hidden
neuron with logistic activation function. Due to the low number of data and in
order to study the influence of the outlier in the learning algorithm, all the data
were included in the training phase.

This architecture was trained using three different functional cost: the least
square estimator (LS) described in (2), the M-estimators with the ψ− function
of Huber (MH) and the Tukey’s bisquare (MB) given by the equation (10) and
(11) respectively. To obtain the parameters that minimize the functional cost,
the backpropagation with momentum algorithm was used [6].

The FANN were trained with all the data including the outliers (Serie 1)
and with the data where the known outliers were edited (Serie 2). The training
process was repeated 20 times.The results are shown in table 1 and 2, where the
performance and the effectiveness of the prediction of the FANN trained with
different estimators (first column) are shown. The performance was evaluated
with the mean square error (MSE) and the effectiveness as the ratio between
the MSE of the LS and the robust estimators.

The second and third column of both tables show the results of the FANN
trained with Serie 1 and Serie 2 respectively. A fourth column was included to
show the evaluation of FANN trained with the contaminated data (Serie 2) but
evaluated by omitting the outliers. Finally in the table 1, two additional columns
were added to show the peak value of the errors occurred in the location of the
outliers data, the most importants contributors to the MSE.

As can be seen in table 2, the robust estimators shows almost full effectiveness
under “uncontaminated” data (second column). Under the presence of outliers,
the performance of the FANN with LS estimator was superior than the other
two networks but as can be seen in the figure 1a), the model is separated to
the bulk of data, so if we evaluate the networks without considering the outliers
(fourth column), the FANNs with Robust learning over performed substantially
the LS case with 212% of effectiveness (4th column of table 2). As a conclusion,
first, the Robust networks approximated better the bulk of data meanwhile the
FANN with LS learning tends to model the outliers, and, second, the MSE is
a global measure of the prediction performance that introduce a distortion vision
of the quality of the estimator because does not show the local behavior of the
model.

Table 1. Performance of the learning process obtained for the different Learning
algorithms (×106)

Est. Serie 1 Serie 2 Serie 2 error2 error2

without out. Out. Nov. Out. Dec.

LS 2.3184 ± 1.4609 37.680 ± 0.0086 6.4264 ± 1.2678 2274.8 4.3

MH 2.3182 ± 0.0277 42.484 ± 0.0084 3.0203 ± 0.6122 2928.3 3.9

MB 2.3365 ± 0.0102 42.592 ± 0.0848 3.0304 ± 0.5806 2967.5 0.2



A Robust and Effective Learning Algorithm 35

Table 2. Effectiveness of the Robust Learning compared to the LS case
(MSELS

MSEM·
∗ 100%) and square error of the outliers

Estimator Serie 1 Serie 2 Serie 2 without out.

LS —- —- —-

MH 100.01% 88.69% 212.77%

MB 99.22% 88.47% 212.06%

5 Concluding Remarks

The learning process of the FANN, based on the Least Square for the parameters
estimate, were shown to be sensible to the presence of outliers, where they tend
to model gross outliers due to their influence in the training. A Robust Learning
Algorithm based on M-estimator was developed where the influence of the outlier
in the estimation process was bounded. The robustness of the estimator will
often conflict with the aim of asymptotic effectiveness, therefore the shape of
the functional cost were adapted during the training.

Simulations results on real Time Serie were developed to show the improve-
ment of the Robust Learning Algorithm over conventional least squares fitting
for the RESEX Time Series.

Different types of M-estimators could be used in the Robust Learning Algo-
rithm, so further studies can be made to choose the proper function for the data
in study. The Robust technique used in this paper can be used in a different
scope other than neural networks in time series. Future work in robust tech-
niques and Neural Networks will center around making neural networks robust
to changes in the variance of the noise.
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36 Héctor Allende et al.

[7] F.R. Hampel, E.M. Ronchetti, P. J. Rousseeuw, and W.A. Stahel, Robust statis-
tics, Wiley Series in Probability and Mathematical Statistics, 1986. 31

[8] Peter J. Huber, Robust statistics, Wiley Series in probability and mathematical
statistics, 1981. 29

[9] R. Salas, Robustez en redes neuronales feedforward, Master’s thesis, Universidad
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Abstract. In this paper we present a method for the regularization of
3D cylindrical surfaces. By a cylindrical surface we mean a 3D surface
that can be expressed as an application S(l, θ)→ R3, where (l, θ) repre-
sents a cylindrical parametrization of the 3D surface. We built an initial
cylindrical parametrization of the surface. We propose a new method to
regularize such cylindrical surface. This method takes into account the
information supplied by the disparity maps computed between pair of im-
ages to constraint the regularization of the set of 3D points. We propose
a model based on an energy which is composed of two terms: an attach-
ment term that minimizes the difference between the image coordinates
and the disparity maps and a second term that enables a regularization
by means of anisotropic diffusion. One interesting advantage of this ap-
proach is that we regularize the 3D surface by using a bi-dimensional
minimization problem.

1 Introduction

This paper deals with the problem of 3D geometry reconstruction from multiple
2D views. Recently, a new accurate technique based on a variational approach
has been proposed in [4]. Using a level set approach, this technique optimizes
a 3D surface by minimizing an energy that takes into account the regularity of
the set of points as well as the projection of the set of points on different images.

In this paper we propose a different approach which is also based on a varia-
tional formulation but only using a disparity estimation between images. We will
assume that the 3D surface we want to recover has a cylindrical geometry, that
is, it can be expressed as an application S(l, θ) → R3, where (l, θ) represents
a cylindrical parametrization of the 3D surface. Of course, this is an important
limitation in term of the surface geometry, but it simplifies in a strong way the
complexity of the problem and it can be applied in a lot of situations like for
instance, human face reconstruction as we will show in the experimental results.
We will also assume that the cameras are calibrated (see [3], [5] or [6]). Very ac-
curate techniques to estimate the disparity map in a stereo pair of images have
been proposed. To extend these techniques to the case of multiple views is not

F.J. Perales et al. (Eds.): IbPRIA 2003, LNCS 2652, pp. 37–44, 2003.
c© Springer-Verlag Berlin Heidelberg 2003
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a trivial problem. The 3D geometry estimation that we propose can be divided
in the following steps:

– For every pair of consecutive images, we estimate a dense disparity map
using the accurate technique developed in [1]. We estimate such disparity
maps forward and backward. From these disparity maps we obtain a 3D
surface for every pair of stereoscopic images.

– Based on the camera configuration we estimate a 3D cylinder and we project
in such cylinder the 3D surfaces obtained in the previous step. From these
projections we estimate an initial cylindrical parametrization of the surface.
This cylindrical parametrization is based on the distance between the 3D
point and the cylinder axis. In fact, for each cylinder coordinates (l, θ) we
average such distance for all 3D points which are projected in (l, θ).

– Typically, the recovered set of 3D points is noisy, because of errors in the
camera calibration process, errors in the disparity map estimations, etc.,
so some kind of regularization is needed. In this paper, we propose a new
variational model to smooth cylindrical surfaces. This regularization model
is based on the disparity estimations.

The regularization model we propose is based on a variational approach. We
start with an energy that has two terms, an attachment and a regularizing term.
The former minimizes the difference by respect to the disparity map computed
for every pair of stereoscopic images. This term is responsible for maintaining
the final 3D regularized point close to the information supported by the disparity
maps. The latter enables a regularization by preserving discontinuities on the
cylindrical function. The regularizing term is similar to the terms used in other
fields like stereoscopic reconstruction [1], optical flow estimation [2], etc.

Deriving this energy yields a PDE (Partial Differential Equation) that is then
embedded into a gradient descend method to look for the solution. We develop an
explicit numerical scheme based on finite differences to implement the method.

In Sect. 2 we introduce the cylindrical coordinate system necessary for the
representation of the cylindrical function and the relation with the projective
camera model. In Sect. 3 we study the model by proposing an energy deriving it
and embedding the resulting PDE into a gradient descend method. In Sect. 3.2
there is an explanation of the explicit numerical scheme. Finally in Sect. 4 we
present the experimental results for the bust sequence.

2 The Cylinder Structure

2.1 The Cylindrical Coordinate System and the Projective Camera

Using the notation expressed in Fig. 1 we note by N̄1, N̄2 and N̄3 the orthogonal
axis of the coordinate system and by Q̄0 the origin of the system. N̄1 represents
the cylinder axis. The cylindrical coordinates are expressed by means of a list of
three candidates (l, θ, r) where l is the displacement on the cylinder axis, θ is an
angle (as it is outlined in Fig. 1) and r is the distance from a 3D point to the
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Fig. 1. Cylindrical and cartesian coordinate systems

cylinder axis. A cylindrical surface S(l, θ) will be given by a cylindrical function
r(θ, l) in the following way :

S(l, θ) = Q̄0 + lN̄1 + r(l, θ)
(
cos θN̄2 + sin θN̄3

)
. (1)

With this relation we may transform a cylindrical function r (l, θ) into a func-
tion in the cartesian coordinate system. So, to provide a cylinder surface is equiv-
alent to provide a cylinder function r(l, θ). We will see later that our method
make use of the disparity maps between pairs of stereoscopic images to con-
straint the regularization of the cylindrical function. The disparity maps are
expressed in image coordinates associated to every camera. We assume the pro-
jective model for the cameras. In our problem we have Nc different projective
cameras and every camera is represented by a projection matrixPc of dimensions
3x4 that projects 3D points into the projection plane. In projective coordinates
these projections can be represented as follows:

m̃c(l, θ) = Pc (S(l, θ), 1)t . (2)

2.2 Building the Cylindrical Function

We suppose that for every stereoscopic pair we have a 3D surface. Our first
problem is to transform the 3D surfaces into a unique cylindrical function. The
main steps for computing the cylindrical function are:

1. Compute the coordinate system by estimating Q̄0, N̄1, N̄2 and N̄3.
2. Adapt the resolution of the cylindrical image. The cylindrical function will

be represented through an image. This is what we call the cylindrical image.
The rows and columns of this image are given by the N̄1 axis and the angle,
θ, respectively.

3. Create the cylindrical function, r(θ, l). Once we have carried out the previous
steps we have to merge the information of all the 3D surfaces in one function.
We compute an average for all coincident 3D points projections in one pixel
in the cylinder coordinate system (l, θ).
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The first step is to estimate the position, Q̄0 and axis, N̄1, N̄2 and N̄3, of the
cylindrical coordinate system. We have supposed that the camera configuration
system is cylindrical in the sense that all the cameras are situated around the
scene and looking at the center. We also suppose that the focus of the cameras
are situated close to a common plane. Q̄0 is estimated as the average of the 3D
points of all surfaces. N̄1 is the cylindrical axis and is computed accordingly to
the configuration of the focuses, N̄2 is the unitary vector that points to the focus
of the first camera and N̄3 is orthogonal to the others.

In the second step we are concern with the problem of representing the cylin-
drical function through a bi-dimensional image. We have to compute the dimen-
sions of an image that will allocate the values of the 3D points in cylindrical
coordinates. To calculate the number of rows the lowest and highest 3D points
in the N̄1 component are computed. The difference between them defines the
size of the cylindrical axis. The number of columns are estimated knowing that
2 ·π · radius is the length for the cylinder. We adapt the value of radius in order
to obtain an image with regular pixels (same pixel height and width). This value
depends on the dimension of the image in the N̄1 axis. This image represents
the r(θ, l) function.

The last step consist of assigning a value to every pixel on the image. This
process is carried out by representing the 3D points in cylindrical coordinates
and computing an average for coincident points on a pixel. There may be some
locations where no 3D point is projected, so a post-processing to fill these pixels
is necessary. These are filled from the values of the surrounding pixels.

3 The Regularizing Method

3.1 Energy Minimization

The regularization of the cylindrical function r(l, θ) is equivalent to regularize
the cylindrical surface S(l, θ). We propose a variational formulation to look for
the regularized solution. This solution is the result of a minimization problem.
Our model is composed of two terms: the attachment term that uses the disparity
maps to constraint the process; and the regularizing term that is used to obtain
a smooth solution. This term is designed to regularize the surface by preserving
the discontinuities of the cylindrical function which are related to the varying
depth of the 3D surface.

The energy model proposed is

E(r) = β

(
N∑
c=1

∫ ∫ ∥∥m̄c+1 (l, θ)− m̄c (l, θ)− hc+ (m̄c)
∥∥2 dldθ

+
N∑
c=1

∫ ∫ ∥∥m̄c (l, θ)− m̄c+1 (l, θ)− hc− (m̄c+1)
∥∥2 dldθ)

+α

∫ ∫
φ (‖∇r‖) dldθ . (3)
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m̄c+1 (l, θ) is the image coordinate for camera c + 1 denoted by (2) and

m̄c (l, θ) is the correspondent for camera c. Vectors h̄c+/−(m̄c) =
(
u+/−(m̄c)
v+/−(m̄c)

)
represent the optical flow estimations for pixel m̄c on camera c. Sign + corre-
sponds to the optical flow from camera c to c+ 1 and sign − to the optical flow
from camera c to camera c− 1.

After minimizing this energy we obtain the associated Euler–Lagrange equa-
tion that is given by the following PDE:

β ·
(

Nc∑
c=1

((
m̄c+1 − m̄c − h̄c+(m̄c)

)t ·(∂m̄c+1

∂r
− ∂m̄c

∂r
− J h̄c+

∂m̄c

∂r

))

+
Nc∑
c=1

((
m̄c − m̄c+1 − h̄c+1

− (m̄c+1)
)t · (∂m̄c

∂r
− ∂m̄c+1

∂r
− J h̄c+1

−
∂m̄c+1

∂r

)))

−α · div
(
φ′ (‖∇r‖)
‖∇r‖ ∇r

)
= 0 (4)

where J h̄ = J
(
u(x, y)
v(x, y)

)
=

(
∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

)
.

In order to search for the solution we implement a gradient descend method in
the way ∂r

∂t = −∂E(r)
∂r . The divergence term is well known and acts like a diffusion

scheme. If we expand the divergence expression we obtain

div
(
φ′ (‖∇r‖)
‖∇r‖ ∇r

)
=

φ′ (‖∇r‖)
‖∇r‖ rξξ + φ′′ (‖∇r‖) rηη (5)

where η = ∇r
‖∇r‖ and ξ = η⊥ are the unitary vectors in the directions parallel

and perpendicular to the gradient, respectively.
Playing with function φ (s) it is possible to achieve an anisotropic diffusion

at contours. The first in proposing this kind of diffusion equation were Perona
and Malik [7] in where they introduced a decreasing function to avoid diffusion
at contours.

3.2 Numerical Scheme

In this section we are going to see how to implement an explicit numerical
scheme for this method. We derive ∂m̄

∂r analytically from (2). Regarding (5) the
divergence is divided in two terms and the values for both of them are given by
the following expressions:

rξξ =
rxxr

2
y − 2rxryrxy + ryyr

2
x

r2x + r2y
, rηη =

ryyr
2
y + 2rxryrxy + rxxr

2
x

r2x + r2y
. (6)
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Fig. 2. Bust configuration: This figure shows the 3D reconstructed bust and
the distribution of the projection planes corresponding to the 47 cameras

The first and second derivates on x and y and the derivates of the components
of the optical flow, ∂u

∂x ,
∂u
∂y ,

∂v
∂x ,

∂v
∂y and ∂u

∂x , have been approximated by finite
differences.

The final numerical scheme is implemented by means of an explicit scheme
in the following way:

rt+1 = rt + dt ·

⎛⎜⎝α (rξξ + g (‖∇r‖) rηη)− β

(
Nc∑
c=1

((
m̄c − m̄c+1 − h̄c+1

− (m̄c+1)
)t

·
(
∂m̄c

∂r
− ∂m̄c+1

∂r
− J h̄c+1

−
∂m̄c+1

∂r

))
+

Nc∑
c=1

((
m̄c+1 − m̄c − h̄c+(m̄c)

)t

·
(
∂m̄c+1

∂r
− ∂m̄c

∂r
− J h̄c+

∂m̄c

∂r

))⎞⎠
⎞⎟⎠ . (7)

Function g (s) is a decreasing function that disables isotropic diffusion for big
values of the gradient.

4 Experimental Results

In this section we show the results of regularizing a bust sequence. In this case
the sequence is composed of 47 images taken around a bust. Figure 2 shows the
configuration of this sequence with the projection planes of the cameras. This is
a close sequence in where the first and last images are correlatives.

In Fig. 4 we may see the original Bust reconstruction and a regularized version
for α = 0, 1 and s = 0.1.

From Fig. 5 we may appreciate several regularizations for α = 3, 0 and dif-
ferent values of s. The β parameter is much smaller and is used to normalize the
variation between the two terms. In these experiences β = 10−4.
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Fig. 3. The left image represents the texture of the Bust sequence projected
on a cylindrical image. The right image is the cylindrical function represented
in gray levels (the white color is associated to the highest values)

5 Conclusions

In this paper we have presented a novel and simple method for the representation
and regularization of cylindrical surfaces. This method is ideally suited for convex
surfaces and also be appropriated for surfaces that have not deep clefts. We have
taken advantage of the simplicity of cylindrical coordinates to represent the set
of 3D points. Once the cylindrical function is built the problem of regularizing
the set of 3D points is reduced to the problem of regularizing a bi-dimensional
function.

We have established an energy in a traditional attachment–regularizing cou-
ple of terms. From this energy we have derived a diffusion-reaction PDE. We
have shown in the experiments that varying the α parameter results in a more
regular set of points and varying the λ parameter implies a more regular set of
points by preserving the cylindrical function discontinuities as we have expected
from the results obtained in other fields. The use of α and λ parameters are

Fig. 4. Left two images: Front and profile views of the Bust reconstruction.
Right two images: Front and profile views of a 3D regularization for the Bust
sequence using α = 0, 1 and s = 0.1
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Fig. 5. Several views of different 3D regularizations for the Bust sequence. Left
two images: α = 3, 0 and s = 0, 5; Right two images: α = 3, 0 and s = 1, 0

simple. α refers to the smoothness of the final set of points and λ refers to the
way the regularization is carried out at the contours.
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Jaume Amores and Petia Radeva�

Computer Vision Center, Dept. Inform àtica, UAB
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Abstract. We present a registration and retrieval algorithm of medi-
cal images. Our algorithm is oriented in a general fashion towards gray
level medical images of non-rigid bodies such as coronary vessels, where
object shape information provide poor information. We use rich descrip-
tors based on both local and global (contextual) information, and at the
same time we use a cooperative-iterative strategy in order to get a good
set of correspondences as well as a good final transformation. We focus
on a novel application of registration of medical images: registration of
IVUS, a promising technique of analyzing the coronary vessels.

1 Introduction

There is a wide range of applications of medical image registration and we refer
to books such as [7] for detailed information. We apply registration to IntraVas-
cular UltraSound images (IVUS), a powerful imaging modality for analysis and
diagnosis of coronary vessels ([1]). In concrete we present a registration proce-
dure to be used as a first step in a more general retrieval framework. The IVUS
technique produces images with quite particularities and noise, difficult to ana-
lyze. Thus, creating a retrieval system of IVUS images is of high clinical interest
for diagnosis purposes.

Although there is a huge number of works in the area of Registration and
Retrieval of Medical Images [2, 7], matching of IVUS images and retrieving cases
from an IVUS images database is a new problem to be solved. On the other hand,
many works on medical image registration are focused on rigid parts that justifies
rigid registration. Medical images of non-rigid bodies such as coronary vessels
in IVUS present features quite different as they do not have any characteristic
spatial configuration forced by the bony structure. We perform elastic matching
with a variational approach for the transformation, given the high variability
inter and intra subject of our medical images.

Registration consists on finding structures analog in a pair of images and
compute a transformation that align them. We will follow point mapping as
a general procedure of registration [5, 1].
� This work is supported by Ministerio de Ciencia y Tecnologia of Spain, grant
TIC2000-1635-C04-04.
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Opposite to many works on medical images such as brain MRIs, which take
a grid of characteristic points over all the image, we only extract a small set
of characteristic points from the boundaries of the salient regions we want to
match. This approach makes the algorithm faster and avoids the necessity of
employing a multi-resolution scheme. Given the type of images we deal with,
we must choose quite a rich set of descriptors which not only take into account
the local statistics near the characteristic point (local descriptors) but also the
context of the point (global or contextual descriptors). This gives information of
how other structures are located around the point, and at the same time takes
account of where the point is located at its own structure. Graphs are the most
traditional tool for taking into account the context of some object. However,
they are very dependent on an accurate segmentation, and this makes them
little robust.

Instead, we make use of the so-called correlograms (see [3]) in order to take
account of the context of points, extending the shape-context descriptor of Be-
longie et al [3] to cope with gray level images. Correlograms in 2-D will allow us
to match the couple of images coarsely coping with the spatial distribution of
structures, but have the draw-back of including some information about the 2-D
shape of the contours not interesting in our case. Thus we extend the contextual
information using shape invariant 1-D correlograms after a coarse alignment.
The use of these two types of context descriptors as well as local descriptors will
make our feature space rich enough.

Yet, the set of correspondences obtained with this set of descriptors is not
enough to compute directly the final transformation based on them. We use
a cooperative-iterative scheme (see [5]) in searching a good final transformation,
which consists on giving feedback from the transformation to compute a new set
of correspondences, which at the same time will produce a new transformation
and so on, iterating the algorithm. We use a feedback scheme similar to the one
used by Rangarajan et al. in [6], but without an annealing framework, as the
combination of contextual and local information give us enough information to
seek for an accurate transformation in a more straightforward manner.

Summarizing, we extend and combine different important ideas into a single
framework: incorporation of contextual information with correlograms modified
to cope with gray level images, adding a second type of contextual information,
shape invariant 1-D correlograms; a cooperative-iterative scheme similar to the
one used by Rangarajan et al. [6] and the use of Thin Plate Splines (TPS) [4], al-
lowing different degrees of regularization-approximation as the correspondences
become better and better. The combination of these three factors give our algo-
rithm robustness as well as accuracy.

The article is organized as follows: section 2 explains the description of the
registration method, section 3 shows the results obtained and the paper finishes
with conclusions and future work.
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2 Description of the Method

Coronary vessels present all their structures of interest around the wall of the
vessel. We first make an anisotropic diffusion [9] of the IVUS image and let
a snake grow from its interior to the wall of the vessel. Then we sample the
boundary points in order to take our set of characteristic points and finally we
extract the feature vectors associated to each characteristic point.

2.1 Feature Space

We compute local feature vectors associated to each characteristic point and
then based on them compute 2-D correlograms and 1-D correlograms. Local
feature vectors aim at characterizing the biological structure where the point lies,
whereas correlograms will put the points into context. Summarizing, associated
to each characteristic point xi we are going to use three different feature vectors:
our local feature vector li, a 2-D correlogram vi, an 1-D correlogram wi. We will
now describe each of them in turn.

In IVUS images regions such as calcium plaque are characterized by the gray
level they have inside them and the gray level they cause outside them because
of their echogenic impedance. Thus a good descriptor of the structure the point
is at, is the gray level profile along the line perpendicular to the wall from the
point towards the outside part of the vessel. We measure a set of statistics over
this profile and its first derivative which conform our local feature vector [1].

Correlograms consist of partitioning the image in cells distributed radially
around its origin, which is the current point we are describing. In fig. 1 we can see
a correlogram, a partition of the image in sectors or cells, each one accounting for
some part of the image at a specified range of angles and radius, taking as origin
a characteristic point xi. The radial length of the cells grows with logarithmical
rate from the origin towards outside, giving more importance to the near context
of the point.

In every cell of the correlogram we compute a statistic such as the mean
over the local feature vectors of the points that lie inside the cell. Let vi be the
2-D correlogram associated to xi. Let {xu1 , xu2 , . . . ,xut} be the characteristic
points which lie in the u cell of vi. We take the local feature vectors associated to
these characteristic points: {lu1 , lu2 , . . . , lut} and compute a mean over each of
their characteristics. Let every local feature vector lk have d characteristics: lk =
(lk1, lk2, . . . , lkd) ∀k. Let cuj = mean({lu1j , lu2j , . . . , lutj}), the mean over the j
characteristic of the local feature vectors {lu1 , lu2 , . . . , lut}. If we have r cells for
every correlogram, we can express the 2-D correlogram associated to the char-
acteristic point xi as vi = (c11, c12, . . . , c1d, c21, c22, . . . , c2d, . . . , cr1, cr2, . . . , crd).

The 1-D correlogram is a division in cells but now of the contour curve
where we have our characteristic points. Let wi be the 1-D correlogram for
the characteristic point xi. We can express the contour curve as a function
ϕ : [0, 1) → R

2 depending on an intern parameter s ∈ [0, 1): ϕ(s) = (x, y).
We take as intern parameter s an approximation to the arc-length of the curve,
and such that ϕ(0) = xi. Then we take as cells of the 1-D correlogram a set of
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Fig. 1. Correlogram with 12 intervals of angles and 5 intervals of radius

intervals Iu ⊂ [0, 1)∀u,⋃ Iu = [0, 1), Iu
⋂
Iv = ∅ ↔ u �= v. This correlogram is

not based on the local feature vectors directly but on a classification result of
the characteristic points using these local feature vectors. For all the points that
fall inside one cell of a correlogram wi we count how many of these points belong
to the same type of structure and this is the value associated to this cell.

The 1-D correlogram does not take into account the particular shape pecu-
liarities of two structures to be aligned. Once we have put the structures close
by using the 2-D correlogram, which take account of the 2-D distribution of
structures, we finish an accurate matching of points from two analog structures
by using the 1-D correlogram. This descriptor accounts mainly for the position
of the point along the boundary of the structure it belongs to, saying intuitively
if this point is at one extremum (and in which extremum it is) or if it is near the
center of the structure. Thus extremum points from both structures are matched
together, central points together, and so on.

2.2 Iterative Scheme and Final Algorithm

Once extracted a set of characteristic points, we apply a coarse alignment us-
ing as feature vectors only the 2-D correlograms, which accounts for the 2-D
distribution of structures and put analog structures close enough.

After this coarse alignment, we perform a classification of the points. Let I1
be the query image and I2 be the complementary. For any pair xi ∈ I1, yj ∈ I2,
the distance between them is computed as dclass + d(wi, wj), where the distance
d(wi, wj) is the χ2 distance (see [3]) between the 1-D correlograms of both points,
and dclass is infinite if both points do not belong to the same type of structure
(class), and 0 if they do. By adding dclass we are restricting the correspondences
to match always points belonging to the same structure. Furthermore, we restrict
the region where the matching point lies to be near the mapped characteristic
point, f(xi), where f is the coarse transformation obtained in the first step.
With these measures of distance between every couple of points we compute the
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final set of correspondences and based on them the final transformation. The
computation of the transformations is done by adjusting a TPS to the set of
correspondences obtained at each step.

For both steps we also use an iterative step that aims at doing cooperation
between neighbor points in the computation of a reliable set of correspondences.
The idea of cooperation is based on the fact that if one point xi is matched
with yi, a neighbor point xi+1 of xi should not be matched with a point yj too
far away from yi. Let a couple of points xi ∈ I1 and yj ∈ I2, and let its distance
in the feature space be dij . We have such a distance for every possible couple of
points. After obtaining an initial set of correspondences based on these distances,
we make a transformation by TPS. Let f(xi) be the mapping of xi by the TPS.
We recompute the distance between every couple of points (xi ∈ I1, yj ∈ I2)
as dij + α‖f(xi) − yj‖. With these new distances we compute a new set of
correspondences that produce a new transformation and this is iterated several
steps. The TPS do not allow two neighbor points xi+1 of xi to be mapped far
away from each other. Thus, by adding the term α‖f(xi)− yj‖ for the point xi
and α‖f(xi+1) − yj‖ for the point xi+1 to the set of distances, we are biasing
both points towards the same region of I2. The parameter α indicates how much
we rely on the last transformation. If the last transformation is very accurate, we
take as α a high value, restricting the corresponding points yj ∈ I2 to be near the
mapped points f(xi). Thus, as the process makes the transformations better, we
must increase this parameter through the successive iterations, beginning with
a small value. Also the regularization degree of the TPS becomes smaller as
the set of correspondences is better, as a high regularization is only needed to
approximate coarsely noisy correspondences. Thus we decrease the regularization
through the successive iterations.

Both types of correlograms depend on the spatial distribution of the charac-
teristic points. As the spatial distribution of the points become modified by the
successive mappings, we must recompute these correlograms through successive
iterations of the algorithm.

3 Results

We would like to show first the necessity of using contextual as well as local
information, and the necessity of using as contextual information not only the 2-
D correlograms but also 1-D correlograms. For an explanation of the parameters
used see [1].

In fig. 2 we can see a first couple of IVUS images with two calcium plaques,
one on the left and the other one on the right. The IVUS image of 2-(a) corre-
sponds to the query image, and the IVUS image of 2-(b) to its complementary
image. In fig. 2-(c) we show the anisotropic diffusion of the query image and su-
perposed in red the boundary of the vessel from which we extract the character-
istic points. In fig. 2-(d) we show the anisotropic diffusion of the complementary
image and superposed in red the boundary of the vessel from which we extract
the characteristic points. In fig. 6 we see the final set of correspondences.
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In fig. 3 we compare the result of the first coarse transformation using contex-
tual information (2-D correlograms) and using only local information (our local
feature vectors). We show transformation results on the anisotropic diffusion of
the images because it is visually more clear. In 3-(a) we show the anisotropic
diffusion of the query transformed by the coarse mapping. In 3-(b) we show the
complementary image with the edges of the transformed query image superposed
in red. We can see how both calcium plaques are mapped close, as well as the
adventitia tissue. In 3-(c) and 3-(d) we show the same coarse transformation
using only local feature vectors. We can see that one of the calcium plaques has
not been mapped closed to any of the calcium plaques of the complementary
image.

In fig. 4 we see how the set of correspondences using only a 2-D correlogram
is more noisy than using a combination of 1-D correlogram and local feature
vectors.

If fig. 5 we compare the result of the transformation obtained in the second
step using 1-D correlograms and including the classification information by the
distance dclass (see previous section), with a transformation obtained by the
same algorithm but using 2-D correlograms and including also the classification
information. As can be seen the transformation using 2-D correlograms is more
inaccurate and produce an irregular warping with the noise seen in the images.
The irregular warping is due to be using a slow regularization degree of the
TPS based on a too noisy a set of correspondences for such a small degree of
regularization. Finally we see results for another couple in fig. 7.

4 Conclusions and Future Work

We apply a registration technique to a novel type of medical images, IVUS im-
ages of highly elastic bodies and quite difficult to analyze. These types of images
need a rich feature space, using not only local information around the point but
also providing context or global information relative to this point. We extend the
work of Belongie et al. [3] using a modification of their correlograms in order to
cope with gray level images, and adding a second contextual information, shape

a b c d

Fig. 2. Query and its complementary IVUS (a)-(b). Their anisotropic diffusion
results (c)-(d)
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a b c d

Fig. 3. Coarse alignment (first step of the algorithm) using first contextual
information (a)-(b), and then only local information (c)-(d)

a b

Fig. 4. Correspondences with only 2-D correlograms (a) and correspondences
with 1-D correlograms and local feature vectors (b)

a b c d

Fig. 5. Second transformation using first in 1-D correlograms (a)-(b), and then
2-D correlograms (c)-(d)

Fig. 6. Final set of correspondences of the first pair of images
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a b c

Fig. 7. Query (a), complementary (b), and final set of correspondences on their
anisotropic diffusions (c)

invariant 1-D correlograms. We incorporate this rich set of descriptors into a
cooperative-iterative scheme similar to the one used by Rangarajan et al. [6],
but without the deterministic annealing framework they use, as the combina-
tion of contextual and local information gives us enough information to seek for
an accurate transformation in a more straightforward manner. The combination
of rich descriptors, TPS, and the use of an iterative-cooperative scheme gives
our algorithm robustness as well as accuracy, the result not depending on accu-
rate classifications of all the points. Currently, we extend the IVUS registration
including textural information.
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Abstract. Nowadays, the surveillance and inspection of underwater in-
stallations, such as power and telecommunication cables and pipelines,
is carried out by trained operators who, from the surface, control a Re-
motely Operated Vehicle (ROV) with cameras mounted over it. This is
a tedious, time-consuming and expensive task, prone to errors mainly
because of loss of attention or fatigue of the operator and also due to
the typical low quality of seabed images. In this study, the development
of a vision system guiding an Autonomous Underwater Vehicle (AUV)
able to detect and track automatically an underwater power cable laid
on the seabed has been the main concern. The system has been tested
using sequences from a video tape obtained by means of a ROV during
several tracking sessions of various real cables. The average success rate
that has been achieved is about 90% for a frame rate higher than 25
frames/second.

1 Introduction

The feasibility of an underwater installation can only be guaranteed by means
of a suitable inspection program. This program must provide the company with
information about potential hazardous situations or damages caused by the mo-
bility of the seabed, corrosion, or human activities such as marine traffic or
fishing. Nowadays, the surveillance and inspection of these installations are car-
ried out using video cameras attached to ROVs normally controlled by operators
from a support ship. Obviously, this is a tedious task because the operator has
to concentrate for a long time in front of a console, which makes the task highly
prone to errors mainly due to loss of attention and fatigue. Besides, the pecu-
liar characteristics of the undersea images —blurring, low contrast, non-uniform
illumination— increase the complexity of the operation. Therefore, the automa-
tion of any part of this process can constitute an important improvement in
the maintenance of such installations with regard to errors, time and monetary
costs.

The special visual features that artificial objects possess allow distinguishing
them from the rest of objects present in a natural scenario even in very noisy im-
ages. In our case, the rigidity and shape of the underwater cable can be exploited
� This study has been partially supported by project CICYT-DPI2001-2311-C03-02
and FEDER fundings.
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by a computer vision algorithm to discriminate it from the surrounding environ-
ment. This fact makes feasible the automatic guidance of an AUV by means of
visual feedback to carry out maintenance/inspection tasks. Following this strat-
egy, a first approach to the problem of detecting and tracking an underwater
power cable by analysing the image sequence from a video camera attached to
an AUV was described in [7], being afterwards improved and optimised in [8].

In this paper, a new version with similar success rate, better performance and
lower complexity is proposed. The vision system has been tested using sequences
from a video tape obtained in several tracking sessions of various real cables with
a ROV driven from the surface. These cables were installed several years ago,
so that the images do not present highly contrasted cables over a sandy seabed;
on the contrary, these cables are partially covered in algae or sand, and are
surrounded by algae and rocks, making thus the sequences highly realistic. The
mean success rate that has been achieved is about 90% for a frame rate of more
than 25 frames/second.

The rest of the paper is organized as follows: section 2 revises previous work
on the subject; the proposed vision system is described in section 3; section 4
shows the results obtained; and, finally, section 5 presents some conclusions and
future work.

2 Previous Work

In the literature about cable inspection, two main sensing devices can be dis-
tinguished: magnetometres and sonar. In general, both strategies require AUVs
larger and more powerful than is needed because of the very size of the devices
and due to the need of including extra batteries in the vehicle [5]. By using
CCD cameras, however, this problem is considerably reduced, either in cost and
in AUV size. In fact, throughout the last years, several research groups have
shown the suitability of vision systems either for navigation and for mission
tasks (see [9], among many others).

With regard to visual cable and pipeline tracking and inspection, several
systems have been proposed so far. Matsumoto and Ito [6] developed a vision
system able to follow electrical cables in underwater environments by using edge
detectors, the Hough transform and some higher-level processing related to the
line-like appearance of the cables. Hallset [5] presented another system able to
follow pipelines using edge detectors and the Hough transform too, and a map
of the pipeline network. At the University of Ancona, a system oriented towards
helping human operators in the inspection of gas and oil pipelines was also
implemented [10]. In this case, the system detected the pipes and some other
accessories attached to them using statistical information obtained from selected
areas of the image related to the position of the cable. More recently, Balasuriya
et al. proposed a system based on predicting a Region Of Interest (ROI) in the
image and applying the Hough transform to an edge map produced by a LoG
operator [4]. An improved version using a rough 2D model of the cable appears
in [3].
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Input Image Segmentation Alignments

Partial Detections Fusion of Results Detected Sides

Fig. 1. Intermediate and final results for a real image split in 2× 2 cells

3 The Vision System

Artificial objects usually present distinguishing features in natural environments.
In the case of the cable, given its rigidity and shape, strong alignments of contour
pixels can be expected near its sides. The vision system described in the paper
exploits this fact to find the cable in the images.

In order to obtain the cable parameters, the system splits the image to be
analysed in a grid of cells which are processed separately. This division pretends
to reinforce the evidence of the cable in those areas of the image where it ap-
pears clearly defined. Different steps are carried out to locate the cable in every
cell of the resultant grid. First, an optimised segmentation process is executed
to find image regions as approximated as possible to the scene objects. Given
the contours of such regions, alignments of contour pixels are determined. If
among those alignments there is strong evidence of the location of the cable
(mainly two alignments with a great number of pixels lined up and with a high
degree of parallelism, even without discounting the perspective effect), then the
cable is considered to have been located and its parameters are computed. After
analysing all the cells of the grid, the partial results obtained are merged to
achieve a global agreement about the real cable position and orientation in the
image. By way of example, fig. 1 shows the cable detection process for a real
image.

Once the cable has been detected, its location and orientation in the next
image are predicted by means of a Kalman filter, which allows reducing the pixels
to be processed to a small ROI. In this way, the computation time is considerably
lowered together with the probability of misinterpretations of similar features
appearing in the image.

When tracking the cable, a low or null evidence of its presence in the ROI
can be obtained. In such a case, the image is discarded and a transient failure
counter increased. If this anomalous situation continues throughout too many
images, then it is attributed to a failure in the prediction of the ROI, resulting
in two special actions: the Kalman filter is reset and the ROI is widened to the
whole image.
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Fig. 2. (a) Ideal bidimensional histogram; (b) Flow diagram of the cable detec-
tion step

3.1 Segmentation Process

A gray-level thresholding technique has been applied to carry out the segmenta-
tion of every grid cell. It is based on a particular histogram where the relevant
objects of the scene can be more easily distinguished than using the traditional
gray-level histogram.

In order to obtain the mentioned histogram, the cell of the grid to be analysed
is first transformed into the {gray-level, gradient modulus} space. This trans-
formation consists in building a bidimensional histogram where one horizontal
axis corresponds to gray-level, the other horizontal axis corresponds to a dig-
ital approximation of the modulus of gray-level gradient —the Sobel operator
has been used—, and for every combination {gray-level, gradient modulus} the
vertical axis is the number of pixels in the cell having that gray-level and that
gradient modulus.

In the case of several objects with different gray-levels, the ideal bidimen-
sional histogram should look like fig. 2(a). In effect, if the image can be approx-
imated by a noisy piecewise constant bidimensional function, the interior of any
object in the cell has gradient near zero, so that pixels in the interior zones are
located in the lower part of the histogram, with regard to gradient. Border pix-
els among objects, however, are located in zones of higher gradient, joining the
clusters corresponding to the interiors of such objects in a “fingers”-like fashion.

Once the bidimensional histogram has been built, it is projected onto the
plane {gray-level, number of pixels}. The projection is cumulative and does not
consider the pixels whose gradient is greater than a predefined threshold. Ideally,
this parameter should reject the pixels that belong to the contour zones.

The next step partitions the cell into the regions that can be intuitively
distinguished in the previously computed histogram, looking for its valleys.

3.2 Detection of the Cable

Once the cell has been segmented, the system proceeds to locate the cable execut-
ing the tasks enumerated in fig. 2(b). This step is carried out from the contours
of the segmented cell, by looking for lines which can belong or be near the sides
of the cable. In this context, a line is defined as a set of connected contour pixels
not including branches. On the other hand, it is important to note that, unlike
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Fig. 3. (a) Splitting of a line L; (b) Co-linearity analysis

previous versions of the system [8], the detection step does not assume a ver-
tical orientation of the cable in the image. This restriction is removed in order
to use any evidence of the presence of the cable. However, it also increases the
probability of erroneous detections.

Lines are obtained by scanning the segmented cell from bottom to top. The
direction of scanning is important as the lower part of the image tends to be
clearer than the upper part when the camera is not oriented towards the seabed,
due to the properties of light propagation undersea. Once a contour pixel has
been found, adjacent pixels are selected according to a prediction of the cable
orientation produced by a Kalman filter applied over the past cable parameters.
Using this information, the system favours looking for lines in directions similar
to the predicted one. When, for a given contour pixel, there is no adjacent pixel
in the preferred directions, the process of tracking the line finishes and a new
one starts by resuming the scanning of the cell from the point it was left.

A straight segment fitting task follows next. This process can be seen as a low-
pass filter to remove noise either due to the redefinition of the cable contours
caused by the proliferation of flora on top of and by the cable, and due to the
processes of acquisition and segmentation. Total least squares is used in the
fitting. As the fitting error can become large in some cases, a control procedure
is executed after each fitting. It is as follows: (1) for each point pi belonging to
the line L, its orthogonal distance to the fitted straight segment S, d(pi, S) ≥ 0,
is computed; (2) if d(pj , S) = max{d(pi, S) | pi ∈ L} ≥ ke, then L is split into
two halves by the point of greatest local maximum error which is not an end of
the line (ke is a threshold). See fig. 3(a) for a typical example.

The resultant set of straight segments is filtered according to their length. In
this context, the length of a straight segment is defined by means of the total
number of contour points that it fits. The filter consists in keeping the N longest
straight segments. In this way, it is intended to reduce the size of the problem
in a controlled way. Besides, as the segments that supply more information are
kept, a non-negative influence of the filter on the results obtained is expected.

Subsequently, a co-linearity analysis is applied to the set of straight segments
obtained, in order to join the segments that can be considered as originally be-
longing to the same long straight contour. As an example of the analysis per-
formed, consider the set of segments that have passed the length-based filtering
process (see fig. 3(b)). For each straight segment Si under analysis, a new long
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straight segment LSi is calculated using again total least squares. This time, the
points used in the fitting are those contour points corresponding to the straight
segments which completely fall within a strip-shaped region aligned with Si,
whose width is w, the tolerated co-linearity error.

Immediately afterwards, the resultant set of straight segments is filtered
again. Unlike the specific length filter, now each long straight segment is evalu-
ated based on a suitable combination of four different criteria. Those segments
that obtain an evaluation lower than a predefined threshold are removed. In this
way, it is intended to reject straight segments with little probability of belonging
to one side of the cable. The criteria used to assess such segments are as follows:
length (C1), fitting error (C2), average of the gradient modulus of the contour
pixels fitted by the straight segment considered (C3), and the standard deviation
of the differences among the gradient directions of the aforementioned contour
pixels (C4). The partial and normalised assessments obtained of each one of
the previous criteria are weighted in order to compute the final one. Successful
results have been achieved assigning a higher weight to the criteria C1 and C2.

The last task of the detection step consists in choosing the pair of long
straight segments which are likely to correspond to the sides of the cable. Con-
sidering its morphological characteristics, the task mainly looks for two long and
parallel straight lines. Initially, each possible pair of straight segments is checked
according to the distance that separates them. Those pairs whose separation
reasonably differs from the expected width of the cable in the images are dis-
carded. Note that, using this new parameter, the system assumes that the width
of the cable does not change significantly between images. This is just a matter of
navigation control. The probability of erroneous detections thus is considerably
reduced. Afterwards, three different criteria are used to evaluate each surviving
pair of straight segments: degree of parallelism (C5), average of the Euclidean
length of both segments (C6), and, finally, the average of the individual assess-
ments obtained by such segments in the previous task (C7). Once all the final
weighted assessments have been computed, the pair with the highest one is se-
lected. In case the maximum score is below a minimum value, it is considered
there is not enough evidence of the cable in the cell.

3.3 Fusion of Partial Results

Once all the cells of the grid have been processed, each cell contributes to the
computation of the global position and orientation of the cable using the resul-
tant partial detections. Those cells for which two long parallel straight segments
showing enough evidence of the presence of the cable have been found contribute
with that pair. In the remaining cases, the contribution consists in the segments
surviving the filtering tasks previous to the pairing. In this way, both sides of
the cable are not required to lie in the same cell of the grid so as to be taken
into account. Results are merged considering non-overlapping groups of 2 × 2
cells in a pyramidal way, reducing, at each iteration, the number of cells from
N ×M to

⌈
N
2

⌉× ⌈
M
2

⌉
. For every set of cells, the fusion of results is achieved by

re-executing the segment grouping, heterogeneous filtering and segment selection
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Table 1. Image sequence results

Sequence Length (frames) Frame rate achieved Wrong detections Success rate

1 253 61.76 f/s - 16 ms/f 37 85%
2 499 33.02 f/s - 30 ms/f 64 87%
3 386 39.93 f/s - 25 ms/f 11 97%
4 116 33.29 f/s - 30 ms/f 11 90%
5 113 36.75 f/s - 27 ms/f 11 90%

Average 1367 40.95 f/s - 24 ms/f 134 89.8%

tasks previously described (see fig. 2(b)). The merging process finishes when only
one cell is left. In this case, the average of the pair of segments resulting from
the segment selection task, if any, constitutes the output of the vision system.

3.4 Cable Tracking Strategy

The tracking stage is based on the hypothesis that the cable parameters are not
going to change too much from one image to the next. Therefore, once the cable
has been detected in the image sequence, the computed position and orientation
are used to predict the new parameters in the next image. In this way, the image
area where to look for the cable can be reduced to a ROI, increasing, thus, the
probability of success. In case the system is not able to find enough evidence of
the cable in the ROI, the recovery mechanism previously described is activated.

To predict the cable parameters, the system makes use of a linear Kalman
filter for the main axis of the cable. Previous versions of the system carry out
such prediction by means of two filters, one for every side of the cable (see [8]
for details). The main axis has however shown to be more predictable than the
sides. The state vector X contains the position and orientation of the main
cable axis in the Hough plane (ρ, θ). The model of the filter is expressed as (1)
X(t+1) = X(t)+ v(t) and (2) Z(t+1) = X(t)+w(t), where v and w represent
respectively the process and the measurement noises.

The ROI for the next image is computed as follows: first, the position and
orientation of each cable side are estimated on the basis of the predicted main
axis and the expected cable width in the images; afterwards, a small tolerance
factor is added to both sides.

4 Experimental Results

To test the system, real image sequences coming from several ROV sessions
recorded on video tape have been used. Specifically, five sequences were selected
from that recorded material to carry out the experiments. Although they are
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Fig. 4. Results for an excerpt of sequence 4 with the ROI superimposed. The
white line represents the computed main cable axis and thus a possible command
to the AUV navigation controller

not very lengthy, they cover a wide range of complexity: steep gradient in illu-
mination, low contrast and blurring, objects overlapping the cable, instability
in the vehicle motion, etc. Table 1 shows relevant information about every se-
quence. The success rate appearing in the table refers to those images for which
the ROI wholly includes the cable and the system has been able to determine
correctly its location. All the tests were run on an Intel Pentium III 800 MHz
machine executing Windows XP Professional, and the resolution of the images
was half-NTSC (320× 240 pixels).

Fig. 4 shows results for an excerpt of sequence 4. In general, the system tends
to return the main axis of the cable within the cable region of every image, as
it can be seen in the figure, so that it can be said the position of the cable is
correctly detected every time. The orientation measured, however, is sometimes
affected by the noise present in the image, either in the form of small particles of
algae and lack of contrast between cable and seabed. Consequently, sometimes
deviates from the real orientation.

5 Conclusions and Future Work

A vision system for real-time underwater cable tracking has been presented.
Using only visual information, the system is able to locate and follow a cable
in an image sequence overcoming the typical difficulties of underwater scenes.
Five highly realistic sequences have been used to test the system. The mean
success rate that has been achieved is about 90% for a frame rate of more than
25 frames/second. Given the fact that the output of the system has not been
used to correct the vehicle’s course, which would give rise to softer movements of
the camera, a higher success rate is still expected. Additional information about
the vision system can be found in [2].
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This study is included in a more ambitious project in which the inspection
of underwater installations in connection with the proposed system is the main
concern. At present, a first approximation to the control architecture for locat-
ing and tracking the cable autonomously on the basis of the vision system has
been successfully implemented and validated. For a detailed description on the
subject, the reader is referred to [1].
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Select AC value
Repeat_from N = 0

Random ordering of elements;
Hierarchical Clustering (d, AC);
Increment d’ counters according to the solution found;
N = N + 1

To N = R
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Abstract. In paper we present the theoretical foundation for optimal
classification using class-specific features and provide examples of its
use. A new PDF projection theorem makes it possible to project prob-
ability density functions from a low-dimensional feature space back to
the raw data space. An M-ary classifier is constructed by estimating
the PDFs of class-specific features, then transforming each PDF back to
the raw data space where they can be fairly compared. Although sta-
tistical sufficiency is not a requirement, the classifier thus constructed
will become equivalent to the optimal Bayes classifier if the features
meet sufficiency requirements individually for each class. This classifier
is completely modular and avoids the dimensionality curse associated
with large complex problems. By recursive application of the projection
theorem, it is possible to analyze complex signal processing chains. It is
possible to automate the feature and model selection process by direct
comparison of log-likelihood values on the common raw data domain.
Pre-tested modules are available for a wide range of features including
linear functions of independent random variables, cepstrum, and MEL
cepstrum.

1 Introduction

1.1 Classical Classification Theory and the Dimensionality Problem

The so-called M -ary classification problem is that of assigning a multidimen-
sional sample of data x ∈ RN to one of M classes. The statistical hypothesis
that class j is true is denoted by Hj , 1 ≤ j ≤M . The statistical characterization
of x under each of the M hypotheses is described completely by the probability
density functions (PDFs), written p(x|Hj), 1 ≤ j ≤ M . Classical theory as ap-
plied to the problem results in the so-called Bayes classifier, which simplifies to
the Neyman-Pearson rule for equi-probable prior probabilities

j∗ = argmax
j

p(x|Hj). (1)
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Because this classifier attains the minimum probability of error of all possible
classifiers, it is the basis of most classifier designs. Unfortunately, it does not
provide simple solutions to the dimensionality problem that arises when the
PDFs are unknown and must be estimated. The most common solution is to
reduce the dimension of the data by extraction of a small number of information-
bearing features z = T (x), then re-casting the classification problem in terms of
z:

j∗ = argmax
j

p(z|Hj). (2)

This leads to a fundamental trade-off - whether to discard features in an
attempt to reduce the dimension to something manageable - or to include
them and suffer the problems associated with estimating a PDF at high di-
mension. Unfortunately, there may be no acceptable compromise. Virtually
all methods which attempt to find decision boundaries on a high-dimensional
space are subject to this trade-off or “curse” of dimensionality. For this rea-
son, many researchers have explored the possibility of using class-specific fea-
tures [Frimpong-Ansah et al., 1989], [Kumar et al., 1999], [Kumar et al., 2000],
[Watanabe et al., 1997],
[Belhumeur et al., 1997], [Sebald, 2001], [Oh et al., 2001].

The basic idea in using class-specific features is to extract M class-specific
feature sets, zj = Tj(x), 1 ≤ j ≤ M , where the dimension of each feature
set is small, then to arrive at a decision rule based only upon functions of the
lower-dimensional features. Unfortunately, the classifier modeled on the Neyman-
Pearson rule,

j∗ = argmax
j

p(zj |Hj), (3)

is invalid because comparisons of densities on different feature spaces are mean-
ingless. One of the first approaches that comes to mind is to computes for each
class a likelihood ratio against a common hypothesis composed of “all other
classes”. While this seems beneficial on the surface, there is no theoretical di-
mensionality reduction since for each likelihood ratio to be a sufficient statistic,
“all features” must be included when testing each class against a hypothesis
that includes “all other classes”. A number of other approaches have emerged in
recent years to arrive at meaningful decision rules. Each method makes a strong
assumption (such as that the classes fall into linear subspaces) that limits the
applicability of the method or else uses ad-hoc method of combining the like-
lihoods of the various feature sets. In this paper, we present an extension to
the classical theory that provides for an optimal architecture using class-specific
features.

2 The PDF Projection Theorem

The PDF projection theorem allows us to project a PDF pz(z) from any feature
space z = T (x) back to the original (raw) data space x. Define

P(T, pz) = {px(x) : z = T (x) and z ∼ pz(z)},
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that is, P(T, pz) is the set of PDFs px(x) which, through T (x), generate
PDF pz(z) on z. If T ( ) is many-to-one,P(T, pz) will contain more than one mem-
ber. Therefore, it is impossible to uniquely determine px(x) from T ( ) and pz(z).
We can, however, find a particular solution if we constrain px(x). In order to
apply the constraint, it is necessary to make use of a reference hypothesis, H0,
for which we know the PDF of both x and z. If we constrain px(x) such that for
every transform pair (x, z) we have

px(x)
px(x|H0)

=
pz(z)

pz(z|H0)
, (4)

or that the likelihood ratio (with respect to H0) is the same in both the raw
data and feature domains, we arrive at a satisfactory answer. We cannot offer
a justification for this constraint other than it is a means of arriving at an answer.
However, we will soon show that this constraint produces desirable properties.
The particular form of px(x) is uniquely defined by the constraint itself, namely

px(x) =
px(x|H0)
pz(z|H0)

pz(z); where z = T (x). (5)

Theorem 1 states that not only is px(x) a PDF, but that it generates pz(z)
through T (x).

Theorem 1. (PDF Projection Theorem). Let H0 be some fixed refer-
ence hypothesis with known PDF px(x|H0). Let X be the region of support
of px(x|H0). In other words X is the set of all points x where px(x|H0) > 0. Let
z = T (x) be a many-to-one transformation. Let Z be the image of X under the
transformation T (x). Let the PDF of z when x is drawn from px(x|H0) exist
and be denoted by pz(z|H0). It follows that pz(z|H0) > 0 for all z ∈ Z. Now,
let pz(z) be any PDF with the same region of support Z. Then the function (5)
is a PDF on X , thus ∫

x∈X
px(x) dx = 1.

Furthermore, px(x) is a member of P(T, pz).
Proof: These assertions are proved in reference [Baggenstoss, 2001].

2.1 Usefulness and Optimality Conditions of the Theorem

The theorem shows that provided we know the PDF under some reference hy-
pothesis H0 at both the input and output of transformation T (x), if we are given
an arbitrary PDF pz(z) defined on z, we can immediately find a PDF px(x) de-
fined on x that generates pz(z). While it is interesting that px(x) generates pz(z),
there are an infinite number of them and it is not yet clear that px(x) is the best
choice. However, suppose we would like to use px(x) as an approximation to the
PDF px(x|H1). Define

p̂x(x|H1)
Δ=

px(x|H0)
pz(z|H0)

p̂z(z|H1), (6)



A New Optimal Classifier Architecture to Avoid the Dimensionality Curse 73

where z = T (x). From Theorem 1, we see that (6) is a PDF. Furthermore, if
T (x) is a sufficient statistic for H1 vs H0, then as p̂z(z|H1) → pz(z|H1), we have

p̂x(x|H1) → px(x|H1).

This is immediately seen from the well-known property of the likelihood ratio
which states that if T (x) is sufficient for H1 vs. H0,

px(x|H1)
px(x|H0)

=
pz(z|H1)
pz(z|H0)

. (7)

Note that for a given H1, the choice of T (x) and H0 are coupled, so they must be
chosen jointly. Also note that the sufficiency condition is required for optimality,
but is not necessary for 6 to be a valid PDF. Here we can see the importance
of the theorem. The theorem, in effect, provides a means of creating PDF ap-
proximations on the high-dimensional input data space without dimensionality
penalty using low-dimensional feature PDFs and provides a way to optimize the
approximation by controlling both the reference hypothesis H0 as well as the
features themselves. This is the remarkable property of Theorem 1 - that the
resulting function remains a PDF whether or not the features are sufficient statis-
tics. Since sufficiency means optimality of the classifier, approximate sufficiency
mean PDF approximation and approximate optimality.

Theorem 1 allows maximum likelihood (ML) methods to be used in the raw
data space to optimize the accuracy of the approximation. Let p̂z(z|H1) be pa-
rameterized by the parameter θ. Then, the maximization

max
θ,T,H0

{
px(x|H0)
pz(z|H0)

p̂z(z|H1;θ), z = T (x)
}

is a valid ML approach and can be used for model selection (with appropriate
data cross-validation).

2.2 Data-Dependent Reference Hypothesis

Under certain conditions, the reference hypothesis H0, in (6), may be changed
“on the fly”. The advantage of a variable reference hypothesis is that H0 may be
made to more closely match the input data sample to avoid the PDF tails to avoid
very small values of p(z|H0). This is only allowed if the ratio p(x|H0)/p(z|H0)
is independent of H0 as H0 varies within a set Hz. For every statistic z, there is
a region of sufficiency (ROS) Hz. For example, let z = T (x) contain the sample
variance:

z =

[
1
N

N∑
i=1

xi, ∗, ∗ ...
]

Let H0(σ2) be the hypothesis that x is a set of independent Gaussian sam-
ples of zero mean and variance σ2. Then, it may be shown that the ratio
p(x|H0)/p(z|H0) is independent of σ2 because as σ2 varies, it traces out a ROS
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for z. We are therefore justified in making the substitution σ2 = z1, which is the
value of σ2 which maximizes both the numerator and denominator of the ratio
for each dtaa sample. This makes H0 a function of the data z. We therefore write

p̂x(x|H1) =
px(x|H0(z))
pz(z|H0(z))

p̂z(z|H1), (8)

where z = T (x). The reason for using a variable hypothesis is purely numerical
- it has no statistical interpretation. It allows PDF approximations to be used
in the denominator expression, such as the central limit theorem (CLT).

2.3 Asymptotic ML Theory

If H0 is parameterized by a set of parameters θ, and z is a maximum likelihood
estimator of θ, then we may use asymptotic ML theory and may approximate
(8) using

p̂x(x|H1) =
px(x; θ̂)

(2π)−
P
2 |I(θ̂)| 12 p̂θ(θ̂|H1), (9)

where θ̂ is the ML estimate of θ, and I(θ) is the Fisher’s information ma-
trix. This expression agrees with the PDF approximation from asymptotic the-
ory [Strawderman, 2000], [Durbin, 1980].

2.4 The Chain Rule

In many cases, it is difficult to derive the J-function for an entire processing chain.
On the other hand, it may be quite easy to do it for one stage of processing at
a time. In this case, the chain rule can be used to good advantage. The chain rule
is just the recursive application of the PDF projection theorem. For example,
consider a processing chain:

x
T1(x)→ y

T2(y)→ w
T3(w)→ z (10)

The recursive use of (6) gives:

px(x|H1) =
px(x|H0(y))
py(y|H0(y))

py(y|H ′0(w))
pw(w|H ′0(w))

pw(w|H ′′0 (z))
pz(z|H ′′0 (z))

pz(z|H1) (11)

where y = T1(x), w = T2(y), z = T3(w), and H0(y), H ′0(w), H
′′
0 (z) are refer-

ence hypotheses (possibly data-dependent) suited to each stage in the processing
chain. By defining the J-functions of each stage, we may write the above as

px(x|H1) = J(x, T1, H0(y)) J(y, T2, H ′0(w)) J(w, T3, H
′′
0 (z)) pz(z|H1). (12)
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Fig. 1. Block diagram of a class-specific classifier

3 The Class-Specific Classifier

3.1 Classifier Architecture and the Class-Specific Module

Application of the PDF projection theorem to classification is simply a matter
of substituting (8) into (1). In other words, we implement the classical Neyman-
Pearson classifier, but with the class PDFs factored using the PDF projection
theorem:

j∗ = argmax
j

px(x|H0,j(zj))
pz(zj |H0,j(zj))

p̂z(zj |Hj), (13)

where zj = Tj(x), and we have allowed for class-dependent, data-dependent,
reference hypotheses.

The chain-rule processor (11) is ideally suited to classifier modularization.
Figure 1 is a block diagram of a class-specific classifier. The packaging of the
feature calculation together with the J-function calculation is called the class-
specific module. Each arm of the classifier is composed of a series of modules
called a “chain”.

A library of pre-tested modules are available at
http://www.npt.nuwc.navy.mil/csf. Some of the most important feature
types include:

1. Linear functions of independent random variables. A widely-used combina-
tion of transformations in signal processing is to first apply an orthogonal
linear transformation, perform a squaring operation (or magnitude-squared
for complex RVs), then perform a linear transformation. These transforma-
tions include widely-used features such as MEL cepstrum [Picone, 1993],
polynomial fits to power series and power spectra, and autocorrelation func-
tion - and through one-to-one transformations also autoregressive (AR) and
reflection coefficients (RC).
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2. Order statistics. Rather than applying linear filters to the chi-squared or
exponential RVs at the output (magnitude-squared) of orthogonal transfor-
mations, it is often more apropriate to choose the largest set of “bins” - and
regard the bin locations (frequencies) and amplitudes as features.

3. One-to-one transformations. A multitude of one-to-one transformations are
used for feature conditioning including Levinson algorithm, log transforma-
tions, etc.

3.2 Feature Selectivity: Classifying without Training

The J-function and the feature PDF provide a factorization of the raw data PDF
into trained and untrained components. The ability of the J-function to provide
a “peak” at the “correct” feature set gives the classifier a measure of classification
performance without needing to train. In fact, it is not uncommon that the J-
function dominates, eliminating the need to train at all. This we call the feature
selectivity effect. For a fixed amount of raw data, as the dimension of the feature
set decreases, indicating a larger rate of data compression, the effect of the J-
function compared to the effect of the feature PDF increases. An example where
the J-function dominates is a bank of matched filter for known signals in noise. If
we regard the matched filters as feature extractors and the matched filter outputs
as scalar features, it may be shown that this method is identical to comparing
only the J-functions. Let zj = |w′jx|2 where wj is a normalized signal template
such thatw′jwj = 1. Then under the white (independent) Gaussian noise (WGN)
assumption, zj is distributed χ2(1). It is straightforward to show that the J-
function is a monotonically increasing function of zj. Signal waveforms can be
reliably classified using only the J-function and ignoring the PDF of zj under
each hypothesis. The curse of dimensionality can be avoided if the dimension
of zj is small for each j. This possibility exists, even in complex problems,
because zj is required only to have information sufficient to separate class Hj

from a specially-chosen reference hypothesis H0,j .

3.3 J-function Verification

One thing to keep in mind is that it is of utmost importance that the J-function
is accurate because this will insure that the resulting projected PDF is, in fact,
a valid PDF. A fool-proof method of testing the J-function is to define a fixed
hypothesis, denoted by Hs, for which we can compute the PDF p(x|Hs) readily,
and for which we can synthesize raw data. Note that Hs is not a reference hy-
pothesis. The synthetic data is converted into features and the PDF p̂(z|Hs) is
estimated from the synthetic features (using a Gaussian Mixture PDF, HMM,
or any appropriate statistical model). Next, the theoretical PDF p(x|Hs) is com-
pared with the projected PDF

p̂(x|Hs) = J(x, T,H0) p̂(z|Hs)

for each sample of synthetic data. The log-PDF values are plotted on each axis
and the results should fall on the X=Y line.
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4 Types of J-functions

We now summarize the various methods we have discussed for computing the
J-function.

4.1 Fixed Reference Hypothesis

For modules using a fixed reference hypothesis, care must be taken in calculation
of the J-function because the data is more often than not in the tails of the PDF.
For fixed reference hypotheses the J function is

J(x, T,H0) =
px(x|H0)
pz(z|H0)

. (14)

The numerator density is usually of a simple form so it is known exactly. The
denominator density pz(z|H0) must be known exactly or approximated care-
fully so that it is accurate even in the far tails of the PDF. The saddlepoint
approximation (SPA), described in a recent publication [Kay et al., 2001], pro-
vides a solution for cases when the exact PDF cannot be derived, but the exact
moment-generating function (MGF) is known. The SPA is known to be accurate
in the far tails of the PDF [Kay et al., 2001].

4.2 Variable Reference Hypothesis Modules

For a variable reference hypotheses, the J function is

J(x, T,H0(z)) =
px(x|H0(z))
pz(z|H0(z))

. (15)

Modules using a variable reference are usually designed to position the reference
hypothesis at the peak of the denominator PDF, which is approximated by the
central limit theorem (CLT).

4.3 Maximum Likelihood Modules

A special case of the variable reference hypothesis approach is the maximum
likelihood (ML) method, when z is an (ML) estimator (See section 2.3)

J(x, T,H0) =
p(x|θ̂)

(2π)−
P
2 |I(θ̂)| 12

4.4 One-to-One Transformations

One-to-one transformations do not change the information content of the data
but they are important for feature conditioning prior to PDF estimation. Recall
from Section 2 that Theorem 1 is a generalization of the change-of-variables
theorem for 1:1 transformations. Thus, for 1:1 transformations, the J-function
reduces to the absolute value of the determinant of the Jacobian matrix,

J(x, T ) = |JT (x)|.
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5 Implementation Problems

There are a wide range of pitfalls that must be avoided for proper implementation
of a class-specific classifier.

1. Numerical errors in J-function calculation.
2. Proper selection of features and reference hypothesis.
3. Proper PDF estimation of features.
4. Data segmentation. Although the features of each class may use a different

segmentation of the raw data, all features must represent exactly the same
input data.

5. Normalization. By normalizing features, information relating to the scaling
of the raw data is lost. If normalization is used, it must be applied equally
to all dclasses, i.e. care must be taken to normalize the raw input data,
which is processed by all feature transformations, rather than normalizing
just a subset of the feature sets. As a rule of thumb, all energy present in the
input data must find its way to the output of all feature transformations.

6 Conclusions

Space requirements do not permit any examples here. For examples and addi-
tional information, the reader is refered to the web site:
http://www.npt.nuwc.navy.mil/csf. The PDF projection theorem represents
a completely new paradigm in classification. Because it requires careful feature
design for each data class, it is not just another method of making sense of
the classification problem in a high-dimensional feature space. Thus, it is diffi-
cult to directly compare with a variety of approaches that operate on a given
feature set. Furthermore, we are describing a new “method”, not a new “algo-
rithm”. Therefore, proper implementation is necessary to insure that the results
are valid. Results on real data have resulted in orders of magnitude reductions
in false alarm rate in operational systems. Work is underway to compare the
method with existing methods on standard databases of handwritten character.

We have introduced a powerful new theorem that opens up a wide range of
new statistical methods for signal processing, parameter estimation, and hypoth-
esis testing. Instead of needing a common feature space for likelihood compar-
isons, the theorem allows likelihood comparisons to be made on a common raw
data space, while the difficult problem of PDF estimation can be accomplished
in separate feature spaces. We have discussed the recursive application of the
theorem which gives a hierarchical breakdown and allows processing streams to
be analyzed in stages. For additional information on designing a classifier as
well as a library of modules, the reader is referred to the class-specfific web site
http://www.npt.nuwc.navy.mil/csf. A more detailed theoretical treatment of
the method may be found in a recent publication [Baggenstoss, 2003].
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Abstract. The problem of imbalanced training sets in supervised pat-
tern recognition methods is receiving growing attention. Imbalanced
training sample means that one class is represented by a large num-
ber of examples while the other is represented by only a few. It has been
observed that this situation, which arises in several practical situations,
may produce an important deterioration of the classification accuracy, in
particular with patterns belonging to the less represented classes. In the
present paper, we introduce a new approach to design an instance-based
classifier in such imbalanced environments.

1 Introduction

Design of supervised pattern recognition methods is based on a training sample
(TS), that is, a collection of examples previously analyzed by a human expert.
Performance of the resulting classification system depends on both the quantity
and the quality of the information contained in the TS. This dependency is
particularly strong in the case of non-parametric classifiers since these systems do
not rest upon any probabilistic assumption about the class models. Researchers
have very early realized that the TS must satisfy some requirements in order
to guarantee good classification results. From the start, two assumptions were
established: 1) the set of c classes present in the TS covers the whole space of the
relevant classes, and 2) the training instances used to teach the classifier how to
identify each class are actually members of that class.

As the number of practical applications of these methods grows, experience
has gradually indicated the necessity of some requisites for the system to reach
satisfactory results. Among others, one can remark: 3) the TS represents the
population, 4) the considered features must permit discrimination, and 5) the
size/dimensionality rate of the sample is high enough.
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An additional and interesting complication arises when the TS is imbalanced.
A TS is said to be imbalanced if one of the classes is represented by a very
small number of instances compared to the other classes. Throughout this paper,
and consistently with the common practice [16, 10], we consider only two-class
problems and therefore, the examples are said to be either positive or negative
(that is, either from the minority class or the majority class, respectively). It has
been observed that class imbalance may cause a significant deterioration in the
performance attainable by standard supervised methods. High imbalance occurs
in real-world domains where the decision system is to detect a rare but important
case, such as fraudulent telephone calls [12], oil spills in satellite images [17], an
infrequent disease [24], or text categorization [20, 18].

Most of the research efforts addressing this problem can be organized into
three categories. One is to assign distinct costs to the classification errors for
positive and negative examples [14, 8]. The second is to resample the original
TS, either by over-sampling the minority class [19] and/or under-sampling the
majority class [16] until the classes are approximately equally represented. The
third consists in internally biasing the discrimination-based process so as to
compensate for the class imbalance [21, 12, 11].

In an earlier study [2], we provided preliminary results of several techniques
addressing the class imbalance problem. In such a work, we focused on resam-
pling (by under-sampling the majority class) the TS and also on internally bias-
ing the discrimination process, as well as on a combination of both methods. In
the present paper, we introduce a new approach for a better and higher decrease
in the number of negative examples. The technique proposed here is evaluated
over four real datasets using a Nearest Neighbour (NN) classifier [6].

2 Related Works

The two basic methods for resampling the TS cause the class distribution to be-
come more balanced. Nevertheless, both strategies have shown important draw-
backs. Under-sampling throws out potentially useful data, while over-sampling
increases the TS size and hence the time to design a classifier. Furthermore, since
over-sampling typically replicates examples in the minority class, overfitting is
more likely to occur. In the last years, research has focused on improving these
basic methods. Kubat and Matwin [16] proposed an under-sampling technique
that intelligently removes only those negative instances that are “redundant” or
that “border” the minority prototypes (they assume that these bordering cases
are noisy examples).

Chawla et al. [4] combine under-sampling and over-sampling methods and,
instead of over-sampling by merely replicating positive prototypes, they form
new minority instances by interpolating between several positive examples that
lie close together. On the other hand, Chan and Stolfo [3] first run preliminary
experiments to determine the best class distribution for learning and then gen-
erate multiple TSs with such a distribution. This is accomplished by including
all the positive examples and some of the negative prototypes in each TS. Af-
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terwards, they run a learning algorithm on each of the datasets and combine
the induced classifiers to form a composite learner. This method ensures that all
of the available training instances are used, since each negative example will be
found in at least one of the TSs.

Pazzani et al. [21] take a slightly different approach when learning from
an imbalanced TS by assigning different weights to prototypes of the different
classes. On the other hand, Ezawa et al. [11] bias the classifier in favour of certain
attribute relationships. Kubat et al. [17] use some counter-examples to bias the
recognition process.

In a previous work [2], we presented some methods for under-sampling the
majority class in the TS and a technique for biasing the classification procedure.
Since downsizing the majority class can result in throwing away some useful in-
formation, this size reduction must be done carefully. One should be interested
in using the removal of negative examples to eliminate the less valuable proto-
types, that is, noisy or atypical cases, instances that are close to the decision
boundaries, and redundant examples. For these purposes, we employed several
well-known editing and condensing schemes [7] that offer a good alternative for
removing all these examples. In [2], we tried three prototype selection algorithms.
Two of them are in the group of editing: the classical Wilson’s proposal [23] and
the k-NCN (Nearest Centroid Neighbourhood) scheme [13]. Both aim at filtering
the TS by deletion of noisy or atypical instances, generally increasing the NN
accuracy. These two techniques were also used in an iterative manner.

For elimination of redundant prototypes, we have employed the Modified
Selective (MS) [1] condensing. This method is based on the idea of creating
a consistent subset [15], and guarantees a suitable approximation to the NN
decision boundaries as they are defined by the whole TS. Finally, employment
of the combined editing-condensing (Wilson + MS and k-NCN + MS) was also
proposed as a way of downsizing the majority class in the TS to balance the
class distribution.

For internally biasing the discrimination procedure, we proposed in [2]
a weighted distance function to be used in the classification phase. Let dE(·)
be the Euclidean metric, and let Y be a new sample to be classified. Let x0
be a training prototype from class i, let Ni be the number of prototypes from
class i, let N be the TS size, and let m be the dimensionality of the feature
space. Then, the weighted distance measure is defined as:

dW (Y, x0) = (Ni

N )1/m · dE(Y, x0)

The basic idea behind this weighted distance is to compensate for the im-
balance in the TS without actually altering the class distribution. Thus, weights
are assigned, unlike in the usual weighted k-NN rule [9], to the respective classes
and not to the individual prototypes. In such a way, since the weighting factor
is higher for the majority class than for the minority one, the distance to posi-
tive instances becomes much lower than the distance to negative examples. This
produces a tendency for the new patterns to find their nearest neighbour among
the prototypes from the minority class.
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3 Classifier Performance in Class Imbalance Problems

To evaluate the performance of learning systems, a confusion matrix like the
one in Table 1 (for a two-class problem) is usually employed. The elements
in this table characterize the classification behaviour of the given system. The
columns are the actual class and the rows correspond to the predicted class. The
sum of the two columns gives the total number of samples in each class which
is n+ = TP + FN and n− = FP + TN , respectively.

The standard evaluation measure in pattern recognition domain is the classi-
fication accuracy, defined as acc = TP+TN

n++n− . However, this form of classification
accuracy assumes that the error costs (that is, the cost of a false positive and
a false negative) are equal. This assumption has been criticized as being unreal-
istic. For instance, consider a domain where only 0.2% patterns are positive. In
such a situation, labeling all new patterns as negative would give an accuracy
of 99.8%, but failing on all positive cases. Classifiers that optimize for accuracy
in these problems are of questionable value since they rarely predict the mi-
nority class. Consequently, in the presence of imbalanced datasets, it is more
appropriate to use other performance measures.

Alternative criteria for evaluating classifier performance include ROC curves
[22] and the geometric mean of accuracies [16]. These are good indicators of
performance on imbalanced datasets because they are independent of the dis-
tribution of prototypes between classes, and are thus robust in circumstances
where such a distribution might change with time or be different in the training
and test sets. In particular, the geometric mean of accuracies measured sepa-
rately on each class [16] is defined as g =

√
acc+ · acc−, where acc+ = TP

n+ is
the accuracy on the positive examples, and acc− = TN

n− denotes the accuracy on
the negative examples. This measure closely relates with the distance to perfect
classification in the ROC space.

The rationale behind this measure is to maximize the accuracy on each of the
two classes while keeping these accuracies balanced. For instance, a high acc+

by a low acc− will result in a poor g value. The g measure has the distinctive
property of being nonlinear, that is, a change in acc+ (or acc−) has a different
effect on g depending on the magnitude of acc+: the smaller the value of acc+,
the greater the change of g. This means that the cost of misclassifying each
positive pattern increases the more often positive examples are misclassified.

In this work, the g criterion will be used to evaluate the learning algorithms
both because the interesting general properties of g and also because the pro-

Table 1. Confusion matrix

Actual Positive Actual Negative

Predict Positive True Positive (TP) False Positive (FP)

Predict Negative False Negative (FN) True Negative (TN)
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posed classifiers do not directly have a changing parameter which properly jus-
tifies a ROC analysis.

4 The Weighted Wilson’s Editing

As already explained, we have experimented with several methods [2] aimed at
reducing the size of the majority class. Out of concern for the possibility of
eliminating useful information, we have used the well-known Wilson’s editing
algorithm [23]. One of the contributions of our previous paper to the imbalance
problem has been the application of this editing technique only to the majority
class. Another idea also explored in [2] is the employment of a weighted distance
when looking for the nearest prototype of a new pattern to be classified. Both
proposals have produced a significant increase in performance.

Despite these important results, it was observed in [2] that the editing tech-
nique does not produce significant reductions in the size of the majority class.
Accordingly, the imbalance in the TS is not diminished in an important way.
It is worthy to consider that Wilson’s technique essentially consists in a sort of
classification system. The corresponding procedure works by applying the k-NN
classifier to estimate the class label of all prototypes in the TS. Afterwards, those
prototypes whose class label does not agree with the associated with the largest
number of the k neighbours are discarded.

Of course, the k-NN classifier is also affected by the imbalance problem.
When applied to prototypes from the majority class, the imbalance in the TS
will cause a tendency to find most of their k neighbours into that majority class.
Consequently, only a few of the negative instances will be removed from the TS.
This means that the majority class is not completely cleaned of atypical cases
and also that the balance in the TS is far from being reached.

To cope with this difficulty, in the present paper we introduce the employ-
ment of the weighted distance previously mentioned, not only in the classification
phase but also in editing the majority class. That is, we apply the Wilson’s edit-
ing procedure, but using the weighted distance function instead of the Euclidean
metric. In such a way, the already explained tendency will be overturned.

This proposal is assessed with experiments carried out over four datasets from
the UCI Database Repository (http://www.ics.uci.edu/~mlearn/). Five-fold
cross-validation is used to obtain averaged results of the g criterion. Some
datasets have required to be transformed into two-class problems, both to have
a minority class and also to facilitate comparison with other published re-
sults [16].

The experimental results are shown in Table 2. The average g values obtained
when classifying with the original TS, and with this TS after being processed
with the idea of Kubat and Matwin [16], are also included for comparison pur-
poses. Weighted editing of the majority class yields an improvement in perfor-
mance (as measured by the g criterion). This improvement is more remarkable
when the weighted distance is employed both in editing and classification. It is
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Table 2. Average g value by processing the majority class

Phoneme Satimage Glass Vehicle

Original TS 73.8 70.9 86.7 55.8
Euclidean editing and classification 74.9 73.0 86.2 64.0
Euclidean editing and weighted classif. 75.7 76.2 87.9 65.8
Weighted editing and Euclidean classif. 75.0 74.5 86.2 65.6
Weighted editing and classification 75.3 77.8 87.9 67.2
Kubat and Matwin 74.4 71.7 86.4 61.0

Table 3. Average size before and after processing the majority class

Phoneme Satimage Glass Vehicle

Original TS 3,054.0 4,647.0 150.0 508.0
After Euclidean editing 2,882.8 4,471.6 147.2 414.8
After weighted editing 2,729.8 4,320.6 144.6 392.0

also important to note that the results from the procedure of Kubat and Matwin
are excelled in all datasets.

The effects of the weighted Wilson’s editing can be better analyzed by consid-
ering the number of negative examples that remain in the TS after its application
(see Table 3). Results in this table suggest a higher decrease in the size of the
majority class when it is processed with the weighted editing.

On the other hand, there is no reason to consider that the minority class is
free from atypical prototypes, which certainly affect the classifier performance.
However, none of the previously published works has reported attempts to elim-
inate noisy positive examples. Because of the relative small size of the minority
class, positive prototypes are considered as very important and therefore, elimi-
nation of some of them is usually regarded as a very risky undertaking.

To explore the convenience of editing also the minority class, we have done
some experiments applying the usual and the weighted editings to both classes
simultaneously. In these experiments, both editing procedures have been applied
only once since more iterations may lead to removal of all examples in the mi-
nority class. As can be seen in Table 4, both editing methods have produced
an increase in the imbalance between the classes, although this increment is
patently lower when the weighted editing was applied.

Despite this imbalance intensification, weighted editing of both classes pro-
duces enhancement of the g values, when compared with the usual editing tech-
nique (see Table 5). This is particularly true when the weighted distance is also
employed to classify new patterns. These results indicate that the weighted dis-
tance for classification is able to cope with the imbalance increase (with the
weighted editing) when it is moderate, as in Phoneme and Glass databases.
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In these datasets, the g values now obtained exceed the best results shown in
Table 2 (editing only the majority class).

5 Concluding Remarks and Further Work

In some real-world applications, the learning system has to work with just a few
positive examples and a great number of negative instances. Traditional learning
systems such as the NN rule can be misled when applied to such practical prob-
lems. This effect can become moderate by using some simple prototype selection
techniques to under-sample the majority class and/or some kind of weighted dis-
tance to compensate the imbalance. In these directions, a new approach has been
proposed in this paper. The idea of employing a weighted distance when editing
the majority class has yield promising results: majority class gets a higher size
reduction and the resulting TS is better cleaned from atypical prototypes.

The issue of cleaning also the minority class, through removal of noisy and
redundant prototypes, deserves further attention. The resulting increase in the
imbalance when both classes are processed may be diminished if the minority
class is over-sampled after the application of the editing procedure. In our paper,
we have shown that, when this increase is moderate, employment of the weighted
distance in the classification stage is able to obtain accuracy improvement.

Despite the successful results, a problem common to most of the downsizing
techniques is that they do not permit control on the number of prototypes to
be removed. Therefore, eliminated examples can be too many or too few to ade-
quately solve the class imbalance problem. Hence, experimentation with schemes
that allow to control the number of resulting examples [5] could be of interest.

Table 4. Majority to minority ratio when both classes are processed

Phoneme Satimage Glass Vehicle

Original TS 2.41 9.29 6.25 2.99
After Euclidean editing 2.85 12.06 8.00 6.90
After weighted editing 2.52 10.37 7.23 5.49

Table 5. Average g values when processing both classes

Phoneme Satimage Glass Vehicle

Euclidean editing and classification 73.8 66.4 84.6 47.5
Euclidean editing and weighted classif. 76.7 69.5 86.4 51.5
Weighted editing and Euclidean classif. 75.1 70.1 84.6 52.3
Weighted editing and classification 76.4 72.2 88.7 56.1
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Abstract. A new scheme for detecting edges in multi-channel SAR im-
ages is proposed. The method is applied to a set of two full-polarimetric
SAR images, i.e. a P-band and an L-band image. The first step is a low-
level edge detector based on multi-variate statistical hypothesis tests.
As the spatial resolution of the two SAR bands is not the same, the
test is applied to the polarimetric information for each band separately.
The multi-variate statistical hypothesis test is used to decide whether an
edge of a given orientation passes through the current point. The test
is repeated for a discrete number of orientations. Eight orientations are
used. The response for the different orientations of the scanning rectan-
gles as well as for different bands is combined using a method based on
Dempster-Shafer Theory. The proposed scheme was applied to a multi-
channel E-SAR image1 and results are shown and evaluated.

1 Introduction

Synthetic Aperture Radar (SAR) image products are very important and useful
for remote sensing applications because they can be acquired independent of
time of day or weather conditions and because their characteristics (wavelength,
polarisation, observation angle) can be chosen in function of the phenomenon
under investigation. The first satellite-based SAR systems used for remote sens-
ing were single-band mono-polarisation systems with a spatial resolution of a few
tens of meters (e.g. 25m for ERS1, 30m for Radarsat). However, scene interpre-
tation results can be greatly enhanced by combining different SAR images [1]
e.g. multi-polarisation, multi-frequency, different aspect angles, multi-temporal,
etc. In future satellite systems, the spatial resolution will be improved to a few
meters and the systems will be capable to acquire high-resolution polarimetric
and/or multi-frequency, i.e. multi-channel, data. Current airborne SAR systems
are already capable to acquire multi-channel SAR images with a metric resolu-
tion. For the automatic interpretation of such images, adequate low-level image
� The presented research is done in the frame of a European project IST-2000-25044:
SMART (Space and Airborne Mined Area Reduction Tools).

1 The test image was provided to us by the German Aerospace Center (DLR).

F.J. Perales et al. (Eds.): IbPRIA 2003, LNCS 2652, pp. 97–107, 2003.
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processing tools are needed. In this paper we propose an edge detection scheme
for multi-channel SAR images. Current edge detectors were designed to work
on low-resolution, single-band, multi-look SAR images. The most widely used
edge detector for such SAR images is the ratio-detector [2]. It is based on the
speckle distribution in uniform regions in single-band multi-look intensity im-
ages. In [3, 4] we proposed new edge detectors for polarimetric SAR images and
based on multi-variate statistical hypothesis tests. The hypothesis test is applied
for different orientations of a set of two scanning rectangles. In order to deter-
mine whether a vertical edge passes through a point P two vertical rectangles are
constructed around the point P and the statistics of the pixels in both rectangles
are compared using the hypothesis test. The test is repeated for a given number
of different orientations of the scanning rectangles. Normally the maximum of
the response over all orientations is considered as the global edge response. In
this article we investigate a new and improved way to combine (fuse) the re-
sponses of statistical edge detectors. The method is based on Dempster-Shafer
evidence theory [5, 6] which is briefly described in section 3. In a first step the
fusion method is applied to combine the response of the statistical test over
the different orientations of the scanning rectangles. In a second step the same
fusion method is used to combine edge detection results obtained from the two
frequency-bands. In section 2 the edge detector based on multi-variate statistical
hypothesis is introduced, section 3 gives a brief summary of Dempster-Shafer ev-
idence theory which is applied to the fusion of edge detection results in section 4.
In section 5 results of applying the method on a set of two polarimetric SAR
images, are shown and discussed. The last section presents the conclusions and
the perspectives for further research.

2 An Edge Detector Based on Multi-variate Statistics

An obvious way to detect edges in multi-channel images is to fuse the results of
existing detectors applied on each individual channel. An alternative is to use
multi-variate statistical methods which treat the combined information from
the different channels as a single input-vector. We have already successfully
introduced such methods for detecting edges in polarimetric SAR images [3, 4].
Fig. 1 illustrates the two approaches that can be used for detecting edges in multi-
channel SAR images. A comparative evaluation [7] has shown that the multi-
variate methods outperform the fusion of uni-variate methods. The multi-variate
hypothesis test for equality of variances that was used is the Levene test [8]. It is
applied to the single-look complex data where differences in radar backscattering
appear as differences in variance of a zero-mean normal distribution. The null-
hypothesis Ho is that the samples from the two scanning rectangles are from
populations with the same variance, the alternative hypothesis H1 is that the
population variances are different. In the Levene test the samples from the two
scanning windows are first transformed in absolute deviations of sample means.
In the case of a single-look complex polarimetric image with complex data of
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Result

Uni-Variate Approach Multi-Variate Approach
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Fig. 1. Edge Detection in Polarimetric SAR

the type xHH , xHV , xV V this results in:

Lik =
[ | �(xHH

ik − xHH
k ) |, | �(xHH

ik − xHH
k ) |, ..., | �(xV V

ik − xV Vk ) | ]t , (1)

in which i is the index of the observations and k the index of the scanning win-
dow (k=1 or 2). The question whether two samples display significantly different
amounts of variance is then transformed into a question of whether the trans-
formed values show a significantly different mean. This can then be tested using
a Hotellings T 2-test [9, 8]. The Hotellings T 2-statistic is defined as:

T 2 =
n1n2(L1 − L2)tC−1(L1 − L2)

n1 + n2
, (2)

with Lk the average of the Lik values in the kth window and [C] the pooled
covariance matrix estimated by:

C =
(n1 − 1)C1 + (n2 − 1)C2

n1 + n2 − 2
, (3)

where C1 and C2 represent the covariance matrices estimated from the two
scanning rectangles. The significance of T 2 is determined by using the fact that
in the null-hypothesis of equal population means the transformed statistic

TF =
(n1 + n2 − p− 1)T 2

(n1 + n2 − 2)p
(4)

follows a Fisher-Snedecor distribution, Fν1,ν2 with degrees of freedom ν1 = p
and ν2 = n1 +n2−p−1. p is the number of variants, i.e. 6 in our case if the real
and imaginary components for each polarisation are counted separately. From
the theoretical distribution of the test statistic the theoretical α% false alarm
threshold θα for the detector can be determined. It is given by

P {TF ≥ θα | Ho} = α . (5)

The theoretical distribution of the test-statistic when the null-hypothesis is ver-
ified is used to transform the test-statistic in each point in the image into the
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corresponding p-value. For a value pf the test-statistic TF (x, y), found in a given
pixel, the p-value is the probability that an even more extreme value can be found
when the null-hypothesis is verified. A low p-value means the test-statistic is very
extreme and indicates that the null-hypothesis is probably not verified, i.e. the
region corresponding to the two scanning rectangles is not uniform, and there
might be an edge passing between the two rectangles. Using p-values allows to
compare and combine results of different edge operators.

3 Overview of the Dempster-Shafer Theory Framework

The aim of the fusion described in the current article is to combine the response
of the edge detector for different orientations of the scanning rectangles as well
as to combine the results obtained in different SAR images of the same scene.
The proposed fusion method is based on Dempster-Shafer (DS) theory [5, 6] .
Dempster-Shafer or evidence theory is a mathematical tool that allows to work
with uncertain, imprecise and incomplete information. The uncertainty is taken
into account by assigning masses to sets of different hypotheses. Several experts
distribute their knowledge over these different hypotheses and a final decision
is obtained after combining the masses assigned by each expert. In DS-theory
a set of hypotheses is defined: Θ = {H1, H2, ...Hn}. The different experts or
sources of information distribute masses to sub-sets Ai of Θ. For each source of
information a mass function is defined as:

m : 2θ → [0, 1]
Ai → m(Ai)

, (6)

in which 2θ is the set of all sub-sets of Θ and m(Ai) represents the confidence
that the information source has that the solution lies in the sub-set Ai. The
attribution of masses for each information source is constrained by the following
rules:

0 ≤ m(Ai) ≤ 1 ,
m(Φ) = 0 ,∑

Ai∈2Θ m(Ai) = 1 ,
(7)

where Φ denotes the empty set. The solution is found by combining the masses
attributed to the different sub-sets by the different experts. The combination of
masses from different experts is done by Dempster’s combination rule. Let m1

and m2 be the masses that were respectively attributed by expert 1 and expert
2, then the combination of the masses from these two is defined as:

m12(Ai) =
∑

Ap∩Aq=Ai

m1(Ap)m2(Aq) . (8)

Masses are thus attributed to the sub-set formed by the intersection of the dif-
ferent sub-sets. Depending on what happens when the intersection is empty, one
distinguishes the closed world or the open world model. In the closed world one
assumes that the solution corresponds necessarily to one of the defined sub-sets.
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Any mass that would be combined into the empty set is therefore redistributed
over all other sets and the mass of the empty set remains zero. In the open world
model one allows the possibility that the solution is not part of the defined sub-
sets. A mass that goes into the empty set can then be interpreted as a symptom
of the fact that the solution is not within the sub-sets or that different experts
have incompatible opinions. From the combined masses two functions can be
derived that characterise the support to the final decision. The first is called the
belief (Bel) and represents the degree of minimal support on sub-set Ai. The
second is called plausibility (Pls) and corresponds to the maximal or potential
support to a given sub-set in the final mass assignment [6]. They are defined as:

Bel(Ai) =
∑

Aj ⊆ Ai

Aj �= Φ

m(Aj) , P ls(Ai) =
∑

Aj∩Ai
m(Aj) .

(9)

In the design of a system for fusion of information based on DS-theory one
distinguishes the following steps:

– Define the sub-sets relative to the problem
– Choose the model (closed or open)
– Define the mass functions used by each expert to distribute its confidence to

the different sets

4 Application of DS-Theory to the Fusion
of Edge Detection Results

4.1 Definition of the Sub-sets and the Strategy

The aim is to combine the response of the edge detector for different orientations
of the scanning rectangles. The edge detector for each orientation of the windows
is considered as an expert giving its opinion about the presence of an edge along
that direction. A small p-value means the expert has a strong opinion about
the presence of the edge and consequently a high confidence should be given to
that direction. The larger the p-value, the less strong the opinion is and the less
confidence should be given to that particular direction. We use 8 orientations
D0..D7 (ranging from D0 = 0 to D7 = 157.5o in steps of 22.5o) of the scanning
rectangles and we say that if a low p-value is found for a given direction, it
does not necessarily mean an edge is located along that direction; it could be
oriented along neighbouring directions. Even when we find an edge in a given
orientation, we do not know whether there is, in the same point not also an edge
along another orientation (a corner). Therefore we need to attribute also some
mass to the other directions. We have defined the following sub-sets of directions:

– the singleton: {Di},
– the triplet: {Di−1, Di, Di+1},
– the complement of the direction {Di}
– the complete set of directions {D0..D7}
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The open world model is the most convenient for our problem [13]. In general
the mass of the empty set m(Φ) after combining the masses is an indication for
a disagreement between experts or for the fact that the solution is not among
the defined sub-sets. This mass should therefore be high at corners The mass of
the complete set mC indicates an indecisiveness of the experts. It will be low in
edges or corners and high in the background. Three cases are distinguished:

– Background: If all p-values are “high”, probably no edge is present, and we
attribute most of the mass to the complete set of orientations, i.e. we know
nothing to decide the orientation of an edge. The complete set will, when
the masses are combined over different experts, not contribute to the mass
of the empty set. Therefore the mass of the empty set will be very low.

– Corners: Here several experts may detect an intermediate p-value and we
should find a high conflict between the experts and the mass of the empty
set should be high.

– Edges: The p-value for the correct edge direction is very low while neigh-
bouring directions will also have a low p-value. The mass of the complete
set should be low because some experts are very sure, while there is some
conflict due competing neighbouring directions.

4.2 Learning the System’s Parameters

For determining the system’s parameters a learning set with examples of edge
(EP), corner (CP) and background points (BP) was selected.

Thresholds for the p-Values. In order to introduce a dependence of the mass
assignment on the p-values that are obtained for the different orientations, the
range of possible p-values was sub-divided into 5 sub-ranges corresponding to
increasing p-value. The actual borders are fixed by studying the p-values of the
set of learning points for a given edge direction. The thresholds are selected such
that for the correct edge direction the p-values are very low or low; for corners
they are intermediate or high and in the background the p-values are high or
very high. The p-value thresholds that gave the best results for the Levene test
are: T1 = 10−8, T2 = 10−7, T3 = 10−4, T4 = 10−2.

Optimisation of the Mass Functions. Even when the sub-sets are chosen
and when we know what should be the result of the combination of masses from
different experts, it is still difficult to design the mass functions consequently. We
therefore determined the mass functions automatically on the basis of a small
learning set. In order to find the optimal mass functions a cost function Ctot =
CΦ + CC is defined as the sum of a cost function defined on the empty set and
the complete set as:
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CΦ =
1

NBP

∑
p∈BP

[mΦ,p − 0.1]2 +
1

NEP

∑
p∈EP

[mΦ,p − 0.5]2

+
1

NCP

∑
p∈CP

[mΦ,p − 0.9]2 , (10)

CC =
1

NBP

∑
p∈BP

[mC,p − 0.5]2 +
1

NEP

∑
p∈EP

[mC,p − 0.1]2

+
1

NCP

∑
p∈CP

[mC,p − 0.1]2 . (11)

The masses of the different sub-sets are adapted iteratively in order to minimise
the cost function Ctot on the learning points. The optimisation is performed
using the downhill simplex method of Nelder and Mead [10, 11]. Convergence
is reached after 20 to 25 iterations. The resulting mass functions are shown in
table 4.2. The general tendency for the resulting mass functions after optimi-
sation is that for very low p-values most of the mass goes to the singleton. As
p-value increases the mass of the triplet (neighbouring edge orientations) and
the complement (a possible indication of corners) increases and finally, for very
high p-values, most of the mass is concentrated in the complete set which cor-
responds to undeciveness (background). Masses in the table correspond to the
value assigned when the p-value corresponds to the given thresholds; for p-values
in between the thresholds, masses are linearly interpolated.

Table 1. Mass functions after optimisation of cost function

Sub-Set Threshold
0.0 T1 T2 T3 T4 1.0

{Di} 0.497 0.473 0.014 0.101 0.018 0.021
{Di−1,Di,Di+1} 0.174 0.062 0.906 0.131 0.010 0.089

{Di} 0.066 0.329 0.005 0.299 0.000 0.009
{D0..D7} 0.262 0.136 0.075 0.470 0.972 0.882

4.3 Fusion of Results from Different Frequency Bands

The test set used in this paper consists of two polarimetric images, respectively
in P-band and L-band. The two images were acquired from two parallel flight
paths and cover approximately the same region. However the spatial resolution
of both images is not the same. Together with the SLC images we received
transformation matrices that enable one to find the ground coordinates of each
point in the SLC images. These were obtained by the German Space Agency



104 D. Borghys and C. Perneel

DLR by geocoding the SAR image using a DEM of the region. By combining
the transformation matrices from the two bands it is thus possible to find the
relationship between the positions in the two images. However, because of the
difference in spatial resolution, this is not a one-to-one relationship. This is why
we decided to apply the raw edge detector to each band separately and fuse only
the results of the edge detection. In this paper we used the two images as two
sets of experts voting for a given edge orientation in each pixel of the P-band
image. The DS-based fusion is used to combine the different experts for different
edge orientations as well as for the two bands. As a reference, the image with
lowest resolution is used, i.e. the P-band image. The P-band image is scanned
and in each pixel first the edge information from the different orientation experts
is gathered and then the corresponding point in the L-band image is determined
and the edge information from the L-band image at that point is also gathered.
The DS-fusion is used to combine this joint information.

5 Results and Discussion

5.1 Fusion of Edge Orientations

In fig. 2 a part of the original P-band E-SAR image is shown on the left. The
edge detector is applied to the three polarisations simultaneously. The dimension
of the scanning rectangles is 10× 50. The 2nd and 3rd image respectively show
the mass of the empty set mΦ and of the complete set mC after combination of
masses. High values for mΦ correspond to corners and to other locations in the
image with high uncertainty with respect to the orientation of edges, e.g. highly
textured regions (built-up areas, forests or lines of trees). On the other hand mC

is low at the position of edges and corners. The decision whether a given point of
the image corresponds to an edge (or corner) can thus be based on the combined
information in mΦ and mC . If the point belongs to an edge, the orientation of
the edge can be derived from the plausibility and the belief. The orientation
corresponds to the singleton of directions for which the highest plausibility is
found. The right image of fig. 2 represents the image of edge orientations.

0
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90

112.5

135

157.5
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Fig. 2. Pband image results (from left to right: original image, mΦ, mC and
image of edge orientations)
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Fig. 3. Results of fusing the edge information of the two frequency bands (from
left to right: original L-band image, results after fusion for mΦ, mC and edge
orientation)

5.2 Fusion of Edge Detection Results from the Two Bands

In fig. 3 the results of fusing the edge information of the P- and L-band image are
shown. Note that the L-band image in the figure was geometrically rescaled to
the same size as the P-band image for display purposes. Results are also shown
in the coordinates of the P-band image. Note that the image of the complete set
shows more edge detail after the fusion.

5.3 Comparative Evaluation of the Results

The images above already show that the results after fusion of the two bands
are better than without the fusion. In order to obtain a quantitative idea of
the detector’s performance we determined the Receiver-Operator Characteristic
(ROC) curves for edge detection based on the P-band alone and after fusion
of P-band and L-band. ROC curves show the probability of detection Pd of
a detector versus its probability of false alarms Pf . Pd and Pf are determined
on a test image in which the true edges are known. These “true” edges were
indicated manually on the image. The ROC curve is generated by varying the
detector’s threshold. Fig. 4 shows the ROC curves obtained with and without
fusion of the two bands. The curve found for the fusion is above the curve found
for the P-band, indicating that the combination of the two bands indeed improves
edge detection results.

6 Conclusions and Perspectives

In this article a new scheme for detecting edges in multi-frequency polarimetric
SAR images is presented. It consists of two steps. The first step uses a multi-
variate statistical hypothesis test to decide whether an edge of a given orientation
passes through the current point. The test is repeated for a discrete number (8)
of orientations. The multi-variate test is applied to the full-polarimetric image,
but each frequency band is treated separately because their spatial resolution is
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Fig. 4. ROC curve for edge detection results

different. The second step combines the edge detector response over the different
orientations. For this combination an approach based on Dempster-Shafer theory
was developed. The edge detector for each orientation behaves as an expert that
gives an opinion about the presence of an edge in a set of possible directions.
The confidence each expert assigns to each sub-set of orientations is determined
using mass function. A cost function is defined to find masses in order to in-
crease the distinction between edges, corners and background. The masses are
automatically optimised using this cost function. The method is applied to a set
of two full-polarimetric E-SAR images in resp. P- and L-band. In a next step we
will investigate further how to incorporate local spatial information, i.e. taking
into account neighbours of each pixel, to improve edge detection. In particular
we will explore a method to increase further the confidence in a given edge pixel
when neighbouring edge pixels in the higher-resolution image are found along
the same edge direction. We will also investigate the use of active contours to im-
prove detected edge structure and investigate synergy between our edge detector
and speckle reduction methods.
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Abstract. This work is a part of a surveillance system where content-
based image retrieval is done in terms of people appearance. Given an
image of a person, our work provides an automatic description of his
clothing according to the colour, texture and structural composition of
its garments. We present a two-stage process composed by image seg-
mentation and a region-based interpretation. We segment an image by
modelling it due to an attributed graph and applying a hybrid method
that follows a split-and-merge strategy. We propose the interpretation of
five cloth combinations that are modelled in a graph structure in terms
of region features. The interpretation is viewed as a graph matching with
an associated cost between the segmentation and the cloth models. Fi-
nally, we have tested the process with a ground-truth of one hundred
images.

1 Introduction

In many application fields large volume of data appear in image form. The
Content-Based Image Retrieval (CBIR) is the Computer Vision area in charge
to handle and organize this great volume of data due to its visual content.
Image retrieval from databases is usually formalized in terms of descriptors that
combine salient visual features such as colour, texture, shape and structure. For
any given feature there also exists multiple representations that characterize it
from different perspectives. The reviews of Huang [11] and Forsyth [7] expose
a wide variety of feature representations and image retrieval strategies.

This work is focused on the development of a content-based retrieval system
where the image classification is done according to the presence and description
of a certain object. The process involves two steps: an image segmentation and
a region based interpretation. In the first step, the information of the segmented
image is organized as an attributed graph which features characterize the regions
and their relationships. We define certain operators that, following a split-and-
merge scheme, allow the graph to evolve until finding the final solution. Image
� This work has been partially supported by the project TIC2000-0382 and the grant
2002FI-00724.

F.J. Perales et al. (Eds.): IbPRIA 2003, LNCS 2652, pp. 108–116, 2003.
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segmentation techniques can be roughly classified into four groups: pixel based,
boundary based, region based and hybrid techniques. Some understanding sur-
veys on image segmentation are those of Haralick and Shapiro[9] and Muñoz[13].
Our segmentation strategy is classified as a hybrid method for combining clus-
tering in the colour space, colour homogeneity and edge detection. In the second
step of our process, image interpretation, the structure of the segmented regions
is matched against a set of models of objects. These models are also represented
as graphs that contain features such as colour, texture, size, shape and position.
Hence, the interpretation step is performed as a matching procedure between
the graph of the segmented image and the graph of the model objects. The best
matching solution is chosen due to a cost measure provided by the matching
operations on the model features.

We have tested our system by integrating it as a retrieval module of a general
surveillance application. This application performs image retrieval in terms of
people appearance and acts as a control mechanism of the people that enters
in a building. It automatically constructs an appearance feature vector from an
image acquired while people is checking-in in front of an entrance desk. This
way, the system analyses some person characteristics, such as the height, the
presence of glasses or the clothing, and stores the result in a database. Thus,
a graphic based interface allows the security personnel of the building to perform
an image retrieval of the registered people by formulating queries related on their
appearance. The objective of our work is centred in the module that provides an
automatic description of the people clothing. This description is given in natural
language in terms of colour, texture and structural composition of the garments.

In the literature we can find several examples of strategies that, like the
one which we have developed, combine region features and graph structure for
database indexing [6][14]. However, in the concrete aim of the clothing de-
scription, the most similar approach consists in the Changs development of
a computer-aided fashion design system [3]. However, this approach treats the
clothing segmentation process but does not treat the interpretation one.

The paper is organized as follows: in section 2 we detail the image segmenta-
tion according to its graph-modelling and its strategy. In the section 3 we present
how we model the clothing compositions as another graph of features and how
we perform the matching to interpret the clothing regions. Next, in the section 4,
we expose an example of the retrieval behaviour of our module. Finally, in the
sections 5 and 6 we present some results and conclusions respectively.

2 Image Segmentation

2.1 Segmentation Modelling

Graph Representation. We model an image I as a set of non-overlapping
regions R structured by an attributed graph G. The graph G is formed by a set
of nodes N , a set of edges E, and two labelling functions over these nodes and
edges. While each node identifies an image region r, each edge represents a re-
lation between two regions ri, rj . The graph is also provided with two labelling
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functions, LN and LE . They are in charge to obtain and store the feature infor-
mation FN and FE that identifies the nodes and edges respectively.

G = (N,E,LN : N → FN , LE : E → FE)

Node Features FN = {BB(n), A(n), H(n), E(n), AC(n), AI(n), T (n)}: A region
is described with its bounding box (BB), the area (A), the colour histogram
(H), the edge presence (E), the average chromaticity (AC), the average intensity
(AI), and the texture presence (T ).

Edge Features FE = {D(ni, nj), NH(ni, nj)}: The region relations are defined
by the neighbourhood information (NH) and a similarity distance (D). In the
next section 2.2 we detail how D is computed from the node features.

Graph Edition Operations. We define two graph operators that work over
the graph structure and allow it to grow and to diminish. These operators are the
fusion operator γF and the division operator γD. After a step of graph expansion
or contraction, they are in charge to recalculate FN and FE and restructure G
(remove obsolete edges, etc).

2.2 Segmentation Process

Algorithm Steps. As we illustrate in the Figure 1, our segmentation algorithm
is a process that consists in three steps: initialisation, split and merge.

Starting from the source image I and a mask of the zone we want to segment,
we create the initial graph G as a unique node. Then we expand G in two phases
corresponding to a discrimination of the textured areas and a breaking of the
plain ones. Thus, the division operator γD(G) acts over the graph nodes due
to some predefined split criteria SC based on the node features FN . Finally we

Fig. 1. Segmentation process guided by a graph structure
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apply iteratively the fusion operator γF (G) due to some merge criteria MC that
deal with the edge features FE of the graph. Next we expose the criteria we
follow to apply the operators in the split and merge steps.

Split Criteria. We deal with homogeneity measures on the node features.

Texture Discrimination. We discriminate the texture zones by applying a sta-
tistical strategy inspired in the work of Karu[12] and in the MPEG-7 texture
descriptor[5]. The general idea of our process is to consider as textured regions
those image zones with a certain amount of area that present a high density of
contours checked at certain frequencies. The exact detection steps are graphi-
cally showed in the Figure 2. The node feature E stores the edge information,
and T indicates the texture presence.

Plain Regions Split.We apply a pixel-based technique that consists in a cluster-
ing of the colour space. A plain region will be formed by all the connected pixels
in the image that belong to the same colour cluster. We have used the octree
quantization algorithm of Gervautz and Purgathofer[8] that, given a number of
colours nc, provides the palette of the ncth most usual colours of the image. This
adaptability is very interesting to avoid the under segmentation when we deal
with garment combinations of very similar colours. The quantization information
is stored in the node feature H .

Merge Criteria. We allow the fusion of two adjacent regions if their similarity
feature D is under a certain threshold. Being this value a measure between 0
and 1, the fusion operator will be applied iteratively to the pair of neighbouring
regions with minimum distance.

Plain Regions Similarity. The shadows provided by the clothes folds are viewed
as intensity changes that become especially critical in the case of the plain re-
gions. Thus, we have developed a similarity distance that gives more tolerance
to the intensity variations and allows the presence of progressive and smooth
intensity degradation in a region. The similarity measure is computed by a com-
bination of a chromatic distance and an intensity distance. The chromatic dis-
tance is computed from the AC node features as the Euclidean distance between
the colour means on the chromatic plane. When two regions are adjacent, the
intensity distance ID is computed from the E node features as the rate of edge

Fig. 2. The five steps of the texture discrimination process
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pixels in the common boundary. Otherwise, we calculate ID as the Euclidean
distance between the average intensity AI of the regions.

Textured Regions Similarity. We use the histograms of the two regions (H) as
their texture descriptors. We use a similarity metric that treats simultaneously
the distances of the histogram rates and the distances of the colours that they
represent. This measure is commonly used for region based image retrieval and
is defined as a similarity colour descriptor in the MPEG-7[5] encoding.

3 Interpretation

3.1 Interpretation Modelling

We attempt to distinguish between five types of clothing compositions that are
combinations of two garments (buttoned or unbuttoned) and a tie. We under-
stand the garments of a class composition as ordered layers from the most ex-
ternal to the most internal. For example we describe a person wearing an unbut-
toned black jacket and a blue shirt, like a structure of two layers, the first black
and the second blue. In terms of garment regions this can be seen as two black
outer regions and one blue inner region.

We describe a clothing composition by a an ideal model structured as an
attributed graph GM where the nodes NM represent the garment regions gr and
the edges EM their relationship (see Figure 3).

GM = (NM , EM , LNM : NM → FNM , LEM : EM → FEM )

Model Node Features FNM = {A(nm), S(nm), CL(nm), CH(nm)} : The model
regions are defined by its ideal area (A) understood as the area rate with respect
to the whole object. The region limits are analysed in order to identify a certain
shape (S). Furthermore, we can set some colour restrictions by forcing the region
to have a certain colour homogeneity (CH) and being this colour homogeneity
of a certain label (CL) such as skin, grey, blue, pink, etc. We use the 25 colour
label classification proposed by the colour naming method of Benavente[1].

Model Edge Features FEM = {SP (nmj , nmk), SI(nmj , nmk)}: We need to add
some similarity restrictions (SI) to those regions that, even thought of being
apart, belong to the same garment (for instance the two regions that describe
an unbuttoned jacket). We indicate the relative spatial positions between two

Fig. 3. Modeling of the five possible clothing compositions
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Fig. 4. Spatial position labels: [AP∈{N,NW,W,SW,S,SE,E,NE,C},
LP∈{I,A,O}]

regions (SP ) with a combination of two labels [AP,LP ]. These labels are ob-
tained from the region bounding boxes and are inspired in the iconic indexing
techniques of Rs-String [10] and 2D String [4]. Figure 4 show them graphically.

3.2 Interpretation Process

The interpretation process consists in evaluating all the possible mapping solu-
tions between a segmentation graph G and each model graphs GM . Minimizing
a cost value associated to matching operations chooses the best result. The in-
terpretation process applies an n-to-one mapping between the image regions and
the model regions. It also allows an image region not to take part in the solution.
The procedure pretends to avoid the over segmentation problem and reject those
intrusive regions (bags, wallets, etc.) that do not belong to the clothing.

Matching Cost. We compute the mapping between a graph G and
a model GMi due to some cost functions. These functions evaluate how the
node features and the edge features of the model are preserved when they are
mapped to the image ones. The functions δA, δCH , δCL, and δS , evaluate FNMi ,
and the functions δSI and δSP , evaluate FEMi . Let us name δFNM

({n}i, nmi)
and δFME (ei, emi) the combination of the node costs and edge costs respectively.
In a higher level, the function δ joins and weights them with the parameters,
αN,i and αE,i. These parameters enhance the significance of a model part or of
a relationship.

δ(Gk, GMi) =
#NMi∑
i=1

αN,i ∗ δFNMi
({n}i, nmi) +

#EM∑
i=1

αE,i ∗ δE(ei, emi) (1)

Next we define in a general way how we calculate the costs related with each
feature. For more details, see Borràs[2]. The functions δA, δSI and δCH provide
cost measures that vary in a range of goodness from 0 to 1 in reference to the
area (A), similarity (SI) and colour homogeneity (CH) features. The area cost
is computed as the ratio of the difference between the {n}l and mnl areas. The
similarity and cohesion costs are computed as the mean of the colour-texture
distances defined in the section 2.2. In relation to the features with boolean
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Fig. 5. Given a segmentation graph G the figure shows the three best matching
for the graph-modelled classes: 1,4 and 2. There is no result for 3 and 5 due to
the absence of tie shape. The image is classified as Class2 since it has the lowest
matching cost

properties, their costs are set to 0 or ∞ according to its accomplishment. The
function δSP checks the space labelling (SP ) and δCL examines the colour la-
belling of a region (CL) using the colour naming method [1]. Finally δS analyses
the shape with synthetic tie mask.

Matching Process. From graph G and a model graph GMi, we make an
expansion in a depth-search priority of a decision tree. Each tree level represents
the mapping of a region model with a set of segmented neighbouring regions.
Each tree node has associated a cost mapping of the partial solution. At each
step, we only expand the nodes with a cost value ≤ 1. When the process is done
for all GM we choose the segmentation solution Gk

i with minimum cost Ci,k

≤ 1. Applying the matching process to the whole models and observing the
minimum value of each best mapping, we decide the class classification of the
clothing composition. Figure 5 exemplifies a graph matching solution.

4 Example

We exemplify the behaviour of our method in front of a query formulated against
a database. This database contains the clothing descriptions that our method
has generated from a set of 100 test images, as well as, the colour labelling of
identified garments [1]. Then, we try it out with two queries which results are
showed in the Figure 6. A first query would be formulated as: ”We search a person
wearing a clothing composition of two layers: the first opened, the second closed;
with indistinct colour for the first layer, and white for the second layer”. Then,
a second query could refine the previous one adding a colour restriction for the
first layer as: ”...with black colour for the first layer...”.
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Fig. 6. Image retrieval: 1 to 7. Refined retrieval: 1,4,5 and 6. (a) Original
image (b) Segmentation and colour naming (c) clothing regions of the structure
identification

5 Evaluation of the Results

Starting from a set of one hundred images {Ij}{j:1..100} taken from a real envi-
ronment, we have evaluated the whole process and their intermediate steps. We
have chosen an empirical discrepancy method based on a set of ground truth
information. We have used a synthetic segmentation of the images SG = {Gj}
and a manual labelling of their structure SGM = {Gj

Mi}. According to them
we have extract some statistics over two sets of structure results that we have
obtained form two experiments. The first set, RGI

M , is obtained by running our
method starting from the original images. The second set, RGSG

M , is obtained by
running it from the synthetic segmented images.

Global Evaluation. Running our method form the original images we have
obtained a success of 64% on the clothing classification (SGM∩RGI

M=64%)

Segmentation Evaluation. We have compared the success on the structure
identification starting from the original images and starting from the synthetic
ones. Then we have obtained that SGM∩RGI

M=64% and SGM∩RGSG
M =69%.

Therefore we observe that the automatic segmentation influences the process by
incrementing the structure misclassification in a rate of 5%. This way, we can
evaluate the segmentation success in a rate of 92.75%.

Structure Description Evaluation. As we have seen in the previous results,
the structure description method can be evaluated with a 69% of success with-
out the segmentation influence. The mean reasons that introduce this 31% of
error are given by altered positions if the person in the image scene and severe
occlusions on the cloth zones provided by external objects.

6 Conclusions

We have developed a content-based image retrieval strategy that we have ap-
plied to a problem of people clothing identification. Our process consists in two
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stages, image segmentation and interpretation, both guided by a graph struc-
ture. Even thought the difficulties that the clothes segmentation carries (the
shadows of their folds, the irregular textures, etc.), our segmentation method
fulfils satisfactorily the objective. To perform the interpretation step, we have
modelled five types of clothing compositions according to some region features.
We use several cost functions to evaluate the best matching between the regions
of the segmented image and the ideal regions of the clothes composition models.
The process attempts to overcome the over segmentation problem by allowing
an n-to-one region mapping. Our strategy can be adapted to recognize and de-
scribe in terms of regions any object due to their colour, texture and structure
features.
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Tracking Heads Using Piecewise Planar Models
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Abstract. We present a procedure for tracking a rigid object based
on a piecewise planar model, and show how it can be used to track
a human face. The tracking is performed using a single incremental SSD-
based tracker. The main feature of the approach presented is that it can
track a rigid set of arbitrarily small patches all of which could not be
individually tracked.

1 Introduction

Three-dimensional head tracking is a basic component in many applications of
computer vision. For instance, the construction of advanced computer interfaces
deals with problems such as the identification of head gestures, face expression
analysis or lip reading. It is also used in biometric applications, like face or
iris-based recognition, for which a stable location of the face is critical. Also,
for very low bit-rate communications, the MPEG-4 standard proposes the use
of animated artificial face models in a wide range of applications from virtual
videoconferencing to virtual actors. All these applications require a robust and
efficient (i.e. real-time or near real-time) head tracker with no markers on it.

Various techniques have been proposed in the literature for head tracking.
Some of them only track the 2D position of the face on the image plane [2, 5],
others model the face as a plane, which can be affinely or projectively [7, 3, 6]
tracked in 3D space. Finally, there is a third group of procedures which rely on
a 3D model of the face. These are based on individually tracking a set of salient
points [11], 2D image patches [8, 9, 12], or 3D surface-based head models [10].

Procedures based on individually tracking a set of features can be quite
unstable as each feature, individually, may not provide enough information to
be tracked. In order to cope with this problem some higher level process, like
a Kalman filter [9, 12] or a set motion restrictions propagated on a network of
features [8], are used to accumulate the information provided by the tracker of
each feature/patch in order to estimate the motion of the head. This problem
does not exist for methods which model the face with a single surface, but, on
the other hand, those based on a single-plane are not able to track the head
in presence of out-of-the-image plane rotations [7, 3, 6], whereas those which
are based on a more complex head model, for example a cylinder [10], need
computationally expensive warping algorithms.

F.J. Perales et al. (Eds.): IbPRIA 2003, LNCS 2652, pp. 126–133, 2003.
c© Springer-Verlag Berlin Heidelberg 2003
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In this paper we present a procedure for model-based head tracking. The
model is based on a set of image patches located in space with a known 3D
structure. Our approach differs from previous feature/patch-based trackers [8,
9, 12] in that we track all features using a single incremental tracker [7, 6].
In this way we integrate in a single tracker the low level information provided
by all patches in the image, enabling us to reliably track a set of arbitrarily
small patches, all of which could not be individually tracked. In section 2 we
briefly introduce the incremental image alignment paradigm. In section 3 we
build the tracker. Finally in sections 4 and 5 some experiments are presented
and conclusions drawn.

2 Incremental Image Registration

Let x represent the location of a point in an image and I(x, t) represent the
brightness value of that location in the image acquired at time t. Let R =
{x1,x2, . . . ,xN} be a set of N image points of the object to be tracked (target
region), whose brightness values are known in the first image of a sequence,
I(x, t0).

Assuming that the brightness constancy assumption holds, then

I(x, t0) = I(f(x, μ̄t), t) ∀x ∈ R, (1)

where I(f(x, μ̄t), t) is the image acquired at time t rectified with motion model
f and motion parameters μ̄ = μ̄t.

Tracking the object means recovering the motion parameter vector of the
target region for each image in the sequence. This can be achieved by minimising
the difference between the template and the rectified pixels of the target region
for every image in the sequence

min
μ̄

∑
∀x∈R

[I(f(x, μ̄), t)− I(x, t0)]
2 (2)

This minimisation problem has been traditionally solved linearly by computing
μ̄ incrementally while tracking. We can achieve this by making a Taylor series
expansion of (2) at (μ̄, t) and computing the increment in the motion param-
eters between two time instants. Different solutions to this problem have been
proposed in the literature, depending on which term of equation (2) the Taylor
expansion is made on and how the motion parameters are updated [1].

If we update the model parameters of the first term in equation (2) using an
additive method, then the minimisation can be rewritten as [1, 4]

min
δμ̄

∑
∀x∈R

[I(f(x, μ̄t + δμ̄), t + δt)− I(x, t0)]
2 , (3)

where δμ̄ represents the estimated increment in the motion parameters of the
target region between time instants t and t+ δt.
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– Offline computations:

1. Compute and store M(x,0).
2. Compute and store H0.

– On line computations:

1. Warp I(z, t+ δt) to compute I(f(x, μ̄t), t+ δt).
2. Compute E(x, t+ δt).
3. From (4) compute δμ̄.
4. Update μ̄t+δt = μ̄t + δμ̄.

Fig. 1. Outline of the incremental tracking algorithm

The solution to this linear minimisation problem can be approximated by [4]

δμ̄ = −H−10

∑
∀x∈R

M(x,0)�E(x, t + δt), (4)

where H0 is
H0 =

∑
∀x∈R

M(x,0)�M(x,0),

E(x, t + δt) is the error in the estimation of the motion of pixel x of the target
region

E(x, t + δt) = I(f(x, μ̄t), t + δt)− I(x, t0),

and M(x,0) is the Jacobian vector of pixel x with respect to the model param-
eters μ̄ at time instant t0 (we will assume μ̄t0 = 0). If f(x,0) = x, then M(x,0)
can be expressed as

M(x,0) =
∂I(f(x, μ̄), t0)

∂μ̄

∣∣∣∣
μ̄=0

= ∇xI(x, t0)�
[
∂f(x, μ̄)

∂μ̄

]
μ̄=0

,

where ∇xI(x, t0) is the template image gradient and ∂f(x,μ̄)
∂μ̄ is the Jacobian

vector of the motion model.
The Jacobian of pixel x with respect to the model parameters in the ref-

erence template, M(x,0), is a vector whose values are our a priori knowledge
about target structure, i.e. how the brightness value of each pixel in the ref-
erence template changes as the object moves infinitesimally. It represents the
information provided by each template pixel to the tracking process. Note that
when H0 =

∑
∀x∈RM(x,0)�M(x,0) is singular the motion parameters cannot

be recovered, this would be a generalisation of the so called aperture problem in
the estimation of optical flow.

The on-line computation performed by this tracking procedure is quite small
(see Fig. 1) and consists of a warping of N pixels, which can be made very
fast by conventional software o even by specialised hardware, a subtraction of
N pixels to compute E(x, t + δt), the addition of N vectors multiplied by one
constant, and the multiplication of this result by the n× n matrix H0

−1, where
n = dim(μ̄).
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Fig. 2. Geometrical set up of the tracking process

3 The Tracker

In this section we will introduce the target region motion model, f , and show
how to compute the image Jacobian M(x,0) with respect to the parameters of
the model.

3.1 Motion Model

Let {πi} be a set of N planar patches in 3D space, each one containing a target
region. Each patch, πi, of this set can be described by equation πi ≡ n�i P = 1,
where ni = [a, b, c]� is a three-element vector containing the normal direction
to the plane πi, and P = [X,Y, Z]� ∈ πi are the coordinates of a 3D point on
that plane expressed in the reference system of the scene, OXY Z . Each plane,
πi, will have a reference template or high-resolution image of the target region,
Iir, associated to it. At the initial time instant, we will assume that the reference
systems attached to the camera and scene are perfectly aligned.

The projection of a point on a planar patchPπj onto image Ii of the sequence
is given by

xπj

i = KRi[ I− tin�j ]︸ ︷︷ ︸
Hi

Pπj , (5)

where K is the camera intrinsics matrix, which is assumed to be known, I is the
3×3 identity matrix, Ri, ti represent the pose of the camera and xπj

i represents
the homogeneous coordinates of the pixel projection. As we are dealing with 3D
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points that are located on planes, their projection model is a 2D linear projective
transformation or homography, Hi.

The motion model, f(x, μ̄), can be derived from (5) by considering the pro-
jection of 3D point Pπj onto I0 ≡ I(x0, t0) and onto It ≡ I(xt, t)

xπj

t = KRt[ I− ttn�j ]K−1xπj

0 ,

where, Rt(α, β, γ) and tt(tx, ty, tz) are the six parameters,
μ̄ = (α, β, γ, tx, ty, tz)�, of the motion model, which represent the pose
of the camera with respect the first image in the sequence. Note that, since our
scene is rigid, these motion parameters are common to all patches πj in the
model.

3.2 The Image Jacobian

In this subsection we will show how to compute the second element of our algo-
rithm, M(x,0).

Due to partial occlusions, perspective effects or low resolution, the projection
of a target region onto I0 may not provide enough information to accurately
compute ∇xI(x, t0). In this case we use the reference template to compute it,
through the following relation

∇xI(x, t0)|∀x∈πi
=

[
∂Iir(gi(x, μ̄))

∂gi

]� [
∂gi(x, μ̄)

∂x

]
,

where gi is the warping function that transforms the projection of planar patch
πi in image I0 onto reference template Iir, that is, I0(x) = Iir(gi(x, μ̄)) ∀x ∈ πi.

Finally, the Jacobian of the motion model with respect to the motion param-
eters is given by

∂f(x, μ̄)
∂μ̄

∣∣∣∣
μ̄=0

=
[
∂f(x, μ̄)

∂α
, . . . ,

∂f(x, μ̄)
∂tz

]
μ̄=0

, (6)

where, for example

∂f(x, μ̄)
∂α

= K

⎡⎣0 0 0
0 0 −1
0 1 0

⎤⎦K−1x0; and
∂f(x, μ̄)
∂tx

= −K
⎡⎣1

0
0

⎤⎦K−1x0.
4 Experiments

We have carried out three experiments to test the tracking algorithm here
presented, for each of which we have generated an image sequence (See videos
at: http://www.dia.fi.upm.es/~lbaumela/FaceExpressionRecognition/
research.html). Sequences A and B were generated using pov-ray1 (see Fig 3
1 A free ray tracer software, http://www.povray.org
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Fig. 3. Sequence A. First row: images 1, 100, 200 and 300 of the sequence. In
white thick lines is shown the motion estimated by our tracker. Second and third
rows: tracking parameters for sequence A. In solid line is shown the ground truth
data and in dash-dot line is shown the motion estimated by the tracker

and 4), in order to have ground truth data of the motion of our target. Sequence
C (see Fig. 5) was captured with a Sony VL-500 CCD colour camera with no
gain and no gamma correction.

In the first experiment we test the accuracy of our tracker. For this test
we have used sequence A (see Fig. 3), in which a cube located 4 meters away
from the camera translates along the X axis (tx varies) and rotates around the
Z axis (γ varies). As can be seen in Fig. 3 the parameters estimated with our
tracker coincide with the ground truth data. Note that as we are generating the
sequences with synthetic ligths and we are warping the textures over the planar
patches (with aliasing effects involved), the sequences are not noise free.

The second experiment compares the tracking procedure presented in this
paper with a traditional patch-based tracker in which each of the patches is
tracked individually. For this test we have generated sequence B (see Fig. 4)
which is identical to sequence A except that now the moving object is composed
of two planar patches with textures which individually do not provide enough
information for tracking. As shown in Fig. 4 the individual tracker diverges after
a few frames. This is caused by the ambiguity of the textures in the patches.

In the last experiment we test the performance of our tracker when following
a human face. For this test we use sequence C. As shown in Fig. 5, the tracker
accurately tracks the face even for moderate out-of-the-image plane rotations.
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Fig. 4. Sequence B. First row: images 1, 100, 200 and 300 of the sequence. In
white thick lines is shown the motion estimated by our tracker. Second and third
rows: tracking parameters for the first 100 frames in sequence B. In solid line is
shown the ground truth data, with dashed line is shown the estimation of the
individual tracker, finally with dash-dot line is shown the motion estimated by
our tracker

These rotations could be even larger just by including patches taken from the
sides of the head.

5 Conclusions

We have presented a procedure for tracking a rigid object based on a set of
image patches. By integrating low level information in a single tracker we have
been able to reliably track in 3D a set of patches which individually could not
provide enough information. With this algorithm we could also track a face with
out-of-the-image plane rotations, even with a poor face model.

Another issue that should be addressed in the future is the speed of conver-
gence of the tracker. This is related to the approximation made to solve (3) and
to the dependencies (correlations) in the columns of the H0 matrix, which are,
in turn, directly related to the ambiguities in the estimation of the tracking pa-
rameters and which may result in slow convergence, and eventually divergence,
of the tracker. Other open issues are the invariance to illumination changes and
to variation in the texture of the patches (e.g. variations in face appearance).
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Fig. 5. Sequence C. Upper row: four images of the sequence. In white thick
lines is shown the location of each feature estimated by the tracker. Bottom row:
Estimated rotation parameters
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Abstract. In this communication, we propose the use of Support Vec-
tor Machines (SVM) for crop classification using hyperspectral images.
SVM are benchmarked to well–known neural networks such as multilayer
perceptrons (MLP), Radial Basis Functions (RBF) and Co-Active Neu-
ral Fuzzy Inference Systems (CANFIS). Models are analyzed in terms of
efficiency and robustness, which is tested according to their suitability
to real–time working conditions whenever a preprocessing stage is not
possible. This can be simulated by considering models with and without
a preprocessing stage. Four scenarios (128, 6, 3 and 2 bands) are thus
evaluated.
Several conclusions are drawn: (1) SVM yield better outcomes than neu-
ral networks; (2) training neural models is unfeasible when working with
high dimensional input spaces and (3) SVM perform similarly in the four
classification scenarios, which indicates that noisy bands are successfully
detected.

1 Introduction

The information contained in hyperspectral images allows the reconstruction of
the energy curve radiated by the terrestrial surface throughout the electromag-
netic spectrum. Hence, characterization, identification and classification of the
observed material from their spectral curve is an interesting possibility. Pattern
recognition methods have proven to be effective techniques in this kind of ap-
plications. In fact, classification of surface features in satellite imagery is one of
the most important applications of remote sensing. It is often difficult and time-
-consuming to develop classifiers by hand, so many researchers have turned to
techniques from the fields of statistics and machine learning to automatically gen-
erate classifiers [1–7]. Nevertheless, the main problem with supervised methods
� This research has been partially supported by the Information Society Technologies
(IST) programme of the European Community. The results of this work will be
applied in the “Smart Multispectral System for Commercial Applications” project
(SmartSpectra, www.smartspectra.com). All the data used were acquired in the
Scientific Analysis of the European Space Agency (ESA) Airborne Multi-Annual
Imaging Spectrometer Campaign DAISEX (Contract �15343/01/NL/MM).

F.J. Perales et al. (Eds.): IbPRIA 2003, LNCS 2652, pp. 134–141, 2003.
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is that the learning process heavily depends on the quality of the training data
set and the input space dimensionality. Certainly, these are main issues to be ad-
dressed, given the high cost of true sample labelling, the high number of spectral
bands, and the high variability of the earth surface. In practice, a pre–processing
stage (feature selection/extraction) is time–consuming, scenario–dependent and
needs a priori knowledge.

Therefore, the last objective in such a scheme is to process the data in order
to extract valid, novel, potentially useful, and ultimately understandable struc-
ture in data, which constitutes a data mining approach [1]. In this context, we
propose the use of Support Vector Machines (SVM) [10] to develop crop cover
classifiers and to obtain a thematic map of the crops on the scene. SVM are not
affected by the curse of dimensionality and offer solutions with an explicit depen-
dence on the most informative patterns in the data. Previous works have shown
succesful classification performance of hyperspectral data [5, 11] but further work
must be carried out in order to study robustness in noisy situations (irrelevant
bands) and changing environments (several images). We compare SVM to other
well-known machine learning methods such as multilayer perceptrons (MLP),
Radial Basis Functions (RBF) [6] and Co-Active Neural Fuzzy Inference System
(CANFIS) [7]. Robustness and suitability to real–time working conditions are
evaluated by considering models with and without a preprocessing stage.

The paper is outlined as follows. In Section 2, data collection and the exper-
imental setup is presented. SVM are described in Section 3 and results shown in
Section 4. We end up with some conclusions and further work.

2 Material and Experimental Setup

We have used six hyperspectral images acquired with the 128-bands HyMap spec-
trometer during the DAISEX-99 campaign (http://io.uv.es/projects/daisex/).
More information about the data collection, Hymap calibration and atmospheric
correction can be retrieved from [3, 4]. Six different classes were considered in the
area (corn, sugar beet, barley, wheat, alfalfa, and soil), which were labelled from
�1 to �6, respectively. In this sense, the task is referred to as a multiclassification
pattern recognition problem. However, we are not only interested in the accu-
racy provided by each method but also in their suitability to real–time working
conditions whenever a feature selection stage is not possible. This scenario is
simulated by considering models without a pre-processing stage and thus using
128 bands. In addition, previous work [3, 4] in feature selection yielded three
subsets of representative features (6, 3 and 2 bands), which induce three dif-
ferent pattern recognition problems, respectively. Two data sets (training and
validation sets) were built (150 samples/class each) and models were selected
using the cross-validation method. Finally, a test set consisting of the true map
on the scene over complete images was used as the final performance indicator.
In each one of the six images (700×670 pixels), the total number of test samples
is 327,336 (corn 31,269; sugar beet 11,322; barley 124,768; wheat 53,400; alfalfa
24,726; and bare soil 81,851) and the rest is considered unknown.
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Fig. 1. Diagram of the hyperspectral data classification process. A training data
set is extracted from the the six collected images and then a CART-based feature
selection stage yields three representative subsets (consisting of 6, 3 and 2 bands,
respectively) [4], which constitute three different pattern recognition problems,
respectively. An additional scenario considering the whole training data set (128
bands) incorporates. Four classifiers are thus implemented and tested in the six
whole images

Once the desired input-output mapping for training and validation are de-
fined, usually a feature selection stage is used to reduce dimension of the input
space. This can make the training process feasible and improve results by re-
moving noisy irrelevant bands. However, design and application of a dimension-
reduction techniques is time-consuming and scenario-dependent, which are evi-
dent problems to circumvent. In fact, we are not only interested in the classifica-
tion accuracy provided by each method but also in their suitability to real-time
working conditions whenever a feature selection stage is not possible. This sce-
nario is simulated by considering models with and without a feature selection
stage. The proposed learning scheme is shown in Fig. 1.

3 Support Vector Machines

Support Vector Machines have been recently proposed as a method for pattern
classification and nonlinear regression. Their appeal lies in their strong connec-
tion to the underlying statistical learning theory where an SVM is an approxi-
mate implementation of the method of structural risk minimization [10]. SVM
has many attractive features. For instance, the solution of the quadratic pro-
gramming (QP) problem [2] is globally optimized while with neural networks
the gradient based training algorithms only guarantee finding a local minima.
In addition, SVM can handle large feature spaces (specially convenient when
working with hyperspectral data), can effectively avoid overfitting by controlling
the margin and can automatically identify a small subset made up of informative
points, namely support vectors (SV). Consequently, they have been used for par-
ticle identification, face recognition, text categorization, time series prediction,
bioinformatics, texture classification, etc. Visit http://www.kernel-machines.org
for publications and application resources.

In the following, we summarize the “one-against-the-rest procedure” for clas-
sification purposes, in which, a classifier is obtained for each class. Given a labeled
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Fig. 2. Left: The Optimal Decision Hyperplane in a linearly separable problem.
Right: Linear decision hyperplanes in nonlinearly separable data can be handled
by including slack variables ξi. Figures adapted from [9]

training data set ((x1, y1), . . ., (xn, yn), where xi ∈ R
d and yi ∈ {+1, −1}) and

a nonlinear mapping, φ(·), usually to a higher dimensional space, R
d φ(·)−→ R

H

(H > d), the SVM method solves:

min
w,ξi,b

{
1
2
‖w‖2 + C

∑
i

ξi

}
(1)

subject to the following constraints:

yi(φT (xi)w + b) ≥ 1− ξi ∀i = 1, . . . , n (2)
ξi ≥ 0 ∀i = 1, . . . , n (3)

where w and b define a linear regressor in the feature space, nonlinear in the
input space unless φ(xi) = xi. In addition, ξi and C are, respectively, a positive
slack variable and the penalization applied to errors (Fig. 2). The parameter C
can be regarded as a regularization parameter which affects the generalization
capabilities of the classifier and is selected by the user. A larger C corresponds
to assigning a higher penalty to the training errors.

An SVM is trained to construct a hyperplane φT (xi)w+ b = 0 for which the
margin of separation is maximized. Using the method of Lagrange multipliers,
this hyperplane can be represented as:∑

i

αiyiφ(xi) · φ(x) = 0 (4)

where the auxiliary variables αi are Lagrange multipliers. Its solution reduces
to: Maximize:

Ld ≡
∑
i

αi − 1
2

∑
i,j

αiαjyiyjφ(xi) · φ(xj) (5)

subject to the constraints:

0 ≤ αi ≤ C, (6)
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i

αiyi = 0 (7)

Using the Karush-Kuhn-Tucker Theorem, the solution is a linear combination
of training examples which lie closest to the decision boundary (the correspond-
ing multipliers are non-zero). Only these examples, affect the construction of
hyperplane.

The mapping φ is performed in accordance with Cover’s theorem which guar-
ranties that patterns, non-linearly transformed to a high–dimensionality space,
are linearly separable. Working with high dimension converted patterns would,
in principle, constitute an intractable problem but all the φ mappings used in
the SVM occur in the form of an inner product. Accordingly, the solution is to
replace all the occurrences of an inner product resulting from two mappings with
the kernel function K defined as:

K(xi,xj) = φ(xi) · φ(xj). (8)

Then, without considering the mapping φ explicitly, a non-linear SVM can be
constructed by selecting the proper kernel.

In order to solve problems with k classes we must reformulate the problem.
Given a classifier (wj , bj), j ∈ {0, ..., k − 1} for each class, to assign a sample x
to a certain k class we must calculate the output of the k classifiers and select
the one with the highest output. We then proceede as in the binary case. Full
details on the solution can be found in [8].

4 Classification Results

4.1 Training an SVM

Nonlinear classifiers are obtained by taking the dot product in kernel-generated
spaces. Some common kernels are the linear (K(xi,xj) = xi · xj), polynomial
(K(xi,xj) = (xi · xj + 1)d), and Gaussian (RBF) (K(xi,xj) = e−(xi·xj)

2/σ2 ).
Note that one or more free parameters must be previously settled in the nonlin-
ear kernels (polynomial degree d, Gaussian width σ) together with the trade-off
parameter C, usually known as the penalization factor. Selection of the best sub-
set of free parameters are usually done by cross validation methods but this can
lead to poor generalization capabilities and lack of representation. We alleviate
this problem using the V-fold cross-validation method1 with the training data
set.

Many discriminative methods, including neural networks and SVM, are often
more accurate and efficient when dealing with two classes only. For large number
of classes, higher-level multi-class methods utilize these two-class classification
methods as the basic building blocks, namely “one-against-the-rest” procedures.
However, such approaches lead to suboptimal solutions when dealing with multi-
class problems and to the well-known problem of the “false positives”. Therefore,
we have used a multi–classification scheme for all the methods.
1 The 8-fold cross validation uses 7/8 of data for training and 1/8 for validation pur-
poses. This procedure is repeated eight times with different validation sets.
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Table 1. Average recognition rates (RR [%]) of the six images in training,
validation, and test sets for different models. The four subsets (128, 6, 3, 2 bands)
are evaluated (except for neural networks in which the computational burden
involved made training with 128 bands unfeasible), all of them containing 150
samples per class

METHOD FEAT. TRAIN VALID TEST

SVM128 Poly 100 98.78 95.53
SVM6 Poly 99.79 99.44 96.44
SVM3 RBF 91.22 91.00 85.16
SVM2 RBF 89.11 89.11 82.68

MLP6 6x5x6 99.33 99.44 94.53
MLP3 3x25x6 90.22 87.67 82.97
MLP2 2x27x6 88.00 85.67 81.95

RBF6 6x16x6 98.88 98.80 94.10
RBF3 3x31x6 88.20 87.00 81.44
RBF2 2x18x6 87.33 85.25 81.62

CANFIS6 6x2x7x6 98.68 96.66 94.22
CANFIS3 3x3x12x6 89.20 88.77 81.64
CANFIS2 2x8x15x6 86.33 86.00 81.82

4.2 Model Comparison

Table 1 shows the average recognition rate (RR[%]) of the six images in training,
validation, and test sets. In all cases, we considered equiprobable classes for
training and validation and thus no individual penalization parameter [8] in the
case of SVM or heuristic rule in neural networks were necessary. However, test
set contains highly unbalanced classes and thus, the latter practice could improve
results if the training process was intentionally driven by priors. However, this
would not be a fair assumption for our purposes, i.e. achiving an automatic
scenario-independent classifier.

Some conclusions can be drawn from Table 1. SVM performs better than
neural networks in all scenarios. Moreover, when a feature selection stage is not
possible (128 bands used), the computational burden involved in the training
process of neural networks make these methods unfeasible. Contrarily, SVM
are not affected by input dimension and presence of noisy bands. Additionally,
as the dimension of the input space is lower, neural networks degrade more
rapidly than SVM do. In that sense, complexity2 of all models increases as the
input dimension decreases. In fact, RBF kernels and more than 15% of SVs are
strictly necessary to attain significant results with less than six bands. Despite
2 We evaluate model’s complexity in terms of the kernel used and the number of SV
in the SVM approach and in terms of the number of hidden neurons in the neural
networks.
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Fig. 3. Left: HyMap RGB composition, Barrax, Spain. Right: Classification
of the whole scene yielded by the best SVM classifier

polynomial kernel has been claimed to be specially well-suited for hyperspectral
data classification [5], it has yielded similar results to the linear kernel in our
case (see next section for details). Finally, no numerical (RR<3%) or statistical
(κ scores in the range [0.6,0.8]) differences are found between SVM with and
without a step for dimensionality reduction prior to classification. This indicates
that noisy bands have been successfully identified and their contribution to the
final decision attenuated without decreasing the recognition rate.

Table 2 shows the confusion matrix of the best SVM. High recognition rates
(RR[%]>90%) are achieved for all classes but SVM misclassify almost 6% of corn
(class �1) as bare soil (class �6). This is due to that corn is in an early stage of
maturity. Figure 3 shows the original and the classified samples for one of the
collected images.

Table 2. Confusion matrix and recognition rate [RR %] in each class yielded
by the best SVM classifier in the TEST set (whole scene)

Desired class Predicted class RR[%]

�1 �2 �3 �4 �5 �6
Corn Sugar beet Barley Wheat Alfalfa Soil

�1, corn 31,188 67 7 1 0 6 99.74

�2, sugar beet 23 11,256 43 0 0 0 99.42

�3, barley 732 702 120,874 1993 18 449 96.88

�4, wheat 12 108 320 52,956 4 0 99.17

�5, alfalfa 28 106 140 36 24,413 3 98.73

�6, soil 4914 1003 1539 190 15 74,190 90.64
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5 Conclusion

In this communication, we have proposed the use of kernel methods for both
hyperspectral data classification. SVM have revealed very efficient in different
situations when a preprocessing stage is not possible. This method can tolerate
the presence of ambiguous patterns and features in the data set. Future work
will consider boosting methods and combined forecasters.
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Abstract. A robust method for plate segmentation in a License Plate
Recognition (LPR) system is presented, designed to work in a wide
range of acquisition conditions, including unrestricted scene environ-
ments, light, perspective and camera-to-car distance. Although this novel
text-region segmentation technique has been applied to a very specific
problem, it is extensible to more general contexts, like difficult text seg-
mentation tasks dealing with natural images. Extensive experimentation
has been performed in order to estimate the best parameters for the task
at hand, and the results obtained are presented.

1 Introduction

Text-region segmentation has been largely studied over the last years, [9], [8], [5],
[2], [4], however, even today it remains an open field of work, interesting for many
different applications in which complex images are to be processed. Reasonable
advances have been actually achieved in the task of extracting text from some
kind of restricted images, as in the case of scanned documents, artificially edited
video, electronic boards, synthetic images, etc. In all of them, the text included
in the image has a number of ”a priori” defined properties (localisation, intensity,
homogeneity) that makes possible to tackle the segmentation task using filters,
morphology or connectivity based approximations.

Historically, the methods devised to solve the text segmentation problem
fall into one of two different branches: a morphology and/or connectivity ap-
proach, most useful for dealing with the kind of images previously described,
and a textural (statistical) approach that has been successfully used to find text
regions over non-restricted natural images. This is the problem that arises in the
segmentation phase of an LPR system, where images are composed of a great
variety of objects and affected by illumination and perspective variations. All
these variable environment conditions result in a complex scene, where text re-
gions are embedded within the scene and nearly impossible to identify by the
methods employed in the morphology approximation.

Thus, the task of text (license plate) segmentation in a LPR system is in-
cluded in the second category. Moreover, due the nature of images (as we will
� Work partially supported by the Spanish CICYT under grant TIC2000-1703-CO3-01
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see in Section 2), it is also desirable to use a segmentation method capable of
generating various hypothesis for each image in order to prevent the loss of any
possible license plate region. In this way, it is possible to design a subsequent
recognition phase that filters the final results without discarding beforehand any
reasonable segmentation hypothesis.

The segmentation method proposed can be also useful for detecting any kind
of text regions in natural and complex images. However, since we are concerned
with a very particular task, all the parameters have been specifically adapted to
improve the detection of text regions which match the constraints imposed by
the shape and content of a typical vehicle license plate.

As it will be shown in the experiments section, very promising results have
been achieved for the segmentation phase, therefore the next step in the design of
a complete license plate recognition system requires further work on the design
of a complementary recognition phase able to take advantadge of the multiple
data (multiple hypothesis) provided by this segmentation.

The rest of the paper is organized as follows: Section 3 describes the data and
their acquisition conditions. In Section 2, the proposed methodology is presented.
Extensive experimentation and results are reported in Section 4, and finally, in
Section 5, some conclusions are given and future work is proposed.

2 Corpus

A number of experiments have been performed in order to evaluate the per-
formance of the novel segmentation technique. In other application areas, there
are typically one or more standard databases which are commonly used to test
different approaches to solve a specific task, and it is possible to compare re-
sults among them. This is not the case for our application, as far as we know,
perhaps because license plate segmentation in non-restricted images is a fairly
recent topic of interest in the pattern recognition community.

Therefore, we have used a locally acquired database. It is composed of 1307
color images of 640 × 480 pixels randomly divided into a test set of 131 and
a training set of 1176 images. The experiments were carried out using only the
gray-level information.

The scenes have been freely captured without any distance, perspective, il-
lumination, position, background or framing constraints, except that the plate
number has to be reasonably legible for a human observer. Several examples of
images in the database are shown in Figure 1. In applications such as parking
time control or police surveillance, the camera can be located in a vehicle and
the images captured may be similar to the ones in this database. In other appli-
cations, such as access control or traffic surveillance, cameras are typically fixed
in a place and thus the scene features (perspective, distance, background, etc.)
are easily predictable.

A specific preprocessing step has to be performed prior to the training and
test phases. This preprocessing task consists of a manual labelling, where each



144 Javier Cano and Juan-Carlos Pérez-Cortés

Fig. 1. Four real example images from the test set. Different acquisition con-
ditions are shown, as illumination, perspective, distance, background, etc.

license plate is located in the image and a four-sided polygon corresponding to
the minimum inclusion box of the plate is defined and associated to that image.

3 Methodology

The aim of the segmentation phase is to obtain a rectangular window of a test
image that should include the license plate of a vehicle present in a given scene.
The task of detecting the skew and accurately finding the borders of the plate
is left for the next phase, as well as the recognition proper, which is beyond the
scope of this paper.

The method proposed for the automatic location of the license plate is based
on a supervised classifier trained on the features of the plates in the training set.
To reduce the computational load, a preselection of the candidate points that are
more likely to belong to the plate is performed. The original image is subject to
three operations. First, an histogram equalization is carried out to normalize the
illumination. Next, a Sobel filter is applied to the whole image to highlight non-
homogeneous areas. Finally, a simple threshold and a sub-sampling are applied
to select the subset of points of interest. The complete procedure is depicted in
Figure 2.
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Fig. 2. Test image preprocess example. Upper-left: Original image. Upper-right:
Equalization. Lower-left: Horizontal Sobel filter and Lower-right: Threshold bi-
narization

3.1 Multi-hypothesis Scheme

Ideally, one segmentation hypothesis per image should be enough to detect a sin-
gle vehicle plate, but because of the unrestricted nature of the images, it is pos-
sible that false positives appear when particular areas have features typically
found in a license plate, like signs, advertisements and many other similarly
textured regions. Therefore, it is important to save every hypothesis that can
represent a plate region and leave the decision of discarding wrong hypotheses
for the recognition phase, where all the details about the task are taken into
account.

There is an additional important reason to adopt a multi-hypothesis scheme.
Images have been acquired at different distances from the camera to the vehicle
and, as a result, different sizes of plates can be seen in the images. This variability
can be overcome using size-invariant features, including in the training set fea-
tures from images of various sizes or using a multi-resolution scheme producing
additional hypotheses. Informal tests have been performed that suggest that the
first two options give rise to less accurate models of the “license plate texture”
and thus lead to more false positives. For this reason, the third option has been
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Fig. 3. Different hypothesis in a multi-resolution segmentation scheme. The
brighter points indicate pixels classified as “license plate”

chosen. In Figure 3, an example of this multi-hypothesis detection procedure is
shown.

3.2 Feature Vectors

A feature extraction technique that has proven its success in other image recogni-
tion tasks [3], [6] has been used in this case. It consists on using the gray values of
a small local window centered on each pixel and applying a PCA transformation
to reduce its dimensionality.

Each feature vector of the training set is labelled as belonging to one of
two classes: positive (pixel in a license plate region), or negative (any other
region). Obviously this gives rise to a huge set of negative samples, compared
to the relatively small set of vectors of the “plate” class. Many of the negative
samples can be very similar and add very little value to the “non-plate” class
representation if they come from common background areas such as car bodies,
buildings, etc.

To reduce the negative set, editing and condensing procedures can be prob-
ably used with good results, but we have applied a simpler and more efficient
method that can be regarded as a bootstrapping technique. The procedure starts
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up with no negative samples in the training set and then proceeds by iteratively
adding those training samples that are misclassified in each iteration. In the first
iteration, since the train set it is only composed by positive samples, the classifi-
cation relies on a threshold on the average distance of the k-nearest neighbours.

We have found that a more compact and accurate training set is built if
another distance threshold is used to limit the number of misclassified samples
included at each iteration.

3.3 Classification

A conventional statistical classifier based on the k nearest neighbours rule is
used to classify every pixel of a test image to obtain a pixel map where well-
differentiated groups of positive samples probably indicate the location of a li-
cense plate.

In order to achieve a reasonable speed, a combination of a “kd-tree” data
structure and an “approximate nearest neighbour” search technique have been
used. This data structure and search algorithm combination has been success-
fully used in other pattern recognition tasks, as in [7] and [1]. Moreover, the
“approximate” search algorithm provides us with a simple way to control the
tradeoff between speed and precision.

4 Experiments

The results of the proposed segmentation technique are highly dependent on
the classifier performance, which in turn depends on the use of a complete and
accurate training set. Several parameters in this regard have been varied in initial
tests.

In Figure 4, the segmentation results are shown for four iterations of the
bootstrap process. A clear improvement is found in the 3 first iterations, but
after that the results do not improve significantly. In this experiment, a window
size of 40× 8 pixels and the training images scaled so as the plate has a similar
size, have been tested. Larger values of the window size proved to add little
classification improvement.

However, the most promising results have been obtained for a window size of
40×8 pixels and the training images scaled so as the plate is around three times
as large in each dimension, as suggest the results in Figure 5. In the experiments
reported in that figure, as receiver operating curves, the size of the window is
fixed to 40 × 8 pixels, while the normalized plate size ranges from 40 × 8 to
160× 40.

The best tradeoff between segmentation accuracy and cost is probably for
a plate size of 100× 25 pixels. Only slightly better results are found for higher
plate sizes.

All the results are given at the pixel level. A simple post-processing procedure
that isolates areas with a large number of pixels labelled as “license plate” with
the correct size has to be applied before the plate recognitions phase. The shape
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Fig. 4. Improvement of the classification performance in four bootstrap itera-
tions

of that area must also be taken into consideration to minimize the number of
false positives at the plate segmentation level.

5 Conclusions and Further Work

A robust text segmentation technique has been presented. This technique seems
to be able to cope with highly variable acquisition conditions (background, illu-
mination, perspective, camera-to-car distance, etc.) in a License Plate Recogni-
tions task.

From the experiments performed, it can be concluded that a good tradeoff
between segmentation accuracy and computation cost can be obtained for a plate
normalization size of 100x25 pixels and a local window of 40x8 pixels for the
feature vectors. In this conditions, a ratio of 0% False Positive Rate against
a 40% True Positive Rate can be obtained with the most restrictive confidence
threshold, that is, a 100% of classification reliability at the pixel level.

According to visual inspection of the whole set of 131 test images, the segmen-
tation system has correctly located all the plates but two. Due to the unrestricted
nature of the test set this can be considered a very promising result.

The computational resource demand of this segmentation technique is cur-
rently the main drawback, taking an average of 34 seconds the processing of
a single 640x480 image on a AMD Athlon PC, at 1.2GHz in the conditions of
the experiments reported. With some code and parameter optimizations, how-
ever, much shorter times, of only a few seconds are being already obtained in
our laboratory.
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Fig. 5. Classification performance for a fixed local window size and a range
of plate normalizations. Only the results of the last bootstrap iteration are pre-
sented
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Abstract. This paper presents a vision-based localization approach for
an underwater robot in a structured environment. The system is based
on a coded pattern placed on the bottom of a water tank and an on-
board down-looking camera. Main features are, absolute and map-based
localization, landmark detection and tracking, and real-time computa-
tion (12.5 Hz). The proposed system provides three-dimensional posi-
tion and orientation of the vehicle. The paper details the codification
used in the pattern and the localization algorithm, which is illustrated
with some images. Finally, the paper shows results about the accuracy
of the system.

1 Introduction

The localization of an underwater robot is a big challenge. Techniques involving
inertial navigation systems, acoustic or optical sensors have been developed for
this purpose. However such techniques, which have been designed to be used
in unknown and unstructured environments, are inaccurate and have drift prob-
lems [3]. On the other hand, in structured environments the localization problem
can be drastically reduced allowing the experimentation with underwater robots
to be possible.

This papers proposes a vision-based localization system to estimate the posi-
tion and orientation of an underwater robot in a structured environment. Main
features of this system are absolute and map-based localization, landmark de-
tection and tracking, and real-time computation. The components of the system
are an onboard down-looking camera and a coded pattern placed on the bottom
of a water tank. The algorithm calculates the three-dimensional position and
orientation referred to the water tank coordinate system with a high accuracy
and drift-free.

The aim of the proposed localization system is to provide an accurate es-
timation of the position of URIS Autonomous Underwater Vehicle (AUV) in
the water tank, see Figure 1. The utility of this water tank is to experiment in
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a) b)

Fig. 1. a) URIS’s experimental environment. b) Visually Coded pattern. The
absence of a dot identifies a global mark. The dots marked here with a circle are
used to find the orientation of the pattern

different research areas, like dynamics modelling or control architectures [1], in
which the position or velocity of the vehicle are usually required.

The rest of the paper details the localization system in depth. Section 2
describes the experimental setup, emphasizing the down-looking camera and
the visually coded pattern. In section 3, the algorithm phases are described and
illustrated. And finally, some results and conclusions are given in section 4.

2 Experimental Setup

The robot for which has been designed the localization system is URIS. Its hull is
composed of a stainless steel sphere with a diameter of 350mm. On the outside
of the sphere there are two video cameras (forward and down looking) and 4
thrusters (2 in X direction and 2 in Z direction). Experiments with URIS are
carried out in a water tank, see Figure 1,a. The shape of the tank is a cylinder
with 4.5 meters in diameter and 1.2 meters in height. The localization system is
composed by a coded pattern which covers the whole bottom of the tank and a
down-looking camera attached on URIS.

2.1 Down-Looking Camera Model

The camera used by the localization system is an analog B/W camera. It provides
a large underwater field of view (about 57o in width by 43o in height). The camera
model that has been used is the Faugeras-Toscani [2] algorithm in which only
a first order radial distortion has been considered. This model is based on the
projective geometry and relates a three-dimensional position in the space with
a two-dimensional position in the image, see Figure 2a. These are the equations
of the model:
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a) b)

Fig. 2. Down-Looking camera model: a) Camera projective geometry. b) Ac-
quired image in which the center of the dots has been marked with a round.
After correcting the radial distortion the center of the dots has changed to the
one marked with a cross
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where, (CX,C Y,C Z) are the coordinates of a point in the space respect the
camera coordinate frame {C} and (xp ,yp) are the coordinates, measured in
pixels, of this point projected in the image plane. And, as intrinsic parameters
of the camera: (u0,v0) are the coordinates of the center of the image, (ku,kv) are
the scaling factors, f is the focal distance, k1 is the first order term of the radial
distortion. Finally, r is the distance, in length units, between the projection of
the point and the center of the image.

The calibration of the intrinsic parameters of the camera was done off-line
using several representative images. In each of these images, a set of points
were detected and its correspondent global position was found. Applying the
Levenberg-Marquardt optimization algorithm, which is an iterative non-linear
fitting method, the intrinsic parameters were estimated. Using these parameters,
the radial distortion can be corrected, as it can be seen in Figure 2b. It can be
appreciated that the radial distortion influences in more degree the pixels that
are far from the center of the image (u0,v0).

2.2 Visually Coded Pattern

The main goal of the pattern is to provide a set of known global positions to
estimate, by solving the projective geometry, the position and orientation of
the underwater robot. The pattern is based on grey level colors and only round
shapes appear on it to simplify the landmark detection, see Figure 1,b. Each
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Fig. 3. Features of the pattern, a) the main lines of the target and details
about the absolute marks are shown, b) the three orientation dots of a global
mark indicate the direction of the X and Y axis

one of these rounds or dots will become a global position used in the position
estimation. Only three colors appear on the pattern, white as background, and
grey or black in the dots. The dots have been distributed among the pattern
following the X and Y directions. All lines that are parallel to X and Y axis are
called the main lines of the pattern, see Figure 3a.

The pattern contains some global marks, which encode a unique global po-
sition. These marks are recognized by the absence of one dot surrounded by 8
dots. From the 8 dots that surround the missing one, 3 are used to find the
orientation of the pattern and 5 to encode the global position. The 3 dots which
mark the orientation, appear in all the global marks in the same position and
with the same colors. In Figure 3 a, these 3 dots are marked with the letter ”o”.
Also, in Figure 3 b it can be seen how depending on the position of these 3 dots,
the direction of the X and Y axis changes.

The global position is encoded in the binary color (grey or black) of the 5
remainder dots. Figure 3 a shows the position of these 5 dots and the methodol-
ogy in which the global position is encoded. The maximum number of positions
is 32. These global marks have been uniformly distributed on the pattern. A
total number of 37 global marks have been used, repeating 5 codes in opposite
positions on the pattern. In order to choose the distance between two neighbor
dots several aspects were taken into account, like: the velocities and oscillations
of the vehicle, the camera field of view and the range of depths in which the
vehicle can navigate. The distance between each two neighbor dots that was
finally chosen is 10 cm. The range of distances, between the center of the robot
and the pattern, that were used in the design are from 50 cm to 80 cm.

3 Localization Procedure

Each position estimation requires a set of sequential tasks. Next subsections
describe the phases that constitute the whole localization procedure.
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3.1 Pattern Detection

The first phase consists in detecting the dots of the pattern. Binarization is
first applied to the acquired image, see Figure 4a and 4b. Due to the non-
uniform sensitivity of the camera in its field of view, a correction of the pixel
grey level values is performed before binarization. This correction is based on
the illumination-reflectance model [4] and provides a robust binarization of the
pattern also under non-uniform lighting conditions.

Once the image is binarized, the algorithm finds the objects and checks the
area and shape of them, dismissing the ones that do not match the characteristics
of a dot object. Finally, for each detected dot, the algorithm classifies its grey
level labelling them in three groups: grey, black or unknown. In case the label is
unknown, the dot will be partially used in next phases, as Section 3.3 details.
Figure 4c shows the original image with some marks on the detected dots.

3.2 Dots Neighborhood

The next phase in the localization system consists in finding the neighborhood
relation among the detected dots. The first step is to compensate the radial
distortion that affects the position of the detected dots in the image plane. In
Figure 4d, the dots before distortion compensation are marked in black and,
after the compensation, in grey. The new position of the dots in the image is
based on the ideal projective geometry. This means that lines in the real world
appear as lines in the image. Using this property, and also by looking at relative
distances and angles, the main lines of the pattern are found. Figure 4d shows
the detected main lines of the pattern. To detect the main lines, at least 6 dots
must appear in the image.

Next step consists in finding the neighborhood of each dot. The algorithm
starts from a central dot, and goes over the others according to the direction of
the main lines. To assign the neighborhood of all the dots, a recursive algorithm
was developed which also uses distances and angles between dots. After assigning
all the dots, a network joining all neighbor dots can be drawn, see Figure 4e.

3.3 Dots Global Position

Two methodologies are used to identify the global position of the detected dots.
The first one is used when a global mark is detected, what means that, a missing
dot surrounded by 8 dots appears on the network and, any of them has the
unknown color label, see Figure 4e. In this case, the algorithm checks the three
orientation dots to find how the pattern is oriented. From the four possible
orientations, only one matches the three colors. After that, the algorithm checks
the five dots which encode a memorized global position. Then, starting from the
global mark, the system calculates the position of all the detected dots using the
dot neighborhood.

The second methodology is used when any global mark appears on the image,
or when there are dots of the global mark which have the color label unknown.
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Fig. 4. Phases of the localization system: a) acquired image, b) binarization,
c) detection of the dots, d) main lines of the pattern, e) dots neighborhood, f)
estimated position and orientation

It consists on tracking the dots from one image to the next one. The dots that
appear in the same zone in two consecutive images are considered to be the
same, and therefore, the global position of the dot is transferred. The high speed
of the localization system, compared with the slow dynamics of the underwater
vehicle, assures the tracking performance. The algorithm distinguishes between
grey and black dots, improving the robustness on the tracking.

3.4 Position and Orientation Estimation

Having the global positions of all the detected dots, the localization of the robot
can be carried out. Equation 4 contains the homogeneous matrix which relates
the position of one point (Xi, Yi, Zi) respect the camera coordinate system {C},
with the position of the same point respect to the water tank coordinate sys-
tem {T }. The parameters of this matrix are the position (TXC ,

T YC ,
T ZC) and

orientation (r11, ..., r33) of the camera respect {T }. The nine parameters of the
orientation depend only on the values of roll, pitch and yaw angles.⎛⎜⎝

TXi
TYi
TZi

1

⎞⎟⎠ =

⎛⎜⎝ r11 r12 r13
TXC

r21 r22 r23
TYC

r31 r32 r33
TZC

0 0 0 1

⎞⎟⎠
⎛⎜⎝

CXi
CYi
CZi

1

⎞⎟⎠ (4)
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For each dot i, the position (TXi,
T Yi,

T Zi) is known, as well as the ratios:

CXi

CZi
and

CYi
CZi

(5)

which are extracted from Equations 1 and 2. These ratios can be applied to
Equation 4 eliminating CXi and CYi. Also, CZi can be eliminated by using next
equation:

(TXi −T Xj)
2 + (TYi −T Yj)

2 + (TZi −T Zj)
2 =

(CXi −C Xj)
2 + (CYi −C Yj)

2 + (CZi −C Zj)
2 (6)

in which the distance between two dots, i and j, calculated respect {T } is
equal to the distance respect {C}. Using Equation 6 together with 4 and 5
for dots i and j, an equation with only the camera position and orientation is
obtained. And repeating this operation for each couple of dots, a set of equations
is obtained from which an estimation of the position and orientation can be
performed. In particular, a two-phase algorithm has been applied. In the first
phase, TZC , roll and pitch are estimated using the non-linear fitting method
proposed by Levenberg-Marquardt. In the second phase, TXC , TYC and yaw
are estimated using a linear least square technique. Finally, the position and
orientation calculated for the camera are recalculated for the vehicle. Figure 4f
shows the vehicle position in the water tank marked with a triangle. Also the
detected dots are marked on the pattern.

4 Results and Conclusions

The vision based localization system, that has been presented in this paper, of-
fers a very accurate estimation of the position and orientation of URIS inside the
water tank1. Main sources of error that affect the system are the imperfections
of the pattern, the simplification on the camera model, the intrinsic parameters
of the camera, the accuracy in detecting the centers of the dots and, the error
of least-square and Levenberg-Marquardt algorithms on its estimations. After
studying the nature of the source of errors, it has been assumed that the local-
ization system behaves as an aleatory process in which the mean of the estimates
coincides with the real position of the robot. It is important to note that the
system estimates the position knowing the global position of the dots seen by the
camera. In normal conditions, the tracking of dots and the detection of global
marks never fails, what means that there is not drift in the estimates. By normal
conditions we mean, when the water and bottom of the pool are clean, and there
is indirect light of the Sun.

To find out the standard deviation of the estimates, the robot has been placed
in 5 different locations. In each location, the robot was completely static and
a set of 2000 samples was taken. Normalizing the mean of each set to zero and
1 Some videos showing the performance of the system can be seen at:
http://eia.udg.es/∼marcc/research
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Fig. 5. Histogram of the estimated position and orientation

grouping all the samples, a histogram can be plotted, see Figure 5. From this
data set, the standard deviation was calculated obtaining these values: 0.006[m]
in X and Y, 0.003[m] in Z, 0.2[◦] in roll, 0.5[◦] in pitch and 0.2[◦] in yaw.

The only drawback of the system is the pattern detection when direct light
of the Sun causes shadows to appear in the image. In this case, the algorithm
fails in detecting the dots. Any software improvement to have a robust system
in front of shadows would increase the computational time, and the frequency of
the algorithm would be too slow. However, the algorithm is able to detect these
kind of situations, and the vehicle is stopped. The system is fully integrated on
the vehicle’s controller, giving new measures 12.5 times per second. Due to the
high accuracy of the system, other measures like the heading from a compass
sensor, or the depth from a pressure sensor, are not needed.
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Abstract. Humans are interested in the knowledge of honeybee pollen
composition, which depends on the local flora surrounding the beehive,
due to their nutritional value and therapeutical benefits. Currently,
pollen composition is manually determined by an expert palynologist
counting the proportion of pollen types analyzing the pollen of the hive
with an optical microscopy. This procedure is tedious and expensive for
its systematic application. We present an automatic methodology to
discriminate pollen loads of various genus based on texture classification.
The method consists of three steps: after selection non-blurred regions
of interest (ROIs) in the original image, a texture feature vector for each
ROI is calculated, which is used to discriminate between pollen types.
An statistical evaluation of the algorithm is provided and discussed.

Keywords: Image analysis, Texture classification, Blurring, Pollen
loads, Honeybee pollen

1 Introduction

Humans use products coming from the hive such as honey, royal jelly or api-
cultural pollen for different purposes. Despite of their nutritional value as nu-
tritional complement for humans, they are appreciated for their therapeutical
characteristics. Hence, they are recommended to treat many human complaints.
Nowadays, honeybee pollen is sold in health food shops, supermarkets or food
superstores. Their consumption in Spain and other countries is relatively recent,
but in the last years it has been become economically very important.

Corbicula pollen is the essential feeding for the hive. The worker bees collect
the pollen in the flower, form small balls, stick them to the corbiculas of their
back legs and carry them to the hive. The pollen loads collected come from plants
placed in the surrounding of the hive. So, the local flora surrounding the beehive
influences the palynological composition of pollen loads. The presence of a spe-
cific combination of pollen types in a sample indicates its geographical origin.
As a result, analyzing the proporcional representation of different pollen types

F.J. Perales et al. (Eds.): IbPRIA 2003, LNCS 2652, pp. 158–167, 2003.
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allows the characterization of pollen from different areas. The current method to
determine the floral origin is analyzing the pollen by an optical microscopy and
then counting the number of pollen of vegetal species [3]. This procedure is te-
dious and requires expert personal. Industries are interested in the development
of methodologies, which can systematically be applied on a chain of production,
to classify pollen loads.

Investigations of the composition of pollen loads collected by honeybee have
demonstrated [15] that bees forms pollen loads with monospecific pollen grains,
i.e. pollen grains of only one plant specie. Each pollen plant has special physical
characteristics such as colour, size, shape, texture, etc [4]. In particular, texture
has qualitatively been described by some authors using stereoscopic microscope
as thick, medium and thin texture [9], [8]. Differences in visual texture of pollen
loads are due to the microtexture associated to pollen grain of each vegetable
specie, which is related to the structure of its exine and the nature of pollenkit
that covers it. So, pollen loads texture must be characteristic of each plant specie.

Our attempts are to design a methodology to characterize honeybee pollen
marked in the northwestern of Iberian Peninsula (Galicia). In a preliminary
work, [1], we have tested the performance of well-known texture classification
features to discriminate Rubus and Cytisus pollen loads. The sensitivity reached
was 78%. Unfortunately, when increasing the number of specie plants, system
performance decreases until it is no useful for pollen load classification. Improve-
ments of the methodology are presented. Results to discriminate pollen loads of
the five most common specie plants of the northwestern Iberian Peninsula (Gali-
cia) [14] (Rubus, Cytisus, Castanea, Quercus and Raphanus) are provided and
discussed.

The paper have been organized as follows: section 2 presents a briefly descrip-
tion of previous research developed for this application. The proposed method is
described in section 3. The results and discussion are included in section 4 and
conclusions are provided in the last section.

2 Previous Research

In an initial work [1], we have tested a method to discriminate between Rubus and
Cytisus genus. It is composed of the stages shown in figure 1. Images acquisition
of pollen loads is carried out using the infrastructure of Biology Lab (a Nikon
SMZ800 magnifying glass connected to a general purpose digital camera Nikon
Coolpix E950). Afterwards, images are transferred to the PC by a serial cable.
Curbicula pollen are digitized at spatial resolution of 480 point per mm, yielding
an image of 1600× 1200 pixels. Figure 2 shows images of every genus.

The pre-processing stage transforms the digital data into a suitable form to
the next stage. As it can be observed in figure 2, pollen images are blurring in
some parts due to corbicula pollen is not flat over the acquisition area. Then, the
pre-processing step tries to extract non-blurring regions of interest (ROIs) in the
original image. A texture feature extractor computes image properties on those
ROIs that will be used for pollen load classification. First-order and second-order
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Fig. 1. The basic stages involved in the system operation

a b c

d e f

Fig. 2. Digital images of Cytisus (a), Castanea (b), Quercus (c), Rubus (d),
Raphanus (e) pollen loads of the hive of Lobios and Castanea (f) pollen load of
the hive of Viana

statistical features or wavelet packet signatures was used to discriminate between
Rubus and Cytisus genus [1]. In particular, the following texture feature vectors
were tested [1]: Haralick’s coefficients (HC) (7 features) [6], [7], Grey Level
Run Length Statistics (GLRLS) (5 features) [17], [16], Neighboring Gray Level
Dependence Statistics (NGLDS) (5 features) [16], First-order statistics (FOS)
(11 measures) [19], and energy and entropy features computed for three levels
of decomposed wavelet packets (feature vectors WE and WH respectively with
12 features) [12], [10] using Daubechies wavelet of filter length 20 (D20) [2].

The classifier uses these features to assign the pollen load to a specific plant
genus. A minimum distance classifier was used.
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3 Methods

As we have mentioned above, pollen images present random burred areas. Added
to this fact, image grey level shade (visual appearance of pollen loads) can be
influenced by many factors such as humidity, dried treatment, etc [4]. This fact
can be observed comparing pollen loads coming from hives of different places
(see images b and f of figure 2 for genus Castanea).

Our previous methodology consisted of three steps: ROIs extraction, texture
feature generation and classification. The overall performance of the system may
be improved redesigning some steps of this scheme and/or adding some one. In
particular, we propose to normalize images before processing and we present
some approaches to improve non-blurring ROI selection and to compute texture
features. These approaches are described in the following subsections.

3.1 Image Normalization

The collection process of honeybee pollen and/or the geographical place of col-
lection have an effect in the final appearance of grey level intensities of the final
image. Nevertheless, palynologists believe that spatial structure of image is re-
tained. This fact lead us to define a technique for image normalization that avoids
the influence of this external conditions without biasing its spatial properties.
The normalization process is inspired by the methods used to remove the effect
of varying illumination environments [18]. Let f(x, y) be the original image of
size N ×M and let μ and E are respectively the mean and energy of f(x, y)
given by

μ =
1

MN

∑
x,y

f(x, y) E =
1

MN

∑
x,y

(
f(x, y)

)2 (1)

The normalized image is computed by

fn(x, y) =
f(x, y)− μ√

E
(2)

3.2 Non-blurring ROIs Selection

The non-flat surface of pollen loads cause degradations on some parts of images.
We are not interested in restoring that images but also in selecting non-degraded
regions of interest (ROIs), which will be used for the pollen load texture classifica-
tion. In spite of the methods proposed to image restoration in the literature [17],
there is no measures to find non-degraded areas. These degradations look like
smoothed or blurred areas, which present properties like smoother edges, lower
entropy or lower spatial frequencies. We define the following three measures to
quantify the level of blurring in a ROI, which can be respectively fallen into the
categories of statistical, edge-based and filtering approaches:
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a b c

Fig. 3. ROIs extracted from an image of Castanea pollen load using the measure
(a)Fourth Statistical Moment, (b)Edge Strength and (c)High Frequency

4SM: Fourth Statistical moment, which is a measure of histogram sharpness,
has been satisfactory used in a previous work [1].

Edge Strength (ES): we define the edge strength as the mean value of an edge
map, which is computed applying an edge operator to the original image (we
use Sobel operator). ES will be higher when the image presents many sharp
edges, i.e. images are less blurred.

High Frequency (HF): a discrete wavelet transform is based on the pyrami-
dal algorithm which splits the image spectrum into four spatial frequency
bands ll, lh, hl and hh (l means low and h means high) [12]. Each filtering
is followed by a down-sampling by a factor of two which finally yields the
four octave subbands. This procedure is repeatedly applied to each result-
ing low-frequency band resulting in a multiresolution decomposition. We use
Daubechies family bases to define filters [2]. For each resolution i, only the
wavelet coefficients hhi (highs/highs) matrix were retained and these are
relocated into a final matrix HH (with the same dimensions as the original
image) given by:

HH =
n∑
i=1

φ(hhi) (3)

where n is the maximum depth of the pyramidal algorithm (we assume n = 3)
and φ(.) is a matrix operation which returns an up-sampled copy of the input
matrix hhi. HF, which is a measure of the strength of high frequencies over
every scale, is computed taking the mean value of HH. HF will be higher
when the image presents sharp and lots of edges.

The method works as follows: images are sweeping out left to right and top to
down and it is taken overlapping regions of N×N pixels (a shifting of 150 pixels
is used and N is fixed to 256 pixels). Next, the mentioned measures are computed
on every ROIs of an image and a set of ROIs, which have the highest values of
the measures (4SM, ES and HF), are chosen. Figure 3 shows an example of the
ROIs selected by each measure, where overlays of the boundary of regions are
overlapped to the original image.
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3.3 Texture Features Generation

Second-order statistics features exploit the spatial dependencies that character-
ize the texture of an image. Alternative possibilities to extract texture-related
spatial dependencies is applying Local Linear Transformations (LLT) to an im-
age. The first-order statistics of the transformed image encode texture proper-
ties. Laws [11], [17] suggests the following three basic convolution vectors: VA =
[1, 2, 1], VE = [−1, 0, 1] and VS = [−1, 2,−1] for kernel size, L = 3. The first one
corresponds to a local averaging operator, the second one to an edge detection
operator and the third one to a spot detector. Calculating their cross-products
(one each other) yield nine 2-D linear and shift-invariant (LSI) filters.

If we consider VA, VE and VS as elementary vectors, higher dimensional
vectors can be easily built from the elementary masks. Convolving these vectors
with themselves and each other, one-dimensional vectors of the following order
(BL, L = 5) results:

Bij
L = Vi ∗ Vj i, j = A,E, S (4)

Convolution of these vectors Bij
5 with each elementary vectors (VA, VE

and VS) yields the next order vectors (BL, L = 7), and so on. In all cases,
mutual multiplication of these vectors (Bij

L ) for each order L, considering the
first term as a column vector and the second one as a row vector, yields 2-D
masks of size L× L.

What statistics and what neighbourhood (L) are suitable for solving our
texture discrimination problem is a critical decision. It is basically due to the
lack of intuitive understanding that humans have about texture parameters. This
implies that many texture features are suggested in the literature and the only
way to choose the best one for a specific application will be by experimental
testing.

We compute for each image the following first order statistics: variance
(μ2), 3rd (μ3) and 4th (μ4) central moments, energy (m2) and entropy (Ent.).
Several texture feature vectors, LLT(L), are computed as a function of filtering
neighbourhood (L = 3, 5, 7, . . .).

3.4 Classification

Once textural feature are computed, the next issue is how to assign each query
case to a pre-established class (in our case, Rubus, Cytisus, Castanea, Quercus
and Raphanus genus). Minimum distance classifier is the simplest one in the
literature [5]. Let M be the number of classes, L the number of corbicula pollens
and J the number of regions of interest extracted from each corbicula pollen. Lets
also xnlj = [xlj1, xlj2, ..., xljn] be the feature vector of n elements that identifies
uniquely the ROI j of image l. The metric used to measure the similarity between
a query case and the mean class prototypes is the Mahalanobis distance to each
class i, Di, defined as:

Di = (xnlj −mi)TΣ−1(xnlj −mi) i = 1, ...,M (5)
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where Σ is the covariance matrix in the training set and mi is the mean class
prototype for each class i. Prototype class is calculated taking the mean vector
on the training set. We assume the same covariance matrix for all classes. The
training set is performed using L−1 pollen loads and the test is carried out using
the excluded one (leave-one-image-out approach). If this is correctly classified
a hit is counted. This is repeated L times, each excluding a different pollen load.
The class of excluded one is derived by majority voting among the set of J ROIs
extracted from each pollen load image. The percentage of correct classified pollen
loads give us the sensibility of the system.

Some of texture features may have meaningless classification capabilities or
do not improve overall system performance or even decrease it. In a previous
work [1], we have tested different approaches to reduce or select the optimal
features. They fall into three categories: global approaches (principal compo-
nent analysis), scalar aproaches (maximum individual sensitivity) and vector
approaches. Vector feature selectors have reported the best results. These ap-
proaches measure the capabilities of feature vectors (or subsets of the set of
available features). We use the Floating Search Method (FSM) proposed by
Pudil et al. [13]. FSM searches subsets of k elements out of the n available
features (k ≤ n). We assume k as the maximum between n and 20 features. The
main drawback of FSM method is that it can drop in cicles. In this case, the
algorithm is stopped.

4 Results and Discussion

System performance is tested using a dataset of 200 pollen loads collected in
two places (Viana and Lobios). There are 40 pollen loads of each genus stud-
ied: Rubus, Cytisus, Castanea, Quercus and Raphanus. Of these 40 samples, 20
come from Viana and 20 from Lobios. Afterwards, 5 non-blurring 256 × 256
ROIs are extracted using the measures presented in section 3.2 from both the
original image and the normalized image (see section 3.1). This procedure yields
6 possibilities (shown as columns in table 1) to extract the ROIs from each
orignal image. It is very difficult to separately asses the performance of ROIs
extraction process and the only way to quantify it is through the global sys-
tem performance for pollen genus discrimination. Next, for each ROI, various
texture feature vectors are compute. In this study, we test three filtering neig-
bourhoods (L = 3, 5, 7) (see section 3.3). So, there are five features by filtered
image times 9, 25 and 36 masks result respectively in LLT(3)=45, LLT(5)=125
and LLT(7)=180 features. Results are also compared with those obtained using
the texture features mentioned in section 2. Results are summarized in Table 1.

The main conclusions derived from table 1 are:

– Texture features based on local linear transformations (LLT) achieve nor-
mally higher sensitivities of the system than other texture features in all
cases. The highest sensibility reached is 73%.
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Table 1. Percentage of correct pollen loads classification

ROIs selection
Original image Normalized image

Texture features N 4SM ES HF 4SM ES HF

FOS 11 57 52 53 46 53 33
HC 7 55 52 40 48 47 45
NGLDS 5 47 47 38 51 46 39
GLRLS 5 48 42 36 52 51 40
SF 28 65 65 59 62 64 53
WE 12 55 63 49 44 56 36
WH 12 55 61 43 47 45 45
LLT(3) 45 65 72 55 57 64 50
LLT(5) 125 65 73 60 64 66 51
LLT(7) 180 67 73 57 66 67 54

N: Number of texture features
SF: union of FOS, HC, NGLDS and GLRLS

– Edge strength (ES) measure to extract the ROIs always provides better per-
formance than other ones for every texture features or image pre-processing
(original or normalized image).

– We believed that the normalization of images before processing must improve
system performance. The experimental test led us to the contrary result.
That may be due to this normalization process destroys partially structural
properties of image, decreassing their capabilities to texture discrimination.

Confusion matrices help us to exactly determine how is system behavior in
relation to both different pollen types and geographical locations of beehives.
Table 2 shows the confusion matrix to the best method in table 1 (marked in
bold type). Items in this table represent percentage of correct and error pollen
loads classification of the observed class (class provided by the classifier) in
relation to the expected class (true or actual classes). The percentage of correct
pollen load classification provided by the system for every genus and every hive
is quite uniform. Partial sensitivities range from 65% to 100% except to the
Cytisus pollen of the hive of Viana.

5 Conclusion

A novel methodology to determine the genus of pollen loads using digital im-
ages taken by a magnifying glass is presented. It consists of four steps: image
normalization, non-blurring ROIs extraction, texture feature generation, feature
selection and classification. The highest sensibility reached to discriminate the
five most common plants in the northwestern of Iberian Peninsula is 73%. It
is achieved combining the measure of edge strength to extract ROIs with the
texture filtering features. System behavior is quite uniform for every class.
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Table 2. Confusion matrix of the combination that provides the highest sen-
sitivity in table 1 (73%). Sucesses are in bold type and errors are in normal
type

Actual Class
Predicted class Cytisus Rubus Castanea Quercus Raphanus

L V L V L V L V L V

Cytisus 65 45 10 15 5 0 0 0 0 0
Rubus 35 45 80 85 15 0 5 5 0 5
Castanea 0 5 0 0 60 80 15 0 0 0
Quercus 0 0 10 0 15 10 70 65 0 20
Raphanus 0 5 0 0 5 10 10 30 100 75

L and V mean respectively the hive of Lobios and Viana

The approach described is generic and flexible and it could be useful to other
texture classification problems.
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4):81–89, 2001. 159
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Abstract. Previous work has shown that a simple recurrent neural model called

RECONTRA is able to successfully approach simple text-to-text Machine

Translation tasks in limited semantic domains. In order to deal with tasks of

medium or large vocabularies, distributed representations of the lexicons are

required in this translator. This paper shows a method for automatically ex-

tracting these distributed representations from perceptrons with output context.

1   Introduction

A simple neural translator called RECONTRA (REcurrent CONnectionist TRAnsla-

tor) has recently shown to successfully approach simple text-to-text limited-domain

Machine Translation (MT) tasks [3]. In this approach the vocabularies involved in the

translations can be represented according to (simple and clear) local codifications.

However, in order to deal with large vocabularies, local representations would lead to

networks with an excessive number of connections to be trained in a reasonable time.

Consequently, distributed representations of both source and target vocabularies are

required, as this type of codification can help to reduce the size of the networks. In

previous experiments with RECONTRA [2][3], the distributed codifications adopted

were hand-made and were not compact representations.

This paper focuses on how to automatically create adequate and compact distrib-

uted codifications for the vocabularies in the RECONTRA translator. The method

presented in the paper approaches the problem through a multilayer perceptron (MP)

in which output delays are included in order to take into account the context of the

words to be coded.

The rest of the paper is organized as follows: Section 2 describes the connectionist

architectures employed to infer the lexicons representations and to translate the lan-

guages, as well as the procedures used to train them, and the method used to extract

the translations. Section 3 presents the tasks to be approached in the experimentation

and Section 4 reports the translation performances obtained. Finally, Section 5 dis-

cusses the conclusions of the experimental process.
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The neural topology of the RECONTRA translator is a simple Elman network [8] in

which time delays are included in the input layer, in order to reinforce the information

about past and future events. Figure 1 illustrates this connectionist architecture.

Fig. 1. Elman simple recurrent network with delayed inputs

In order to automatically obtain the lexicons representations for the RECONTRA

translator, several neural techniques can be employed. It could be convenient to ob-

tain representations with similar codifications for words which have similar syntactic

and/or semantic contexts. Taking this into account there are several possible methods

using artificial neural networks, as Elman networks [4] [7], RAAM (Recursive

AutoAssociative Memory) machines [10] [6] or FGREP (Forming Global Represen-

tations with Extended backPropagation) [9].

The method adopted in this paper to encode the vocabularies uses a MP to produce

the same output as the input (a word of the vocabulary to be encoded). The MP has as

many input and output units as the number of words in the vocabulary, since we use a

local codification of the vocabulary. When the MP is trained enough, the activations

of the hidden units have developed its own representations of the input/output words

and can be considered the codifications of the words in the vocabulary. Consequently,

the size of the (unique) hidden layer of the MP determines the size of the distributed

codifications obtained.

In order to take into account the context in which a word appears, the correspond-

ing previous and following words in a sentence are also shown at the output of the

MP. In addition, the importance of the input word over its context can be made equal,

decreased or increased. When the emphasis is placed on the context of the input

word, each output window includes one instance of the input word as well as one

instance of the previous and following words in its context. According to this, the

format of an output window of size 5 for an input word x is x-2 x-1 x x+1 x+2, where

x-2, x-1 are the two previous words in its context and x+1, x+2, the two following

words. On the other hand, when the emphasis in the codification process is (equated

or) on the input word over its context, such input word is repeated several times at the

output window.

The MP encoder was trained to produce the same output word (and its context) as the

word presented at the input layer. To this end, an on-line version of the Backward-

2  The RECONTRA Translator and the Codification Generator

2.1   Network Architectures 

2.2   Training Procedure

Error propagation (BEP) algorithm [11] was employed.
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In the RECONTRA translator, the words of every input sentence were presented

sequentially at the input layer of the net, while the model should provide the succes-

sive words of the corresponding translated sentence, until the end of such output

sentence (identified by a special word) was recognized. The model was trained

through an on-line and truncated version of the BEP algorithm mentioned above [11].

With regard to the translated message provided by RECONTRA, the net continuously

generated (at each time cycle) output activations, that were interpreted by assuming

that the net supplied the output word for which the pre-established codification in the

target lexicon was nearest (using the Euclidean distance) to the corresponding output

activations.

For the training of both the MP and the RECONTRA, the choice of the learning

rate and momentum was carried out inside the bidimensional space which they de-

fined, by analyzing the residual mean squared error of a network trained for 10 ran-

dom presentations of the complete learning corpus (10 epochs). Training continued

for the learning rate and momentum that led to the lowest mean squared error over the

learning corpus. The learning process stopped after a certain number of epochs (1000

epochs for the encoder and 500 for the translator). A sigmoid function (0,1) was as-

sumed as the non-linear function. Context activations of RECONTRA were initial-

ized to 0.5 at the beginning of every input-output pair of sentences.

3 

The first task chosen for testing the encoder described in the previous section was an

extension of a simple pseudo-natural task called Miniature Language Adquisition

Machine Translation (MLA-MT) task [5]. This task consisted in translating (from

Spanish into English and vice versa) descriptions of simple visual scenes as well as

removals of objects to or from a scene. Since many of the sentences are worded by

using the passive voice, the degree of asynchrony between the Spanish and the corre-

sponding English sentence is substantial. The sizes of the vocabularies involved in

the original MLA-MT task were slightly increased for our experimentation, leading to

50 Spanish words and 38 English words. The medium sizes of the Spanish and Eng-

lish sentences were 16 and 15 words, respectively. Figure 2 shows one example of

this task. 

Spanish: se elimina el círculo grande que está encima del cuadrado y del triángulo claro

English: the large circle which is above the square and the light triangle is removed

Fig. 2. A pair of sentences from the MLA-MT task

The Experimental Machine Translation Tasks

3.1   The MLA-MT Task
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3.2 The Traveller Task

The second task chosen in this paper was a subset of the Traveller MT task de-

signed in the EuTrans project [1] which had larger vocabularies than the above task.

The medium size of the sentences in Spanish is 8.6 and 8 for the English sentences.

The task approaches typical situations of a Traveller at the reception of a hotel in a

country whose language he/she does not speak. The subtask includes (Spanish to

English) sentences in which the Traveller notifies his/her departure, asks for the bill,

asks and complains about the bill and asks for his/her luggage to be moved. The sub-

task has 132 different Spanish words, and 82 English words. Both vocabularies in-

clude the categories $DATE and $HOUR which respectively represent generic dates

and hours. Some examples of this subtask are shown in Figure 3.

Spanish: ¿Está incluido el recibo del teléfono en la factura?

English: Is the phone bill included in the bill?

Spanish: Me voy a ir el día $DATE a $HOUR de la mañana .

English: I am leaving on $DATE at $HOUR in the morning .

Fig. 3. Pairs of sentences from the Traveller task

First, the MLA-MT task was approached using automatic codifications for the Span-

ish vocabulary provided by MPs in which the emphasis was placed on the context of

the input word; the codifications of the English vocabulary was manually derived

from the automatic Spanish ones. The experiment was repeated by using codifications

in which the emphasis was equated or put on the input word to be encoded over its

context. Later, the Traveller task was tackled adopting for the codifications of the

Spanish vocabulary the kind of MPs which led to the best performances in the previ-

ous experiments. In a subsequent experiment, both Spanish and English codifications

were automatically obtained. All these experiments were done using the Stuttgart

Neural Network Simulator [12].

The corpora adopted in the translation tasks were sets of text-to-text pairs which

consisted of a sentence in the source language and the corresponding sentence in the

target language. For the MLA-MT task, a learning sample of 3,000 pairs was adopted

to train the RECONTRA translators. The learned models were evaluated later on a

different test set of 2,000 sentences. For the Traveller translation task a learning set of

5000 pairs of sentences and a test set of 1000 sentences were adopted.

The corpora used for the training of the MP encoders were sets of text-to-text

pairs, each of them consisting of an input word and the same input word together with

its context (the preceding and following words in a sentence) as output. All pairs

4. Experimental Results

4.1   Training and Test Corpora

171Automatic Word Codification for the RECONTRA Connectionist Translator         



were extracted from sentences which appeared in the training corpus employed for

the translation task. All the repeated pairs extracted from the translation corpus ap-

peared only once in the training set of the MP. If the context was zero, there were as

many training pairs as words in the vocabulary, and as the context size increased, the

number of pairs did too. There were no test corpora for the codification process; it

was indirectly evaluated later in the translation process.

The MP for encoding the Spanish vocabulary in the ALM-MT task had a single hid-

den layer of 10 units (lower number of hidden neurons were also tried although they

led to worse translation rates). An input word and several output words (1, 3, 4, 5, 6

or 8 words) were presented to the network using local codifications of 50 units for

each one. If there was no right or left context of the input word, empty words were

used instead.

The number of hidden units used in the above encoders (10 units) determined the

size of the input and output layer of the RECONTRA translator to approach the

ALM-MT task. In addition, 140 hidden units and an input window of 14 delayed

words (with 6 words for the left context and 7 words for the right context) were

adopted, since previous results obtained to approach this task with this architecture

[2] led to adequate translation rates.

With regard to the features of the networks for tackling the Traveller task, previous

experiments [3] showed that 50 and 37 units were adequate to (manually) encode the

words of the Spanish and English vocabularies, respectively. In order to go further, in

the experiments reported in this paper we tried to automatically encode both vocabu-

laries with 25 units. Consequently, a MP with 132 inputs and 132 outputs (according

to a local representation of the vocabulary), 25 hidden units and several (4, 6 or 8)

output word delays was adopted for the Spanish vocabulary; a MP with 82 inputs, 82

outputs, 25 hidden neurons and 8 output delays was considered for the English vo-

cabulary.

Due to the size of these encoders, the RECONTRA model used for approaching

the Traveller MT task was a network with 25 input units and 25 outputs. In addition,

taking previous experiments on this task [3] as a reference, the translator had 140

hidden neurons and a window of 6 delayed inputs (with 2 words for the left context

and 3 words for the right context).

The first step in our approach to the ALM task was to obtain adequate codifica-

tions for the vocabularies. To this end, MPs with the features described in the previ-

ous section and with different output window sizes were trained. Each output window

included one instance of the input word as well as one instance of the previous and

following words in the context in which it appears. The codifications (of size 10)

were then extracted from the learned MPs and used for representing the words in the

4.2   Features of the Networks

4.3   Results for the ALM-MT Task with One Instance of the Input Word  

Output of the MP Encoderinto the
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RECONTRA translator described above. The translators were later trained using the

learning corpus of the translation task. The resulting learned networks were finally

evaluated on the test corpora.

Table 1 shows the test sentence accuracy translation rates obtained. The results of

two experiments using manual binary codifications are also included. One of them

includes knowledge about parts of speech (gender and number) introduced by a hu-

man expert, and the other one corresponds to a random codification. The results of

the table reveal that very poor translation performance rates were achieved with the

codifications provided by the encoders.

Table 1. Test translation rates for the ALM-MT task using codifications provided by a MP

with one instance of the input word into the output and using two manual codifications

MP Encoder Accuracy Rates

| Output window| Output window format Word Sentence

1 x 50.40 0.30

3 x-1 x x+1 86.90 20.70

5 x-2 x-1 x x+1 x+2 83.26 10.60

Hand-made codifications 96.39 78.40

Random codifications 80.50 21.60

The previous experiments were repeated, but this time the importance of the input

word over its context was made equal or increased in the codification process. 

Table 2 shows the test translation rates obtained. These results show that transla-

tion accuracies were considerably increased and were only slightly lower than those

obtained using human knowledge.

Table 2. Test translation rates for the ALM-MT task using codifications provided by a MP

with several instances of the input word into the output

MP Encoder Accuracy Rates

| Output window| Output window format Word Sentence

4 x-1 x x x+1 93.66 61.80

6 x-1 x x x x x+1 95.21 72.70

8 x-2 x-1 x x x x x+1 x+2 96.06 74.40

8 x-1 x x x x x x x+1 94.46 70.30

Taking into account the results achieved in the two previous sections, the Traveller

task was approached using MPs in which several instances of the input word were

4.4   Results for the ALM-MT Task with Several Instances of the Input Word 

into the Output of the MP

4.5   Results for the Traveller Task
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presented at the output. Different MPs (described in Section 4.2) were trained and

codifications (of size 25) were extracted for the Spanish and English vocabulary. In a

first experiment, only the codifications obtained for the Spanish words were used.

The codifications for the English vocabulary were manually derived from them (as in

the experiments presented in the two previous sections). The RECONTRA translators

with the features proposed in Section 4.2 for this task were trained and evaluated

later. Table 3 shows the test accuracy translation rates obtained as well as the results

of an experiment with (binary) manual codifications of the vocabularies.

Table 3. Test translation rates for the Traveller task using manual and automatic codifications

for the Spanish vocabulary

MP Encoder Accuracy Rates

| Output window| Output window format Word Sentence

4 x-1 x x x+1 99.48 97.30

6 x-1 x x x x x+1 99.30 97.70

8 x-2 x-1 x x x x x+1 x+2 99.39 96.30

8 x-1 x x x x x x x+1 99.49 97.10

Hand-made codifications 99.72 98.40

In a second experiment, both the Spanish and the English codifications which were

automatically obtained from the MPs were used to train RECONTRA translators.

These translators had the same features as those adopted in the previous experiment.

Table 4 shows the test translation rates achieved. Very good rates (near to those ob-

tained using manual codifications) were achieved; indeed using MPs to encode the

English and Spanish lexicons the results seemed to be slightly better than those ob-

tained using only automatic codifications for Spanish.

Table 4. Test translation rates for the Traveller task using automatic codifications for the

Spanish and English vocabularies

MP Encoder Accuracy Rates

| Output window| Output window format Word Sentence

4 x-1 x x x+1 99.64 98.00

6 x-1 x x x x x+1 99.59 97.70

8 x-2 x-1 x x x x x+1 x+2 99.54 97.60

8 x-1 x x x x x x x+1 99.51 96.70

This paper proposes a method for automatically creating distributed codifications of

the lexicons involved in a text-to-text MT task to be approached by the RECON-TRA

translator. The method extracts such codifications of the hidden layer of a MP with

output delays and the translation accuracies achieved are quite encouraging.

5   Conclusions and Future Work
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The results in this paper open an important area to be studied in the future: how to

determine the size of the resulting codifications; algorithms for prunning the hidden

neurons in the MP could be adopted for this subject. Further studies on the format of

the output context of the MP encoder should be carried out. Finally, more complex

text-to-text MT tasks with larger vocabularies will be approached.
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Abstract. The design of new medical drugs is a very complex process
in which combinatorial chemistry techniques are used. For this reason,
it is very useful to have tools to predict and to discriminate the pharma-
cological activity of a given molecular compound so that the laboratory
experiments can be directed to those molecule groups in which there is
a high probability of finding new compounds with the desired properties.
This work presents an application of Artificial Neural Networks to the
problem of discriminating and predicting pharmacological characteristics
of a molecular compound from its topological properties. A large amount
of different configurations are tested, yielding very good performances.

1 Introduction

The design of new medical drugs possessing desired chemical properties is a chal-
lenging problem in the pharmaceutical industry. The traditional approach for
formulating new compounds requires the designer to test a very large number of
molecular compounds, to select them in a blind way, and to look for the desired
pharmacological property. Therefore, it is very useful to have tools to predict
and to discriminate the pharmacological activity of a given molecular compound
so that the laboratory experiments can be directed to those molecular groups
in which there is a high probability of finding new compounds with the desired
properties.

The tools that have been developed for this purpose are based on finding the
relationship between a molecule’s chemical structure and its properties. Given
that the properties of a molecule come from its structure, the way the molecular
structure is represented has special relevance. In this work, the molecular struc-
ture is described by a reduced set of 62 topological indices. This paper describes

F.J. Perales et al. (Eds.): IbPRIA 2003, LNCS 2652, pp. 184–192, 2003.
c© Springer-Verlag Berlin Heidelberg 2003
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a nefiural network based approach for solving the problem of activity prediction
and discrimination based on the structural representation of the molecule.

Two discrimination problems and two prediction problems are studied, us-
ing multilayer perceptrons to discriminate/predict. A large amount of different
configurations are tested, yielding to very good performances.

2 The Molecular Representation

The chosen set of molecular descriptors should adequately capture the phenom-
ena underlying the properties of the compound. It is also important for these
descriptors to be obtained without a lot of computational effort since they have
to be computed for every molecule whose property needs to be predicted or
discriminated.

The molecular topology is an alternative to the methods based on the “exact”
description of the electronic attributes of a molecule calculated by mechanical-
quantum methods. These molecular descriptors, which are based on graph the-
ory, allow us to describe a molecule as a set of quantized numerical indices and it
requires a lower calculation effort than other methods. They consider molecular
structure as planar graphs where atoms are represented by vertices and chemical
bonds are represented by edges. The topological indices have information about
the number and kind of bonds that exist between the atoms as well as other
structural attributes (size, branching factor, cycles, etc.) [1, 2, 3]. Searching for
the set of indices which best adjust to this problem is a very complex task.

In this work, a set of 62 indices has been selected [4, 5]. Fourteen of these
indices are related to the molecular attributes of the compound; for example, the
total number of atoms of a certain element (carbon, nitrogen, oxygen, sulphur,
fluorine, chlorine, . . . ), the total number of bonds of a certain type (simple,
double or triple), the number of atoms with a specific vertex degree, distance
between the bonds, etc. . .

The remaining forty-eight topological indices include different topological
information, such as the number of double bonds at distance 1 or 2, and the
minimum distance between pairs of atoms, which are counted as the number
of bonds between atoms. These indices are classified into six groups which are
associated to the most frequent elements that constitute the molecules with
pharmacological activity: nitrogen, oxygen, sulphur, fluorine, chlorine, bromine,
and a general group in which the distances between pairs of atoms are considered
without identifying the type of atom.

As an example, the set of topological indices of a chemical compound so
well-known as the acetylsalicylic acid (aspirin) is shown in Figure 1.

3 Activity Discrimination and Prediction Problems

The case studies are of interest in the field of medicine. Two discrimination prob-
lems and two prediction problems were studied using the topological descriptors
of the molecules explained above.
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{ 9, 0, 4, 0, 0, 0, 0, 8, 5, 0, 4, 5, 4, 0, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 5, 10, 8, 11, 7, 7, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 13, 17, 16, 15, 11, 6, 0, 0, 0, 0, 0, 0 }

Fig. 1. Top. Molecular structure of the acetylsalicylic acid (aspirin). The
hydrogen-suppressed graph is shown, in which every unlabeled vertex repre-
sents a carbon atom and every double edge represents a double bond. Bot-
tom. The set of topological indices: 9 carbon atoms, 4 oxygen atoms, 8 simple
bonds, 5 double bonds, 4/5/4 atoms with a vertex degree equal to one, two and
three, respectively, 4 double bonds at distance one, 2 double bonds at distance
two, 5/10/8/11/7/7 atoms with a distance of one/two/three/four/five/six from
the oxygen atoms, 13/17/16/15/11/6 atoms with a distance of one/two/three/
four/five/six between them (Null values are skipped.)

3.1 Activity Discrimination Problems

The properties studied were analgesic and antidiabetic discrimination. The ob-
jective was to train a classifier and evaluate it.

– Analgesic discrimination problem. The purpose of this experiment was to
determine whether a molecule has analgesic activity or not. A dataset of 985
samples with potential pharmacological activity was used.

– Antidiabetic discrimination problem. In this case, we wanted to determine
whether a molecule presents antidiabetic activity. A dataset of 343 samples
was used.

3.2 Activity Prediction Problems

The properties considered were antibacterial activity and solubility. The objec-
tive of the case studies was to implement a predictor and evaluate its perfor-
mance.

– Antibacterial activity prediction problem. We wanted to predict the minimum
inhibitory concentration of antibacterial activity. A dataset of 111 samples
was used.

– Solubility prediction problem. In this case, we were interested in predicting
the solubility capability of the molecules. A dataset of 92 samples was used.
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Table 1. Datasets for the experimentation. For the activity discrimination prob-
lems, the active and inactive molecule percentages for each dataset are indicated
in parenthesis

Number of samples
Problem Active Inactive Total

Activity Analgesic 172 (17.5%) 813 (82.5%) 985
discrimination Antidiabetic 180 (52.5%) 163 (47.5%) 343

Activity Antibacterial 111
prediction Solubility 92

3.3 Leaving-One-Out

The datasets for the four problems are shown in Table 1. In order to obtain
statistically significant results, four different partitions (composed of 25% of
the data) of each database were done for the final experiments. The partitions
were performed randomly, taking into account that the percentages of active and
inactive samples were homogeneous for the datasets of the activity discrimination
problems.

The final experiments for each problem entailed four runs, using the Leaving-
One-Out scheme [6]: training the neural model with the data of three partitions
(out of this data, one partition was selected for validation) and testing with the
data of the other partition. Therefore, the classification rates of the test sets
reported in Section 5 are the average result of the four runs of each experiment.

4 Artificial Neural Networks for Structure-Activity
Relationship Modeling

Classification of complex data has been addressed by various statistical and ma-
chine learning techniques. Although these methodologies have been successfully
applied in a variety of domains, there are some classification tasks, particularly
in medicine or chemistry, which require a more powerful, yet flexible and robust
technique to cope with extra demands concerning limited datasets and complex-
ity of interpretation. In this context, the use of artificial neural networks becomes
an excellent alternative.

We used multilayer perceptrons (MLPs) for structure-activity discrimination
and prediction. The number of input units was fixed by the number of topological
descriptors of the molecules (62 topological indices). The input data of each
dataset was discretized by dividing by the maximum value of all the indices.

There was only one output unit corresponding to the property being dis-
criminated or predicted. The data for the activity discrimination problems were
labeled with 1, −1, or 0: a value of 1 indicates that the molecule has pharmaco-
logical activity, a value of −1 indicates that the molecule is inactive, and a value
of 0 indicates undetermined activity. Therefore, we use the hyperbolic tangent
function, defined in the interval [−1, 1], as the activation function.
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Table 2. MLP topologies and learning algorithms studied

Topology: One hidden layer: 2, 4, 8, 16, 32, 64
Two hidden layers: 2-2, 4-4, 8-8, 16-16, 32-32, 64-64

Training algorithm: Backpropagation without momentum term
Learning rate: 0.1 0.2 0.4 0.7 0.9 1.5 2.0

Training algorithm: Backpropagation with momentum term
Learning rate: 0.1 0.2 0.4 0.7 0.9
Momentum term: 0.1 0.2 0.4 0.7 0.9

Training algorithm: Quickprop
Learning rate: 0.1 0.2 0.3
Quick rate: 1.75 2 2.25

The concentration and solubility levels for the activity prediction problems
were discretized between 0 and 1, so we used the sigmoidal activation function.

The training of the MLPs was carried out using the neural net software pack-
age “SNNS: Stuttgart Neural Network Simulator” [7]. In order to successfully use
neural networks, a number of considerations has to be taken into account, such
as the network topology, the training algorithm, and the selection of the algo-
rithm’s parameters [8, 7, 9]. Experiments were conducted using different network
topologies: a hidden layer with 2, 4, 8, 16, 32 and 64 units or two hidden layers
with an equal number of hidden units (2, 4, 8, 16, 32 or 64). Several learning
algorithms were also studied: the incremental version of the backpropagation
algorithm (with and without momentum term) and the quickprop algorithm.
Different combinations of learning rate (LR) and momentum term (MT) as well
as different values of the maximum growth parameter (MG) for the quickprop
algorithm were proved (see Table 2). In every case, a validation criterion was
used to stop the learning process.

In order to select the best configuration of MLP for each problem, we per-
formed all the above proofs using three partitions of the data: two partitions for
training and one partition for validation. When we got the best configuration of
topology, training algorithm and parameters (according to the validation data),
we made the four-runs experiment: training an MLP of that configuration with
the data of three partitions (two for training, one for validation) and testing
with the data of the other partition.

In the experimentation with potential analgesic activity, the best perfor-
mance on the validation data was achieved using an MLP of one hidden layer
of 16 units, trained with the standard backpropagation algorithm with a learn-
ing rate equal to 0.1. For the antidiabetic activity discrimination problem, we
reached the best performance on the validation data with an MLP of two hidden
layers of 4 units each, trained with the backpropagation algorithm (LR=0.2 and
MT=0.1).

The best performances on the validation data for the activity prediction prob-
lems were achieved, in both cases, by training with the standard backpropagation
algorithm, using a learning rate equal to 0.1. For the antibacterial prediction,
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Table 3. Best configurations for every problem

Best configuration
Problem MLP topology, algorithm and parameters

Activity Analgesic {62−16−1} Backpropagation (LR=0.1)
discrimination Antidiabetic {62−4−4−1} Backpropagation (LR=0.2, MT=0.1)
Prediction Antibacterial {62−64−1} Backpropagation (LR=0.1)
problem Solubility {62−32−1} Backpropagation (LR=0.1)

the best topology was one hidden layer of 64 units; for the solubility prediction
problem, the best performance on the validation data was achieved with an MLP
of one hidden layer of 32 units.

For all the experiments, the best configurations of topology, training algo-
rithm and parameters for the validation data are shown in Table 3.

5 Experimental Results

5.1 Activity Discrimination Problems Experiments

For the activity discrimination problems, the output values of the MLPs are
between −1 and 1 (due to the hyperbolic tangent activation function). In the
learning stage, −1 is assigned to the molecule that does not have pharmaco-
logical activity (analgesic or antidiabetic) and 1 to the molecule that do have
it. After training the MLP models for the activity discrimination problems, the
classification criterion was the following: if the molecule is inactive and the out-
put achieved with the MLP is in the interval [−1,−0.5], it is counted as correct;
if the output is in the interval ]− 0.5, 0[ the result is counted as undetermined;
finally, if the output is in the interval [0, 1], it is an error. When testing an active
molecule the classification criterion was similar: it is considered to be correctly
classified when the output value of the MLP is between 1 and 0.5; if the output
is in the interval ]0.5, 0[, it is counted as undetermined; if the output is between 0
and −1, it is considered an error.

In the experimentation with potential analgesic activity, we trained four
MLPs with the configuration shown in Table 3. We then tested these trained
MLPs with the test data, obtaining the success percentages for the four runs
shown in Table 4. In average, we achieved an overall classification rate equal to
82.44%, with no sample classified as undetermined. If we analyze these results (in
average) considering the group (active or inactive), we get a success percentage
of 54.65% in the active group and a success percentage of 88.31% in the inactive
group.

For the antidiabetic activity discrimination problem, the obtained classifica-
tion rates for each run of the experiment are also given in Table 4. In average, the
percentage of classification was equal to 92.14% on the test data. If we analyze
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Table 4. MLP performance (classification rate in %) for the discrimination
problems

Discrimination Average
problem Run1 Run2 Run3 Run4 Active Inactive Total

Analgesic 86.18 76.83 83.33 83.40 54.65 88.31 82.44
Antidiabetic 94.19 88.37 91.86 94.12 91.67 92.61 92.14

the results considering the active and inactive groups we get a success percentage
of 91.67% and 92.61%, respectively.

5.2 Activity Prediction Problems Experiments

Structure-activity prediction was achieved with high accuracy. For the antibacte-
rial prediction problem, of all the networks tested, the most suitable one (on the
validation data) turned out to be an MLP of one hidden layer of 64 units, trained
with the standard backpropagation algorithm, using a learning rate equal to 0.1.
This network was capable of predicting the minimum inhibitory concentration of
antibacterial activity with a root-mean-square error (RMSE) lower (in average)
than 1.66 on unseen data, the test dataset.1

The best performance on the validation data for the solubility prediction
problem was achieved using an MLP of one hidden layer of 32 units, trained also
with the standard backpropagation algorithm with a learning rate equal to 0.1.
This MLP could predict the solubility capacity of a molecule with a RMSE of
0.18 on test data.

The results for each run of the experiment and the average error are shown
in Table 5.

6 Conclusions and Future Work

In this work, the viability of the use of artificial neural networks for structure-
activity discrimination and prediction have been shown based on the structural
1 For the prediction problems, the MLPs have been trained using a sum-of-squares
error (SSE) function, whereas for network testing it is more convenient to use a root-
mean-square error (RMSE) of the form:

RMSE =

∑
n ||g(xn;ω)− tn||2∑

n ||tn − t̄||2

where g(xn;ω) denotes the output of the trained MLP given the input pattern xn,
and the sums run over the N patterns in the test set. The target for the n-th pattern
is denoted as tn and t̄ is defined to be the average test set target vector. The RMSE
has the advantage, unlike the SSE, that its value does not grow with the size of the
test set. If it has a value of unity then the network is predicting the test data “in
the mean” while a value of zero means perfect prediction of the test data [9].
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Table 5. MLP root-mean-square error (RMSE) for the prediction problems

Precdiction RMSE RMSE
problem Run1 Run2 Run3 Run4 Average

Antibacterial 0.52 0.97 4.47 0.69 1.66
Solubility 0.14 0.21 0.20 0.17 0.18

representation of the molecules. Two discrimination problems and two prediction
problems were studied, using multilayer perceptrons to discriminate and predict
different properties of the molecular compounds.

The experiments performed with the analgesic group allow to determine
whether a given molecule is active or inactive with a classification percentage of
82.44%. Better results were obtained with the antidiabetic group, with a success
classification rate of 92.14%.

On the other hand, structure-activity prediction was achieved with high ac-
curacy: antibacterial activity can be predicted with a root-mean-square error of
1.66; the solubility capacity of a molecule can be predicted with a 0.18 root-
mean-square error.

Before ending we would like to remark that this work is only the first step
towards an automatic methodology for designing new medical drugs. Thus, the
following step will be the inverse problem of constructing a molecular structure
given a set of desired properties [10].
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Abstract. In this paper, a new frequency-based approach to motion
segmentation is presented. The proposed technique represents the se-
quence as a spatio-temporal volume, where a moving object corresponds
to a three-dimensional object. In order to detect the “3D volumes” cor-
responding to significant motions, a new scheme based on a band-pass
filtering with a set of logGabor spatio-temporal filters is used. It is well
known that one of the main problems of these approaches is that a filter
response varies with the spatial orientation of the underlying signal. To
solve this spatial dependency, the proposed model allows to recombine in-
formation of motions that has been separated in several filter responses
due to its spatial structure. For this purpose, motions are detected as
invariance in statistical structure across a range of spatio-temporal fre-
quency bands. This technique is illustrated on real and simulated data
sets, including sequences with occlusion and transparencies.
Keywords: Motion segmentation, motion representation, motion pat-
tern, logGabor filters, spatio-temporal models

1 Introduction

The motion segmentation, i.e. the process of dividing the scene into regions
representing moving objects, is one of the most important problems in image
sequence analisys. It has applications in fields such as optical flow estimartion,
video coding or objects tracking.

The most common proposals to this problem relies on frame by frame analysis
(for example, techniques based on optical flow estimates). Althought this kind
of approaches works fine in many cases, it is well known they have problems
in the presence of noise, occlusions or transparencies [1]. To overcome these
problems, some authors propose to use extended features to find correspondeces
beetween frames. None the less, the success of these models depends on the
stability of detection of such features over multiple frames, and the way of solving
the correspondence problem [2].

Unlike frame by frame analisys (or analisys over small number of frames),
some approaches represents the sequence as a spatio-temporal volume. From this
� This work has been supported by the DGES (Spain) under grant PB98-1374

F.J. Perales et al. (Eds.): IbPRIA 2003, LNCS 2652, pp. 193–203, 2003.
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point of view, a moving object may be observed as a three-dimensional object,
where the axis x and y correspond to the spatial dimensions, and the third
axis corresponds to the temporal dimension [3]. In this kind of methods, some
important proposals are based on a band-pass filtering operation with a set of
spatio-temporal filters [4, 5, 6, 7]. These approaches are derived by considering
the motion problem in the Fourier domain, where the spectrum of a spatio-
temporal translation lies in a plane whose orientation depends on the direction
and velocity of the motion [8, 9]. Although these filters are a powerful tool to
separate the motions presented in a sequence, it is nevertheless true that one of
the main problems of these schemes is that components of the same motion with
different spatial characteristics are separated in different responses. Moreover,
a filter response will change if the spatial orientation or scale vary.

In this paper, we develop a methodology to motion segmentation on the ba-
sis of a spatio-temporal volumes detection. For this purpose, a new tehcnique
based on a spatio-temporal filtering in the frequency domain is proposed. To
solve the problems described above, we propose a new approach that groups
the separated responses obtained by the filters in order to extract coherent and
independent motions. Using a new distribution of 3D logGabor filters over the
spatio-temporal spectrum, a motion is detected as an invariance in statistical
structure across a range of spatio-temporal frequency bands. This new scheme
recombines responses that, even with different spatial characteristics, have con-
tinuity in its motion.

2 The Proposed Method

The figure 1 shows a general diagram describing how the data flows through
the proposed model. This diagram illustrates the analysis on a given sequence
showing a clap of hands. The endpoint of analyzing this sequence is to separate
the two hand motions. In a first stage, a three-dimensional representation is per-
formed from the original sequence and then its Fourier transform is calculated.
Given a bank of spatio-temporal logGabor filters, a subset of them is selected
in order to extract significant spectral information. These selected filters are ap-
plied over the original spatio-temporal image in order to obtain a set of active
responses.

In the second stage, for each pair of active filters, their responses are com-
pared based on the distance between their statistical structure, computed over
those points which form relevant points of the filters. As a result, a set of dis-
tances between active filters is obtained.

In a third stage, a clustering on the basis of the distance between the active
filter responses is performed to highlight invariance of responses. Each of the
cluster obtained in this stage defines a motion. In figure 1, two collections of
filters have been obtained for the input sequence.
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Fig. 1. A general diagram of the proposed model
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(θ, ϕ)

(0.52, 0.00) (−0.62,−0.53) (−1.29, 0.45)
(0.62, 0.53) (−1.08, 0.97) (−1.05, 0.00)
(1.08, 0.97) (1.08,−0.97) (−1.29,−0.45)
(−1.08, 0.97) (0.62,−0.53) (1.29,−0.45)
(−0.62, 0.53) (1.05, 0.00) (1.57, 0.00)

(−0.52, 0.00) (1.29, 0.45)

Table 1. Angular coordinates of the bank of filters (over an sphere of ratio 1)

2.1 Bank of Spatio-temporal Filters

To decompose the sequence, a bank of logGabor filters is used. A logGabor
function can be represented in the frequency domain as:

φ(ρ, θ, ϕ) = e

{
− (log( ρ

ρo ))
2

2(log( σρ
ρo

))2

}
e

{
− (θ−θo)2

2σ2
θ

}
e

{
− (ϕ−ϕo)2

2σ2ϕ

}
(1)

where σθ , σϕ and σρ are the angular and radial standard deviation, (θo, ϕo) is
the orientation of the filter, and ρo is the central radial frequency. The bank of
filters should be designed so that it tiles the frequency space uniformly. Hence
we consider a bank with the following features:

1. For each radial frequency, 17 spherical orientations over dynamic planes are
considered. Table 1 shows the angular coordinates used in the proposed bank.

2. The radial axis is divided into 3 equal octave bands. The wavelength in each
orientation is set at 3, 6 and 12 pixels respectively.

3. The radial bandwidth is chosen as 1.2 octaves
4. The angular bandwidth is chosen as 30 degrees

The resultant filter bank is illustrated in the top of figure 1. Due to the conjugate
symmetry in the Fourier domain, the filter design is only carried out on the half
3D frequency space.

Active Filters In order to reduce the number of filter responses that have to be
evaluated, a selection of filters that isolate spectral information corresponding
to significant motions is performed. This selection allows to reduce the computa-
tional cost and it avoids the noisy or less relevant filter responses. Given a filter
φi, a measure of its relevance is defined as:

wi =
1

Card[V (i)]

∑
(ρ,θ,ϕ)∈V (i)

|F (ρ, θ, ϕ)| (2)

where |F (ρ, θ, ϕ)| is the amplitude of the Fourier spectrum at (ρ, θ, ϕ), and V (i)
represents a spectral volume associated with the filter φi. To calculate V (i),
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we consider that a point (ρ, θ, ϕ) in the spatio-temporal frequency domain will
belong to V (i) if

|ρ− ρo| ≤ σρ , |θ − θo| ≤ σθ y |ϕ− ϕo| ≤ σϕ (3)

where σθ, σϕ, σρ and (θo, ϕo) are the logGabor filter parameters (let us remark
that it is not necessary to calculate the responses of each filter to obtain these
weights)

Using the filter relevance measure defined in (2), an unsupervised classifica-
tion method is performed for each scale to group the filters into two classes: active
ones and non-active ones. The cluster whose filters have the highest weights will
determine the set of active filters (that will be noted Active). In our implemen-
tation, a hierarchical clustering [10] is used with a dissimilarity function between
classes defined as

δ(Ci, Cj) = |μi − μj | (4)

where
μk =

1
Card [Ck]

∑
r∈Ck

wr (5)

For each active filter, a set of ‘relevant points’ is computed. We calculate
these points as local energy peaks on the filter responses [11]: given the response
Ei of a filter φi, the maximal of Ei in the direction of the filter will determine
the set of points which will focus our attention in the next stage.

2.2 Distance between Filter Responses

In this section, a distance between the statistical structures of a given pair of fil-
ter responses is proposed. To represent a statistical structure, we use the notions
of separable feature and integral feature introduced in [12]. A separable feature
is defined as any relevant characteristic that may be obtained for a point (phase,
local contrast, energy, etc.). The combination of any subset of separable features
will define an integral feature at a given point (x, y, z) . In this paper, the fol-
lowing five separable features proposed in [12] will be used: phase, local energy,
local standard deviation, local contrast of the local energy, and local entropy.

Let T i(x, y, z) =
[
T i
k(x, y, z)

]
k=1,2,...L

be an integral feature at (x, y, z) which
combines L separable features, noted as T i

k, computed on the response of the
filter φi. Let d̂

(
T i, T j

)
be the distance between two integral features T i(x, y, z)

and T j(x, y, z) given by the equation:

d̂
(
T i, T j

)
=

L∑
k=1

1
Maxk

d(T i
k, T

j
k ) (6)

with Maxk being a normalization factor [12], and d(·) a distance between sepa-
rable features (this measure d(·) is defined for each separable feature in [12])

Based on the previous equation, a distance between the responses of two
filters φi y φj is defined as:
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D̂(φi, φj) = D [i, j]2 + D [j, i]2 (7)

where

D [r, s] =
1

Card [P (r)]

⎛⎝∑
P (r)

∣∣∣d̂[T r, T s]
∣∣∣β
⎞⎠

1
β

(8)

with d̂ [T r, T s] being the distance between integral features given by (6), and
P (r) the set of relevant points for the filter φr .The default value of the exponent
β in (8) has been fixed to 3.

2.3 Clustering of Active Filters

In order to obtain a partition C1, C2, ..., CN of active filters, with Ci representing
a motion, a clustering of the dataset X = {φi ∈ Actives} into an unknown
number N of clusters is performed. For this purpose, a hierarchical clustering
is used [10] with a dissimilarity function between classes defined on the basis of
distances between statistical structures as

δ(Cn, Cm) = min
{
D̂(φi, φj) , φi ∈ Cn , φj ∈ Cm

}
(9)

where D̂(φi, φj) is given by the equation (7). Let us remark that the clustering
is not performed for each point (x,y,t), but over the set of active filters X .

Selection of the Best Partition To select the level l of the hierarchy which
will define the best partition P l = C1, C2, ..., CN , we propose the following func-
tion of goodness

f(P l) =
γ∗P l

ε∗
P l

(10)

where ε∗P l and γ∗P l are two measures of the congruence and separation of the
partition P l respectively, given by the equations:

ε∗P l = max
{
εn | Cn ∈ P l

}
(11)

γ∗P l = min
{
γn | Cn ∈ P l

}
(12)

The congruence degree εn and separation degree γn of a cluster Cn are defined
as

εn = max
{
cost(μ∗i,j) | φi, φj ∈ Cn

}
(13)

γn = min {δ(Cn, Cm) | m = 1, ..., N with m �= n} (14)

where δ(Cn, Cm) is defined in (9), and cost(μ∗i,j) is the cost of the optimal path
between two elements φi and φj in Cn calculated as follow: let

∏
ij be the set
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of possibles paths linking φi and φj in Cn; given a path πij ∈
∏

ij , its cost is
defined as the greatest distance between two consecutive points on the path:

cost(πij) = max
{
D̂(φr , φr+1) / φr, φr+1 ∈ πij

}
(15)

where φr and φr+1 are two consecutive elements of πij , and D̂(φr, φs) is defined
in equation (7). The optimum path π∗ij ∈

∏
ij between φi and φj is then defined

as the path that links both filters with minimum cost:

π∗ij = argmin
πi,j ∈ Πi,j

{cost(πi,j)} (16)

Due to the merging process of the hierarchical clustering and the distance be-
tween classes used in this case (equation (9)), the congruence degree εn equals
to the distance between the two cluster which were merged together to obtain
Cn [12]. Thus, the calculus of εn do not increase the computational cost of the
clustering.

3 Results

In this section, the results obtained with real and synthetic sequences are showed
to prove the performance of our model. For this purpose, several cases have been
tested, from simple motion to occlusions and transparencies. In all the cases,
the figures show the first and the last frame of the original sequence, and the
motions detected in each case. Each motion, which has associated a cluster of
filters, is represented by the sum of the filters responses (energy) of its cluster. In
this representation, a high level of energy (white colour) corresponds to a high
presence of motion.

A synthetic case of pure translational motion with constant speed is showed
in figure 2(A). Specifically, the example shows three bars with velocities of (1,0),
(-1,0) and (0,-1) pixels/frame respectively. Looking at the 3D representation of
the original sequence, three independent planes can be seen corresponding to the
three bars in motion. Our model separates each one of these planes into three
different spatio-temporal outputs corresponding to the three motions. From this
3D representation, the sequence associated to each motion is extracted.

Figure 2(B) shows another synthetic example with a moving obtect with
velocity of (1,1) pixels/frame. In this case, the object has the same texture that
the background, so only the motion information allows to detect the object. As
figure 2(B) shows, our model generates an output corresponding to the moving
object.

The figure 2(C-D) shows two synthetic sequences which have been generated
with Gaussian noise of mean 1 and variance 0. The first example (figure 2(C))
shows a sequence where a background pattern with velocity (-1,0) pixels/frame
is occluded by a foreground pattern with velocity (1,0). The second example (fig-
ure 2(D)) shows two motions with transparency: an opaque background pattern
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Fig. 2. Output of the model with synthetic sequences

with velocity (1,0), and a transparent foreground pattern with velocity (-1,0). In
both cases, the figure shows the central frame of the sequence and the motions
detected by the model (two in each case).

Figure 3(A-C) shows three examples with real sequences. In all the cases,
boxes around the detected moving objects are showed over the original sequence.
Each box is obtained from the energy representation (that is, the sum of the fil-
ters responses of the cluster associated to the motion) as the box which enclose
the corresponding motion (to select the points with high level of energy a thresh-
olding over the energy representation is performed). The first case corresponds
to a double motion without occlusions where two hands are moving to clap. The
second one shows an example of occlusion where a hand is crossing over another
one. In this case, where the occlusion is almost complete in some frames, the
motion combines translation and rotation without a constant velocity. The third
case shows an example of transparency where a bar is occluded by a transparent
object placed in the first plane. As figure 3 shows, in all the cases our model gen-
erates an output for each motion present in the sequence. Let us remark that the
problem of the occlusion is solved by our model by mean of the spatio-temporal
continuity of forms. Furthermore, this approach is capable of detecting motions
even when different velocities and spatial orientations are present.

Figure 3(D) shows the result obtained with a noisy image sequence. This
example has been generated by adding Gaussiam noise of mean 1 and variance 30
to the sequence of the figure 3(A). As figure 3(D) shows, our model segments the
same two motions that were detected in the original sequence. That enlightens
the consistency of the proposed algorithm in the presence of noise.
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Fig. 3. Results with real sequences
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4 Conclusions

In this paper, a new approach to motion segmentation in image sequences has
been presented. The sequence has been represented as a spatio-temporal vol-
ume, where a moving object correspond to a three-dimensional object. Using
this representation, a motion has been identified on the basis of invariance in
statistical structure across a range of spatio-temporal frequency bands. To span
the spatio-temporal spectrum, logGabor functions have been adopted as an ap-
propriate method to construct filters of arbitrary bandwidth. The new approach
allows to recombine information of motions that has been separated in several
filter responses due to its spatial structure; as a result, the proposed model
generates an output for each coherent and independent motion detected in the
sequence, avoiding the classic problem associated with a representation based
on spatio-temporal filters.

The technique has been illustrated on several data sets. Real and synthetic
sequences combining occlusions and transparency have been tested. In all the
cases, the final results enlightens the consistency of the proposed algorithm.
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Abstract. Social robots are receiving much interest in the robotics com-
munity. The most important goal for such robots lies in their interaction
capabilities. An attention system is crucial, both as a filter to center the
robot’s perceptual resources and as a mean of letting the observer know
that the robot has intentionality. In this paper a simple but flexible and
functional attentional model is described. The model, which has been
implemented in an interactive robot currently under development, fuses
both visual and auditive information extracted from the robot’s environ-
ment, and can incorporate knowledge-based influences on attention.

1 Introduction

In the last years the robotics community has sought to endow robots with social
and interaction abilities, with the first survey recently published [6]. Researchers
realized that robots that excelled in certain tasks were by no means consid-
ered intelligent by the general public. Social abilities are now considered very
important in order to make the robots more human. Emotion and multimodal
communication are also two related aspects that are still being researched.

In [11] the authors argue that a robot with attention would have a minimal
level of intentionality, since the attentional capacity involves a first level of goal
representations. Attention is a selection process whereby only a small part of the
huge amount of sensory information reaches higher processing centers. Attention
allows to divide the visual understanding problem into a rapid succession of local,
computationally less expensive, analysis problems. Human attention is divided
in the literature into two functionally independent stages: a preattentive stage,
which operates in parallel over the whole visual field, and an attentive stage, of
limited capacity, which only processes an item at a time. The preattentive stage
detects intrinsically salient stimuli, while the attentive stage carries out a more
detailed and costly process with each detected stimulus. The saliency values of
the attentive stage depend on the current task, acquired knowledge, etc [8, 10].

Probably the first robot that was explicitly designed to include some social
abilities is Kismet [1]. Kismet has had undeniable success in the robotics com-
munity because it has been a serious effort in making a robot sociable. Among
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other diverse modules, Kismet included an attention system, which is based on
Wolfe’s ”Guided Search 2.0 (GS2)” model [15]. GS2 is based on extracting basic
features (color, motion, etc.) that are linearly combined in a saliency map. In
a winner-take-it-all approach, the region of maximum activity is extracted from
the saliency map. The focus of attention (FOA) will then be directed to that
region.

It is a well accepted fact that attention is controlled both by sensory salient
and cognitive factors (knowledge, current task) [2]. The effect of the lower level
subsystem (bottom-up influence) has been comprehensively studied and mod-
elled. In contrast, the effect of higher level subsystems (top-down influence) in
attention is not yet clear [9]. Hewett [8] also suggests that volitive processes
should control the whole attention process, even though some of the controlled
mechanisms are automatic in the human brain. Therefore, high-level modules
should have total access to the saliency map. This would allow the attention
focus to be directed by the point that a person is looking at, deictic gestures,
etc. Fixations to the point that a person is looking at are useful for joint atten-
tion. In [14] an additional feature map is used for the purpose of assigning more
saliency to zones of joint attention between the robot and a person.

In the third version of Wolfe’s Guided Search [16] high-level modules act in
two ways. On the one hand they can modify the combination weights. On the
other hand, they can also act after each fixation, processing (recognizing, for
example) the area of the FOA, after which an ”inhibition of return” (IR) signal
is generated. IR is a signal that inhibits the current FOA, so that it will not win
in the saliency map for some time.

Top-down influences on attention are also accounted for in the FeatureGate
model [5]. In this model, a function is used to produce a distance between the
low-level observed features and those of the interest objects. In [13] the top-
down influence is embedded in the changing parameters that control a relaxation
and energy minimization process that produces the saliency map. Also, in [3]
a neural network, controlled by high-level processes, is used to regulate the flow of
information of the feature maps towards the saliency map. A model of attention
similar to that of Kismet is introduced in [12] for controlling a stereo head.
Besides the feature maps combination (color, skin tone, motion and disparity),
space variant vision is used to simulate the human fovea. However, the system
does not account for top-down influences. Moreover, it uses 9 Pentium processors,
which is rather costly if the attention system is to be part of a complete robot.

In [7] an attention system is presented where high-level modules do influence
(can act on) the whole saliency map. When, after a fixation, part of an object is
detected, saliency is increased in other locations of the visual field where other
parts of the object should be, considering also scaling and rotation. This would
not be very useful in poorly structured and dynamic environments. In the same
system, a suppression model equivalent to IR is used: after a fixation the saliency
of the activated zone is decreased in a fixed amount, automatically.

The objective of this work was not to achieve a biologically faithful model,
but to implement a functional model of attention for a social robot. This paper
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is organized as follows. Section 2 describes the proposed attention system, im-
plemented for a social robot that is currently being developed. Experiments are
described and analyzed in Section 3. Finally, the main conclusions are summa-
rized in Section 4.

2 Attention Model

In all the citations made above, the effect of high-level modules is limited to
a selection or guiding of the bottom-up influence (i.e. combination weights) and
the modification of the relevance of the object in the FOA. We propose that the
influence of high-level modules on attention should be more direct and flexible.
Inhibition should be controlled by these modules, instead of being an automatic
mechanism. The following situation is an example of such case: if I look at
a particular person and I like her, inhibition should be low, in order to revisit
her soon. There could even be no inhibition, which would mean that I would keep
on looking at her. Note that by letting other processes control the saliency map
joint attention and inhibition of return can be implemented. Also, the mechanism
explained before that increases saliency in the zones where other parts of objects
should be can be implemented. In fact, any knowledge-directed influence on
attention can be included.

The objective of this work was to conceive a functional attention mechanism
that includes sound and vision cues. Therefore, the model proposed here is simple
to implement, being the most complex calculations done in the feature extraction
algorithms. The activation (i.e. saliency) values are controlled by the following
equation:

A(p, t) =
∑
i

Fi(vi · fi(p, t)) +
∑
j

Gj(sj · gj(p, t)) + K · C(p, t) + T (p, t) (1)

where F and G are functions that are applied to the vision-based (fi) and sound-
based (gj) feature maps in order to group activity zones and/or to account for
the error in the position of the detected activity zones. Spatial and temporal
positions in the maps are represented by the p and t variables. vi, sj and K are
constants. C is a function that gives more saliency to zones near the current FOA:
C(p, t) = e−γ|p−FOA(t−1)|. T (p, t) represents the effect of high-level modules,
which can act over the whole attention field. The maximum of the activation
map defines the FOA, as long as it is larger than a threshold U :

FOA(t) =
{

maxpA(p, t) if maxpA(p, t) > U
FOA(t − 1) otherwise

(2)

The model is depicted in Figure 1, using sound and vision for extracting
feature maps. Note that a joint attention mechanism would use the component T
of Equation 1, which for all practical purposes is equivalent to the approach taken
in [14] that used a feature map for that end.
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Fig. 1. Model of attention. The feature maps must represent the same physical
space than the activation map. If sensors do not provide such values, a mapping
would have to be done

The implementation presented in this paper will use an auditive feature map:
the localization of a single sound source. Notwithstanding, this scheme can be
used with multiple sources, as long as they are separated by another technique.

The visual feature map is extracted from images taken with an omnidirec-
tional camera, using adaptive background differences. The aim was to detect
blobs pertaining to people around the robot. The first step is to discard part
of the captured image, as we want to watch only the frontal zone, covering 180
degrees from side to side (see Fig. 2). The background model is obtained as the
mean value of a number of frames taken when no person is present in the room.
The model M is updated with each input frame:

M(k + 1) = M(k) + U(k) · [I(k)−M(k)], (3)

where I is the input frame. U is the updating function:

U(k) = exp(−β ·D(k)), (4)

with:

D(k) = α ·D(k − 1) + (1− α) · |I(k)− I(k − 1)|, (5)

for α between 0 and 1. The parameters α and β control the adaptation rate.
The method of adaptive background differences described above still had

a drawback. Inanimate objects should be considered background as soon as pos-
sible. However, as we are working at a pixel level, if we set the α and β parameters
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Fig. 2. Left: the interactive robot being developed. Center: omnidirectional
camera, placed in front of the robot. Right: image taken by the omnidirectional
vision system. The numbers indicate the estimated height and the angle of the
closest blob (the one with the largest height)

too low we run the risk of considering static parts of animate objects as back-
ground too. This problem can be alleviated by processing the image D. For each
foreground blob, its values in D are examined. The maximum value is found, and
all the blob values in D are set to that level. With this procedure the blob only
enters the background model when all its pixels remain static. The blob does
not enter the background model if at least one of its pixels has been changing.

As for the sound-based feature map, the aim was to detect the direction of
sound sources (i.e. people). The signals gathered by a pair of microphones are
amplified and preprocessed to remove noise. Then the angle in the horizontal of
a sound source is extracted using the expression:

angle = arcsin((s · I/f)/d), (6)

where s is the sound speed, f is the sampling frequency, d is the distance between
the pair of microphones, and I is the interaural time difference (ITD). The ITD
is a measure of the displacement between the signal gathered at one microphone
and the signal gathered at the other, and is obtained through correlation. The
implemented sound localization system is described in more detail in [4].

3 Implementation and Experiments

The attention model has been implemented on the robot head shown in Figure 2.
This head includes an omnidirectional camera as a presence detector and a sound
localization system based on a pair of microphones placed on both sides of the
head. The feature and activation maps represent a half-plane in front of the
robot. The FOA is used to command the pan and tilt motors of the robot’s
neck. For our particular implementation we decided that sound events should
not change the FOA on their own, but they should make the nearest visual event
win. Also, as a design decision we imposed that the effect of sound events should
have precedence over the effect of C.
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In our particular case the variable p takes values in the range [0, 180] degrees
and F will not be used. v1 = 1, f1 = {0, 1} represents the effect of a visual fea-
ture map that detects foreground blobs using adaptive background differences
and the omnidirectional camera. The visual feature maps are not actually 1-D,
but 1 1/2-D, as for each angle we store the height of the blob, measured by
the omnidirectional vision system. This height is used to move the tilt motor of
the robot’s neck. g1 = {0, 1} represents the output of the sound localization rou-
tine. The vision and sound localization modules communicate with the attention
module through TCP/IP sockets. To account for errors in sound localization, G
is a convolution with a function e(−D·|x|), D being a constant. In order to meet
these conditions the following should be verified:

– s1 < 1 (the FOA will not be directly set by the sound event).
– Suppose that 2 blobs are anywhere in the activation map. Then a sound event

is heard. One of the blobs will be closer to the sound source than the other. In
order to enforce the preferences mentioned above, the maximum activation
that the farthest blob could have should be less than the minimum activation
that the nearest blob could have. This can be put as 1 +K + s1 · e(−D·a) <
1+K ·e(−180∗γ)+s1 ·e(−D·b), b and a being the distances from the blobs to the
sound source, the largest and the shortest one, respectively. That equation
does not hold for b < a but it can be verified for b < a − ε, with a very
small ε.

Operating with these two equations the following valid set of values was
obtained: D = 0.01,K = 0.001, s1 = 0.9, γ = 0.15. For those values ε = 0.67
degrees, which we considered acceptable.

The effect of high-level processes (T ) is not used in the implementation yet,
as the robot is still under development. The simplicity of the model and of the
implementation make the attention system efficient. With maps of 181 values, the
average update time for the activation map was 0.27ms (P-IV 1.4Ghz). In order
to show how the model performs, two foreground objects (a person and a coat
stand) were placed near the robot. A sample image taken by the omnidirectional
camera are shown in Figure 2. Initially, the FOA was at the coat stand. Then
the person makes a noise and the FOA shifts, and remains fixating the person.
In order to see what happens at every moment this situation can be divided into
three stages: before the sound event, during the sound event and after the sound
event.

Figure 3 shows the state of the feature maps and the activation map at each
stage. Note that the vertical axis is shown in logarithmic coordinates, so that
the effect of the C component, which is very small, can be seen. The exponential
contributions thus appear in the figures as lines.

Before the sound event the FOA was at the blob on the left, approximately
at 75 degrees, because it is the closest blob to the previous FOA (the robot starts
working looking at his front, 90 degrees). This is shown in the first two figures.
The two next figures show the effect of the sound event. The noise produces a
peak near the blob on the right (the person). That makes activation rise near that



218 Oscar Déniz et al.

blob, which in turn makes the blob win the FOA. The last two figures show how
the FOA has been fixated to the person. In absence of other contributions the
effect of the C component implements a tracking of the fixated object/person.

Fig. 3. State of the feature and activation maps. On the left column the figures
show the visual and auditive feature maps. On the right column the figures show
the resultant saliency map
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4 Conclusions

An attentional system is a necessary module in a complex human-like robot.
With it, the robot will be able to direct its attention to people in the environ-
ment, which is crucial for interaction. In this paper a simple yet functional model
of attention has been described, drawing upon previous attentional systems for
interactive robots. The model was implemented using both auditive and visual
features extracted from a zone surrounding the robot. Visual features were ex-
tracted from video taken with an omnidirectional camera, which gives the robot
a 180 degrees attentional span. The attentional system is currently running on
a robotic head

The next step in our work will be to implement the high-level influences
on the attention focus. This influence is to be defined by the robot’s tasks and
knowledge, which obviously need the completion of other modules, such as an
action selection mechanism (with goals), memory and facial analysis.
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Abstract. In this paper, new wavelet-based affine invariant functions
for shape representation are derived. These functions are computed from
the wavelet approximation coefficients of the shape boundary. The first
function is computed from applying a single wavelet transform, whereas
the second function is computed from applying two different wavelet
transforms. All the previously derived affine invariant functions were
based on wavelet details coefficients which are sensitive to noise in the
finer scale levels. The proposed invariant functions are more stable and
less sensitive to noise than the details-based invariant functions.

1 Introduction

Wavelet analysis has become one of the important and powerful tools in many
disciplines [6], [2]. In image processing and pattern recognition areas, wavelet
is used in image enhancement, compression, feature extraction, and much more
applications. One of the applications of wavelet transform is the shape repre-
sentation. Shape representation is a crucial step in shape analysis and matching
systems [9], [2]. If the representation of the shape does not change under certain
geometric transformation, then this representation is said to be invariant to that
transformation. Invariant representation functions can be computed either from
the shape intensity or from the boundary of the shape [2]. Many researchers used
the Wavelet Transform (WT) in shape representation. Some have attempted to
apply the WT in 2-D domains (region-based techniques); others have chosen to
apply the transform to 1-D shape boundary (contour-based techniques). Usually,
region-based algorithms are greatly influenced by background variations (e.g.,
light and shading) and corrupted noise. Moreover, region-based techniques are
usually very time consuming. On the other hand, contour representations provide
better data reduction, and are usually less sensitive to noise than region-based
techniques [7].

Wavelet representation contains information at different scales in which dif-
ferent shapes could have the same representation at a particular scale but not
at all scale levels [13].
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In this paper, two new affine invariant functions for shape representation are
derived. One of these functions is derived from the approximation coefficients of
the wavelet transform. The second function is derived from the approximation
coefficients after applying two different wavelet transforms .

This paper is organized as follows: Section II gives a quick review of the
related work. In sections III the proposed functions are derived. Section IV il-
lustrates the experimental results. Finally section V gives the conclusions and
the future work.

2 Related Work

In this section, the previously published papers that used wavelet transform in
obtaining invariant shape representation are introduced. Since we are applying
wavelet transform to the shape contour to obtain the affine invariant represen-
tation, the related publications only will be review. The affine invariant wavelet
representations derived till now were based on the details coefficients. A quick
overview of these functions is as follows:

– Alferez and Wang [1] proposed geometric and illumination invariants for
object recognition depending on the details coefficients of the dyadic wavelet
decomposition. They also showed that more complicated invariant functions
could be constructed from more than two wavelet details scales.

– Tieng and Boles tried to derive more than one affine invariant function by
applying the dyadic wavelet transform to the shape contour. In [12], and [13]
they derived a relative invariant function from the approximations and the
details coefficients of the shape contour.

I1(i, k) = AixkDiyk −AiykDixk (1)

where Aixk are the approximation coefficients of the boundary sequence xk
and Diyk are the details coefficients of the boundary sequence yk. They found
that the B-spline was the optimum wavelet function when compared to the
Daubechies and Lamarie-Battle functions. Representation using the B-spline
gave stable matching results and a small number of misclassifications. For
classification purpose, they selected only two levels that have the largest
energies concentrations.
In [10] they used complex Duabechies wavelet functions to calculate the
invariant function. The Invariant function used here is the same as in [12]
except that the approximation and the details are replaced by the real and
the imaginary parts of the details coefficients, respectively.
In [11], they derived another invariant function by taking the wavelet co-
efficients of two different wavelet functions. The invariant function is given
by

I2(j, k) = D1
jxkD

2
jyk −D1

j ykD
2
jxk (2)
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– Khalil and Bayoumi also tried to derive a wavelet-based affine invariant
function using dyadic wavelet transform ([3], [4], and [5]). The invariant
function is derived from the details coefficients generated from the wavelet
transform of the shape boundary. The relative invariant function, using only
two dyadic scale levels, is defined as:

I3(i, j, k) = Dix̃kDj x̃k −DiỹkDj x̃k (3)

where Dix̃k and Diỹk are the details signals of the affine transformed sig-
nals xk and yk at scale i and j respectively.
In [5], they continued their previous work in [4]. They showed that they can
compute the invariant functions using 2, 3 , or 4 dyadic levels.
In [4], they derived an absolute wavelet-based conics invariant function that
uses all the details scale levels (except the first two), which increased the
discrimination power of the invariant function.

3 Wavelet-Based Affine Invariant Shape Representation
Functions

The aim of this paper is to derive stable and robust wavelet-based invariant func-
tions that can be used in shape representation. Wavelet-based invariant functions
derived from the shape boundary were introduced by several authors. These func-
tions were invariant to affine, or projective transformations. The derived affine
and projective invariant functions were based either on the wavelet details coef-
ficients only (as in [4, 1, 5, 12, 3] and [10]) or on the combination of the details
and the approximations coefficients (as in [12, 13]).

A general framework for deriving affine invariant functions from wavelet de-
composition is as follows:

For a 2-D shape represented by its contour sequences (xk and yk) and sub-
jected to affine transformation, the relation between the original and the dis-
torted sequences is [

x̃k
ỹk

]
=

[
c11 c12
c21 c22

] [
xk
yk

]
+

[
b1
b2

]
(4)

where c11, c12, c21, c22, are the affine matrix coefficients and b1, and b2 rep-
resent the translation parameters. The translation parameters can be easily re-
moved by subtracting the shape centroid from its extracted boundary.

By applying the wavelet transform to the distorted boundary sequences, these
wavelet transformed sequences at scale level (i) are related by:[

Wix̃k
Wiỹk

]
=

[
c11 c12
c21 c22

] [
Wixk
Wiyk

]
(5)

where Wixk and Wiyk are the wavelet transformed original sequences at scale
level i, and Wix̃k and Wiỹk are the wavelet transformed distorted sequences at
scale level i. (Wixk is either the detail or the approximation coefficients). For
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two different representations of xk and yk (i.e at different scale levels, or by two
different coefficients types) and if the wavelet coefficients are subjected to the
same geometric transformation,[

Wix̃k Wj x̃k
Wiỹk Wj ỹk

]
=

[
c11 c12
c21 c22

] [
Wixk Wjxk
Wiyk Wjyk

]
(6)

An affine invariant function is computed by taking the determinant of equa-
tion 6, which means that

Wix̃kWj ỹk −WiỹkWj x̃k = det(C)(WixkWjyk −WiykWjxk) (7)

is a relative invariant function. Where C is the transformation matrix. Equation 7
tells us that almost all the affine invariant functions derived till now (from the
published papers [4, 1, 5, 12, 13] and [3]) are computed from this function,
where Wxk and Wyk are selected to be either the wavelet details coefficients(as
in [4, 1, 5], and [3]) or the approximation and details coefficients (as in [12],
and [13]).

It should be noted that the first 2 or 3 levels of the details coefficients are
usually small in amplitude and are highly sensitive to noise. To overcome this
problem these levels were avoided in computing the invariant functions that
depend on the details coefficients (all the above systems). A less sensitive to small
variations function is computed by considering the approximations coefficients
only

I4(i, j, k) = Aj x̃kAiỹk −Aix̃kAj ỹk = det(C)[AjxkAiyk −AixkAjyk] (8)

where Aj x̃k, Aix̃k are the distorted approximations coefficients of xk at scales j
and i, Ajxk, Aixk are the original ones, Aj ỹk, Aiỹk are the distorted approxi-
mations coefficients of yk at scales j and i, Ajyk, Aiyk are the original one, and
det(C) is the determinant of the transformation matrix.

This function is a relative invariant function (due to the existence of the
determinant det(C)), and it can be made an absolute invariant function by di-
viding by another function computed from (at least one) different scale levels,
or by dividing by any significant (non-zero) value from the same equation. (e.g.
maximum value).

Another invariant function is derived from the approximation coefficients by
applying two different wavelet transforms with different wavelet basis functions.
The invariant function would look like:

I5(i, j, k) = A1
j x̃kA

2
i ỹk −A2

i x̃kA
1
j ỹk = det(C)[A1

jxkA
2
i yk −A2

i xkA
1
jyk] (9)

where A1
j x̃k and A1

j ỹk are the approximation coefficients of the distorted bound-
ary after applying the first wavelet transform, A1

jxk and A1
jyk are the approxima-

tions of the original boundary resulted from the same transform, A2
j x̃k and A2

j ỹk
are the approximation coefficients of the distorted boundary after applying the
second wavelet transform, and A2

jxk and A2
jyk are the approximation coefficients

of the original boundary resulted from the same transform.
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1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

Fig. 1. Sample of the shapes used in our experiment, the asterisks show the
boundary starting point

The advantages of using two different wavelet transforms with different basis
functions is that the discrimination between shapes increases. This is because of
the increase in the number of the invariant functions that can be obtained from
this equation, which also helps in deriving higher order invariant functions using
four (or more) different scale levels.

4 Experimental Results

Sample of the shapes used in our experiment are shown in figure 1. Shapes 1 to
6 are the boundaries extracted from 6 different shapes, while shapes 7 and 8 are
noisy versions of shape 6. Shapes 9 to 14 are affine distorted shapes computed
from shape 6 whereas shapes 15 and 16 are the noisy versions of shape 14. The
affine distorted shapes (9 − 14) are obtained by applying the transformation
shown in equation 10 (the translation parameters are removed by calculating
and subtracting the centroid of the shape)[

x̃
ỹ

]
= [Taffine]

[
x
y

]
(10)

where x and y are the pixel locations of the original 2-D shape, x̃ and ỹ are the
distorted pixel locations, and Taffine [8] is the affine transformation matrix and
is given by

Taffine = sc

[
cos(θ) −sin(θ)
sin(θ) cos(θ)

] [
1 sk
0 1

]
(11)

Table 1. Affine transformation parameters and SNRs used in our experiment

Shape 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

sc 1 1 1 1 1 1 1 1 1 1 1 1 0.75 0.75 0.75 0.75

θ 0 0 0 0 0 0 0 0 30o 60o 0 0 0 45o 45o 45o

sk 0 0 0 0 0 0 0 0 0 0 0.3 0.7 0 0.4 0.4 0.4

SNR - - - - - - 39.2 33.1 - - - - - - 38.3 32
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Fig. 2. The invariant functions of shapes 2, and 5 computed from scales 3 and 4

where sc is the scale, θ is the rotation angle, and sk is the skew parameter. The
noisy shapes are obtained by adding a uniformly distributed noise to shapes 6
and 14. Table 1 shows the affine transformation parameters and the signal-to-
noise ratios (SNRs) used in our experiment.

After extracting the boundary of each shape, the boundary sequences xk
and yk are normalized to have the same length for all shapes before applying
the WT. All shapes in our experiment are resampled to have 512 points, so the
DWT decomposes the sequences xk and yk into 9 different scale levels. We used
quadratic spline for the single WT, and quadratic spline and Daubechies (db12)
for the two WT. The functions tested in this experiment are equations 1, 3, 8,
and 9. Figures 2 illustrates the invariant functions computed for shapes 2 and 5
using the scale levels 3 and 4. Figure 3, illustrates these functions for the original
(shape 6), and the affine and noisy (shape 15) shape for the scale levels 2 and
3. This figure shows that the degree of invariance of I1 (equations 1), and I3
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Fig. 3. The invariant functions of shapes 6, and 15 computed from scales 2 and 3
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Fig. 4. The maximum correlation values computed between shape 6 and all
other shapes (n=1 to 16) at different scale levels and differences, the first column
is computed using i− j = 1 while the last column is computed for i− j = 2

(equation 3) decreases in the finer levels, and that these invariants are sensitive
to small variations in these levels (even in the absence of added noise). While I4
and I5 (equations 8 and 9) appear to be less sensitive to these variations in theses
levels.

The normalized correlation function defined in [4] is used in our experiment to
measure the similarity between any two invariant functions. For two sequences ak
and bk, the normalized correlation equals

Rab(l) =
∑

l

∑
k akbk−l√∑

k a
2
k

∑
k b

2
k

(12)

Since the correlation is not translation invariant, one of the functions (ak
or bk) is made periodic (for 3 periods) then the maximum value of the correlation
is selected. This will reduce the effect of the starting point variation of the shape
boundary on the calculations.

Figure 4 illustrates the maximum correlation values for the tested shapes.
The shown maximum correlation values were computed between shape 6 and all
other shapes. From these plots, it is clear that the derived functions (equations 8,
and 9) can easily distinguish between different shapes and that equations 1, 3
fail to do this. This is because that equations 1, 3 are based on the the wavelet
details which are highly sensitive to noise and small variations in the first scale
levels. In the coarser scale levels, equation 3 has more discrimination between
different shapes. This is because that the approximation coefficients capture
global features and tends to be equal for globally similar shapes. The second
column in figure 4 shows that the discrimination is improved by taking i−j = 2,
which means that it will increase for large scale level differences (i.e. i− j ≥ 2).
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5 Conclusions

In this paper, we derived two affine invariant shape representation functions
based on the approximations of the shape boundary. The experimental results
show that these functions are less sensitive to noise than the details-based func-
tions. Also the discrimination between shapes for these functions is increased by
increasing the scale level differences. New invariant functions could be computed
by combining the details and the approximations invariant functions. These func-
tions will be used in measuring the dissimilarities between different shapes. The
details-based functions will be used for measuring the local dissimilarities, and
the approximations-based will be used in measuring the global dissimilarities.
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Abstract. We propose a feature selection approach for clustering which
extends Koller and Sahami’s mutual-information-based criterion to the
unsupervised case. This is achieved with the help of a mixture-based
model and the corresponding expectation-maximization algorithm. The
result is a backward search scheme, able to sort the features by order
of relevance. Finally, an MDL criterion is used to prune the sorted list
of features, yielding a feature selection criterion. The proposed approach
can be classified as a wrapper, since it wraps the mixture estimation al-
gorithm in an outer layer that performs feature selection. Preliminary
experimental results show that the proposed method has promising per-
formance.

1 Introduction

A great deal of research has been devoted to the feature selection (FS) problem in
supervised learning [1, 2, 3] (a.k.a. variable selection or subset selection [4]). FS is
important for a variety of reasons: it may improve the performance of classifiers
learned from limited amounts of data; it leads to more economical (both in
storage and computation) classifiers; in many cases, it leads to interpretable
models. However, FS for unsupervised learning has not received much attention.

In mixture-based unsupervised learning (clustering [5]), each group of data
is modelled as having been generated according to a probability distribution
with known form. Learning then consists of estimating the parameters of these
distributions, and is usually done via the expectation-maximization (EM) al-
gorithm [6, 7, 8]. Although standard EM assumes that the number of com-
ponents/groups is known, extensions which also estimate this number are also
available (see recent work in [9] and references therein).

Here, we address the FS problem in mixture-based clustering, by extending
the mutual-information based criterion proposed in [1] to the unsupervised con-
text. The proposed approach can be classified as a wrapper [2], in the sense that
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the feature selection procedure is wrapped around the EM algorithm. This wrap-
per is able to sort the variables by order of relevance, using backward search. An
MDL criterion is used to prune this sorted list leaving a set of relevant features.

Finally, let us briefly review previously proposed FS methods in unsupervised
learning. In [10], a heuristic to compare the quality of different feature subsets,
based on cluster separability, is suggested. A Bayesian approach used in [11]
evaluates different feature subsets and numbers of clusters for multinomial mix-
tures. In [12], the clustering tendency of each feature is assessed by an entropy
index. A genetic algorithm was used in [13] for FS in k-means clustering. Finally,
[14] uses the notion of “category utility” for FS in a conceptual clustering task.

2 Mixture Based Clustering and the EM Algorithm

Mixture models allow a probabilistic approach to clustering ([6, 7, 8]) in which
model selection issues (e.g., number of clusters) can be formally addressed.
Given n i.i.d. samples Y = {y1, ...,yn}, the log-likelihood of a k-component
mixture is

log p(Y|θ) = log
n∏
i=1

p(yi|θ) =
n∑
i=1

log
k∑

m=1

αmp(yi|θm), (1)

where α1, ..., αk ≥ 0 are the mixing probabilities (
∑

m αm = 1), θm is the set of
parameters of the m-th component, and θ ≡ {θ1, ...,θk, α1, ..., αk} is the full set
of parameters. Each yi is a d-dimensional vector of features [yi,1, ..., yi,d]T , and
we assume that all the components have the same form (e.g., Gaussian).

Neither the maximum likelihood (ML), θ̂ML = argmaxθ log p(Y|θ), nor the
maximum a posteriori (MAP), θ̂MAP = argmaxθ {log p(Y|θ) + log p(θ)}, esti-
mates can be found analytically. The usual alternative is the EM algorithm [7,
8, 15, 16], which finds local maxima of log p (Y|θ) or [log p (Y|θ) + log p(θ)].

EM is based on seeing Y as incomplete data, the missing part being a set of n
labels Z = {z1, ..., zn}, flagging which component produced each sample. Each
label is a binary vector zi = [zi,1, ..., zi,k], with zi,m = 1 and zi,p = 0, for p �= m,
meaning that yi is a sample of p(·|θm). The complete log-likelihood (i.e., given
both Y and Z) is

log p(Y,Z|θ) =
n∑
i=1

k∑
m=1

zi,m log [αmp(yi|θm)] . (2)

The EM algorithm produces a sequence of estimates {θ̂(t), t = 0, 1, 2, ...} by
alternatingly applying two steps (until some convergence criterion is met):
• E-step: Compute the conditional expectation W = E[Z|Y, θ̂(t)], and plug it
into log p(Y,Z|θ), yielding the so-calledQ-function: Q(θ, θ̂(t)) = log p (Y,W|θ).
Since the elements of Z are binary, their conditional expectations are given by

wi,m ≡ E
[
zi,m| Y, θ̂(t)

]
= Pr

[
zi,m = 1|yi, θ̂(t)

]
∝ α̂m(t) p(yi|θ̂m(t)) (3)
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y
1

y
2

Fig. 1. Feature y1 is relevant to the mixture nature of the data, while y2 is not

(normalized such that
∑

m wi,m = 1). Notice that αm is the a priori probability
that zi,m = 1 (i.e., that yi belongs to cluster m) while wi,m is the corresponding
a posteriori probability, after observing yi.
• M-step: Update the parameter estimates, θ̂(t+ 1) = argmaxθ {Q(θ, θ̂(t)) +
log p(θ)}, in the case of MAP estimation, or without log p(θ) in the ML case.

3 Feature Selection for Mixtures

3.1 Likelihood Formulation

Consider the example in Fig. 1: a 2-component bivariate Gaussian mixture. In
this example, y2 is clearly irrelevant for the “mixture nature” of the data. How-
ever, principal component analysis (PCA, one of the standard non-supervised
feature sorting methods) of this data would declare y2 as more relevant because
it explains more data variance than y1.

To address the FS problem for mixtures, we divide the available feature
set y = [y1, ..., yd] into two subsets yU and yN . Here, U and N (standing for
“useful” and “non-useful”) are two disjoint sub-sets of indices such that U ∪N =
{1, 2, ..., d}. Our key assumption is that the non-useful features are independent
of the useful ones, and their distribution is the same for all classes/clusters, i.e.,

p(y|U,θU ,θN ) = p(yN |θN )
k∑

m=1

αmp(yU |θm,U ), (4)

where θN is the set of parameters characterizing the distribution of the non-
useful features, and θU = [θ1,U , ...,θk,U ] is the set of parameters characterizing
the mixture distribution of the useful features. Notice that we only need to
specify U , because N = {1, 2, ..., d}\U . The feature selection problem is then to
find U and the corresponding parameter θ = [θU , θN ]. Let us highlight some
aspects of this formulation:
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– Consider maximizing the log-likelihood, given observations Y={y1, ...,yn},

log p(Y|U,θU ,θN ) =
n∑
i=1

log p(yi,N |θN )+
n∑
i=1

log
k∑

m=1

αmp(yi,U |θm,U ), (5)

with respect to U , θU and θN . The result would be U = {1, ..., d} (as noted
in [11]), because a mixture is a more general model and so we can never
decrease the likelihood by increasing the number of useful features. This
shows that the problem requires some model selection criterion.

– Testing all possible 2d partitions of {1, 2, ..., d} into U and N is prohibitive,
even for moderate d. The standard alternative is to use sub-optimal methods,
such as sequential forward/backward search (SFS/SBS) schemes [3].

3.2 Connection with Feature Selection for Supervised Learning

Assume the class labels and the full feature vector follow some probability func-
tion p(z,y). A subset of features yN is non-useful/irrelevant if it is conditionally
independent of the labels, given the useful features yU (see [1]), i.e., if

p(z|y) = p(z|yU ,yN ) = p(z|yU ). (6)

Observation of the model in (4) reveals that we can look at the m-th mixture
component as being p(y|θm) = p(yU |θm,U )p(yN |θN ). The outcome of the E-
step of the EM algorithm (3), omitting the iteration counter (t) and the sample
index i for notational economy, is then

wm =
αm p(yU |θm,U )p(yN |θN )
k∑

j=1

αj p(yU |θj,U )p(yN |θN )

=
αm p(yU |θm,U )
k∑

j=1

αj p(yU |θj,U )

. (7)

Recalling that wm = Prob[y ∈ class m|y,θ], we can read (7) as: given yU , the
probability that an observation belongs to any class m is independent of yN .
This reveals the link between the likelihood (4) and the irrelevance criterion (6),
based on conditional independence.

3.3 A Feature Usefulness Measure for Unsupervised Learning

In practice, there are no strictly non-useful features, but features exhibiting some
degree of “non-usefulness”. A natural measure of the degree of independence, as
suggested in [1], is the expected value of the Kullback-Leibler divergence (KLD,
or relative entropy [17]). The KLD between two probability mass functions p1(x)
and p2(x), over a common (discrete) probability space Ω, is

DKL[p1(x) ‖ p2(x)] =
∑
x∈ Ω

p1(x) log
p1(x)
p2(x)

,
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and satisfies DKL[p1(x) ‖ p2(x)] ≥ 0, and DKL[p1(x) ‖ p2(x)] = 0, if and only
if p1(x) = p2(x), for all x ∈ Ω. The relationship between conditional indepen-
dence as stated in (6) and the KLD is given by the following implication

p(z|yU ,yN ) = p(z|yU ) ⇒ DKL[p(z|yU ,yN )) ‖ p(z|yU ))] = 0, (8)

for all values of yU and yN . To obtain a measure of usefulness of a feature set,
we have to average this measure over all possible feature values, according to
their distribution [1]. In practice, both the KLD and its average over the feature
space are approximated by their sample versions on the training samples.

In unsupervised learning we only have the feature samples Y = {y1, ...,yn},
but no labels Z = {z1, ..., zn}. However, after running the EM algorithm we have
their expected values W = {wi,m, m = 1, ..., k, i = 1, ..., n}. To build a sample-
based feature usefulness measure, assume that W was obtained using the full
feature set, and let θ̂ be the corresponding parameter vector. Now let V(N) =
{vi,m(N), m = 1, ..., k, i = 1, ..., n} be the expected label values obtained using
only the features in the corresponding useful subset U = {1, ..., d}\N , that is,

vi,m(N) = α̂m p(yi,U |θ̂m,U )

⎛⎝ k∑
j=1

α̂j p(yi,U |θ̂j,U )

⎞⎠−1 . (9)

Then, a natural measure of the “non-usefulness” of the features in N is

Υ (N) =
1
n

n∑
i=1

k∑
m=1

wi,m log
wi,m

vi,m(N)
, (10)

which is the sample mean of KLDs between the expected class labels obtained
with and without the features in N . A low value of Υ (N) indicates that yN is
“almost” conditionally independent of the expected class labels, given yU .

4 A Sequential Backward Feature Sorting Algorithm

4.1 The Algorithm

Of course, evaluating Υ (N) for all 2d possible subsets is unfeasible, even for
moderate values of d. Instead, we propose a sequential backward search (SBS)
scheme (Fig. 2) which starts with the full set of features set and removes them
one by one in the order of irrelevance (according to the criterion (10)). This
algorithm will produce an ordered set I = {i1, ..., id}, which is a permutation of
{1, 2, ..., d} corresponding to a sorting of the features by increasing usefulness.

4.2 An Illustrative Example: Trunk’s Data

To illustrate the algorithm, we use the problem suggested by Trunk [18]: two
equiprobable d-variate Gaussian classes, with identity covariance and means



234 Mário A. T. Figueiredo et al.

Input: Training data Y = {y(1), ..., y(n)}
Output: Set I of sorted feature indices.
Initialization:
I ← { }
U ← {1, 2, ..., d}
Run EM with all the features to get W = {wi,m, m = 1, ..., k, i = 1, ..., n}
while |I | < d do

Υmin ← +∞
for i ∈ U do

I ′i ← {i} ∪ I
Compute Υ (I ′i) according to (10)
if Υ (I ′i) < Υmin then

Υmin ← Υ (I ′i)
imin ← i

end if
end for
I ← {imin} ∪ I
U ← U\{imin}
Update W by running EM using only the features in U .

end while

Fig. 2. Feature sorting algorithm. Notice that the sets used in the algorithm
are ordered sets and the set union preserves that ordering (e.g., {c} ∪ {b, a} =
{c, b, a} �= {a, b, c})

μ1 = [1, 1/
√

2, 1/
√

3, ..., 1/
√
d]T and μ2 = −μ1. Clearly, these features are al-

ready sorted in order of usefulness, and so any feature sorting scheme can be
evaluated by how much it agrees with this ordering. In [3] (for supervised learn-
ing) a measure of the quality of the sorted set I = {i1, ..., id} was defined as

Q(I) =
1

d− 1

d−1∑
i=1

|Ii1 ∩ {1, ..., i}|+ |Idi+1 ∩ {i+ 1, ..., d}|
d

,

where Iba = {ia, ia+1, ..., ib}. Note that Q(I) is a measure of agreement between I
and the optimal feature ordering {1, 2, ..., d}, with Q(I) = 1 meaning perfect
agreement. Fig. 3 plots Q(I) versus the sample set size, for d = 20, averaged
over 5 data sets for each sample size. Remarkably, these values are extremely
similar to those reported in [3], although here we are in an unsupervised learning
scenario. Finally, the Υmin values are a measure of the relevance of each feature;
in Fig. 3 we plot these values for the case of 500 samples per class.
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Fig. 3. Trunk data example. Left: feature sorting quality versus training set
size. Right: feature relevance averaged over 20 data sets (vertical bars are ± 1
standard dev.)

5 Feature Selection by MDL

5.1 The Criterion

Having features sorted by order of relevance, we may now look for the best place
to cut this sorted list, for a given data set. To this end, we return to the likelihood
formulation (4), and to a comment made above: maximizing the likelihood leads
to the selection of a full feature set. To avoid this over-fitting, we resort to the
minimum description length (MDL) principle [19], criterion:

Û = argmin
U

{
min
θU ,θN

{− log p(Y|U,θU ,θN )}+
|θU |+ |θN |

2
log(n)

}
, (11)

where log p(Y|U,θU ,θN ) is given in (5) and |θU | and |θN | are the total numbers
of parameters in θU and θN , respectively. Notice that the inner minimization
simply corresponds to the ML estimate of θU and θN for a given U , obtained by
the EM algorithm for θU and by simple maximum likelihood estimates in the case
of θN . The numbers of parameters |θU | and |θU | depend on the particular form of
p(yN |θN ) and p(yU |θm,U ). For example, with Gaussian mixtures with arbitrary
mean and covariance, |θU | = k(3u + u2)/2. With p(yN |θN ) also a Gaussian
density with arbitrary mean and covariance, |θN | = (3(d− u) + (d− u)2)/2.

This MDL criterion is used to select which features to keep, by searching for
the solution of (11) among the following set of candidate subsets, produced by
the feature sorting algorithm of Fig. 2: {Iq1 = {i1, ..., iq}; q = 1, ..., d}.

5.2 Illustrative Example

We illustrate the behavior of the feature selection algorithm with a sim-
ple synthetic example. Consider a three-component mixture in 8 dimensions
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Fig. 4. MDL-based feature selection example. Left: description length, (11),
as a function of the number of “useful” features (mean curve for 40 tests, ±
one standard deviation). Right plot: mean error rate (also for 40 tests, ± one
standard deviation)

with component means μ1 = [3, 0, 0, 0, ..., 0]T ,μ2 = [0, 3, 0, 0, ..., 0]T , μ3 =
[0, 0, 3, 0, ..., 0]T , and identity covariance matrices. Clearly, only the first three
features are relevant to the mixture, features 4 to 8 are simply “noise”. We have
applied the feature sorting algorithm described above to 40 sets of 450 samples
of this mixture (150 per class) and features 1, 2, and 3 were always placed ahead
of the others in the sorted feature list. Next, we used the criterion in (11) to se-
lect the “optimal” number of features, and three features were always selected;
the left plot in Fig. 4 shows the mean description length curve for the 40 tests,
with ± one standard deviation bars. Since we have the true class labels for this
data, we have computed error rates, which are plotted on the right side of Fig. 4
(again, mean over 40 test, ± one standard deviation bars); notice that the mini-
mum error rate is achieved for the true number of relevant features; observe also
that with too few or too many features, the obtained classifier becomes more
instable (larger error bars).

6 Concluding Remarks

We have presented an approach to feature sorting and selection for mixture-based
clustering. Tests on synthetic data show that the method is promising. Of course
the method has yet to be extensively tested on real data, but assessing the quality
of a feature selection method for unsupervised learning with real data is not an
obvious task. Future developments will include extending the method to also
estimate the number of clusters, by wrapping the feature selection procedure
around a mixture-fitting algorithm that estimates the number of components
(such as the one in [9]). Also, searching strategies other than backward search
(e.g., floating search [3]) will be considered in future work.
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Abstract. The authors present a simple but robust real-time algorithm
that allows tracking of multiple objects in complex environments. As the
first stage, the foreground segmentation uses luminance contrast, reduc-
ing computation time avoiding the use colour information at this stage.
Foreground pixels are then grouped into blobs analysing X-Y histograms.
Tracking is achieved by matching blobs from two consecutive frames us-
ing overlapping information from bounding boxes and a linear prediction
for the centroid’s position. This method successfully solves blobs merg-
ing into groups and tracking them until they split again. Application
in automatic surveillance is suggested by linking blob’s information, in
terms of trajectories and positions, with the events to be detected. Some
examples in transport environments are outlined.

1 Introduction

The use of CCTV systems in surveillance has grown exponentially in the last
decade. As noted by Norris [1] “the rise of CCTV surveillance system has to be
seen in the context of underlying social, political and economic pressures which
have led to the intensification of surveillance across a whole range of spheres
and by a host of new technologies”. In this context, experts predict an extensive
application of CCTV surveillance system and its integration in a global surveil-
lance network. However, this expansion requires technological aid to overcome
the drawbacks associated with the huge amount of visual information generated
by these surveillance systems [2]. Anything but reduced human monitoring be-
came impossible by means of its physical and economic implications, and an
advance towards an automated surveillance became the only solution. The con-
cept of “advanced visual surveillance” involves not only the interpretation of
a sequence of images but also the detection of predefined events susceptible of
trigger an alarm. The use of constraints obtained from the knowledge of both,
the task and the environment allows a greater computational efficiency [3]. How-
ever, intelligent surveillance systems have to deal with an especially difficult task
� This work was supported by UK’s EPSRC founded project PerSec.
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when people and their behaviour are to be analysed. Some information may be
obtained from the analysis of people trajectories and their interaction, involving,
therefore, tracking. The analysis of a single blob position or trajectory can de-
termine whether the person is standing in a forbidden area, running, jumping or
hiding. Combining such information from two or more people may provide infor-
mation about the interaction between them. In order to be successfully applied to
security monitoring tasks, a visual surveillance system has to be able to process
in real time more than one image channel. In certain environments, the number
of CCTV surveillance cameras is so high that the idea of a dedicate PC for each
one is simply unacceptable. Therefore, a simplification of the image processing
stage is necessary in order to achieve real-time processing speed in four to eight
image channels simultaneously. In the process leading from an acquired image to
the information about objects in it, two steps are particularly important in com-
putational terms: foreground segmentation and tracking. In this paper we present
a foreground detection method based on luminance contrast and a straightfor-
ward tracking algorithm that relies only on blob matching information without
using statistical descriptions to model or predict motion characteristics. Based
on semantic description of predefined events, the system is able to detect them
and rise an alert signal to the operator, the final decision-maker. In the approach
presented here, the specific demands for CCTV surveillance systems applied to
public transport environments will be analysed together with the appropriate
image processing techniques in order to build an intelligence surveillance system
being able to detect “potentially dangerous situations”.

2 Related Work

Foreground detection algorithms are normally based on background subtraction
algorithms (BSAs) [4, 5, 6]. These methods are based on extracting motion in-
formation by thresholding the differences between the current image and a ref-
erence image (background), which may be updated as to deal with changing
lighting conditions [7, 8, 9], normally linked with outdoor environments. BSAs
are widely used because they detect not only moving objects but also stationary
objects not belonging to the scene. After the segmentation of the foreground
pixels, some processing is needed to clean noisy pixels and define foreground
objects. The cleaning process usually involves 3x3 median [8] or region-based [6]
filtering, although some authors perform a filtering of both images -current and
background- before computing the difference [5]. The proposed method is sim-
pler. No model is needed for the background, just a single image. For outdoor
applications this background image may be updated. Tracking algorithms estab-
lish a correspondence between the image structure of two consecutive frames.
Typically the tracking process involves the matching of image features for non-
rigid objects such as people, or correspondence models, widely used with rigid
objects like cars. A description of different approaches can be found in Aggar-
wal’s review, [10]. As the proposed tracking algorithm was developed for tracking
people, we reduce the analysis of previous work to this particular field. Many
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approaches have been proposed for tracking a human body, as can be seen in
some reviews [10], [11]. Some are applied in relatively controlled [5], [9], [12] or
in variable outdoor environments [6], [8]. The proposed system works with blobs,
defined as bounding boxes representing the foreground objects. Tracking is per-
formed by matching boxes from two consecutive frames. The matching process
uses the information of overlapping boxes [8], colour histogram back projec-
tion [13] or different blob features such as colour or distance between the blobs.
In some approaches all these features are used to create the so-called matching
matrices [4]. In many cases, Kalman filters are used to predict the position of
the blob and match it with the closest blob [12]. The use of blob trajectory [12]
or blob colour [8] helps to solve occlusion problems.

3 Segmentation

Foreground pixels detection is achieved using luminance contrast [14]. This
method simplifies the background model, reducing it to a single image, and
it also reduces computational time using just one coordinate in colour images.
The central points of the method are described below.

3.1 Definition of Luminance Contrast

Luminance contrast is an important magnitude in psychophysics and the central
point in the definition of the visibility of a particular object. Typically, luminance
contrast is defined as the relative difference between object luminance, LO, and
surrounding background luminance, LB. To apply this concept in foreground
detection we propose an alternative contrast definition comparing the luminance
coordinate in the YUV colour system ’y’ of a pixel P(i,j) in both the current and
the background images:

C(i, j) =
y(i, j)− yB(i, j)

yB(i, j)
(1)

Luminance values are in the ranges [0,255] for images digitised in YUV format or
[16,255] for images transformed from RGB coordinates [14]. Null (zero) values for
background ’y’ coordinate are changed to one because the infinite contrast value
they produce has no physical meaning. With these possible luminance values,
contrast will be in the non-symmetrical range [-1,254]. Values around zero are
expected for background pixels, negative values for foreground pixels darker than
their corresponding background pixels and positive values for brighter pixels.
However, the highest values are obtained under the unusual circumstances of
very bright objects against very dark backgrounds and values bigger than 10 are
not likely to be obtained.

3.2 Foreground Detection and Blob Selection

According to the non-symmetrical distribution of contrast around zero, the fore-
ground detection algorithm should use two different thresholds for positive CP
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and negative CN values of contrast, depending on the nature of both the back-
ground and the objects to be segmented [14]. To simplify the discussion, we as-
sume from now onwards a single contrast threshold C, that is CP = −CN = C.
So, a pixel P(i,j) is set to foreground when the absolute value of its contrast is
bigger than the chosen threshold C. Otherwise it is set to background. A median
filter is applied afterwards to reduce noise and the remaining foreground pixels
are grouped into an initial blob. This blob is divided horizontally and vertically
using X-Y projected histograms, box size and height-to-width ratio. Resulting
blobs are classified, according to their size and aspect, and characterised with the
following features: bounding box, width, height and the centroid of foreground
pixels in the box.

3.3 Tracking

The algorithm used here [15] is based on a two-way matching matrices algorithm
(matching blobs from the current frame with those of the previous one and vice
versa) with the overlapping of bounding boxes as a matching criterion. This
criterion has been found to be effective in other approaches [8] and does not
require the prediction of the blob’s position since the visual motions of blobs
were always small relative to their spatial extents. Due to its final application the
algorithm works with relative positioning of blobs and their interaction forming
or dissolving groups and does not keep the information of the blob’s position
when forming a group. However, the proposed system may be easily enhanced.
Colour information may be used in the matching process and the predicted
position can be used to track individual blobs while forming a group.

Matching Matrices Let us take two consecutive frames, F(t-1) and F(t). Fore-
ground detection and blob identification algorithms result in N blobs in the first
frame and M in the second. To find the correspondence between both sets of
blobs, two matching matrixes are evaluated: the matrix matching the new blobs,
Bi(t), with the old blobs, Bj(t− 1), called M t−1

t and the matrix matching the
old blobs with the new ones M t

t−1 (2). To clarify the matching, the concept of
“matching string” is introduced. Its meaning is clear, the numbers in column k
show the blobs that match with the blob k, (3).

M t
t−1(i, j) = Matching{Bi(t− 1), Bj(t)}

M t−1
t (i, j) = Matching{Bi(t), Bj(t− 1)} (2)

St
t−1(i) =

⋃
j

j / M t
t−1(i, j) = 1 (3)

It is possible for one blob to get a positive match with two blobs and, sometimes,
with three. In this case, the corresponding string element has to store two or
three values.
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Fig. 1. An example of a tracking sequence and some trajectories in different
scenarios

Tracking The algorithm solves the evolution of the blob from frame F(t-1)
to frame F(t) by analysing the values of the matching strings of both frames.
Simple events such as people entering or leaving the scenario, people merging
into a group or a group splitting into two people are easily solved. An example of
the correspondence between some events in the temporal evolution of the blobs
and the matching strings, merging (4), is shown.

Bi(t− 1)
⋃

Bj(t− 1) ≡ Bk(t) =⇒ St
t−1(i) = St

t−1(j) = k
St−1
t (k) = i

⋃
j

(4)

After classifying, the matching algorithm updates each new blob using the in-
formation stored in the old ones and keeps the position of the centroid to form
a trajectory when the blob is being tracked. If two blobs merge to form a new
one, this particular blob is classified as a group. This new group blob is tracked
individually although the information about the two merged blobs is stored for
future use. If the group splits again, the system uses speed direction and blob
characteristics -like colour- to identify correctly the two splitting blobs. Track-
ing blobs centroid from frame to frame, trajectories of single persons or cars are
easily obtained. Whenever it is necessary, an interpolation of the position of the
tracked blob in the frames where it was forming part of a group may provide ap-
proximate complete trajectories. The interpolated centroids position is obtained
using the median speed of previous frames and the centroid of the group blob.

4 Event Detection

Blob detection provides 2D information allowing an approximate positioning of
people in the 3D scenario -a more precise positioning requires either a geometric
camera calibration or stereo processing simultaneously analysing images from
two cameras-. People position can be used to detect some position-based events
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characteristic of transport environment, such as unattended luggage, intrusion in
forbidden areas, falls on tracks, etc. Further analysis using position information
from consecutive frames, tracking, allows a basic analysis of people interaction
and the detection of dynamic-based events, unusual movements in passageways,
vandalism, attacks, etc. The following paragraph shows some examples of how
event detection can be achieved using the position of the centroid, the character-
istics of the blob and the tracking information. A low people-density situation
is assumed.

1. Unattended luggage. A person carrying luggage leaves it and moves away:
– Initial blob splits in two
– One (normally smaller and horizontal) presents no motion, the other

moves away from the first.
– Temporal thresholding may be used to trigger the alarm.

2. Falls.
– Blob wider than it is tall.
– Slow or no centroid motion
– Falls or tracks: centroid in forbidden area.

3. People hiding. People hide (from the camera-from other people)
– Blob disappearing in many consecutive frames
– Last centroid’s position no close to a “gate” (to leave the scene)
– Last centroid’s position very close to a previously labelled “Hiding zone”
– Temporal thresholding may be used to trigger the alarm.

4. Vandalism. People vandalising public property:
– Isolation: only one person/group present in the scene
– Irregular centroid motion
– Possible changes in the background afterwards

5. Fights. People fighting move together and break away many times, fast move-
ments:
– Centroids of groups or persons move to coincidence
– Persons/Groups merging and splitting
– Fast changes in blob’s characteristics

Frame-by-frame blob analysis and tracking provide enough information to detect
some of the previous events and the possibility of others. In any case, the system
only attracts the attention of the operator, who always decides whether an event
is actually taking place.

5 Tracking Results

Due to final system requirements, a high processing speed is essential. Lumi-
nance contrast segmentation and its associated background model have been
chosen because they provide an excellent performance with lower computational
cost. Some important points concerning the influence of the chosen method in
background subtraction and tracking has been previously discussed [14]. Some
simulations have been used to test event detection -someone falling down the
stairs, vandalism and people hiding, figure 2- whilst real footage has been used
to test tracking algorithm and some position-based events -unattended luggage
and intrusion into forbidden areas-.
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Fig. 2. Tracking and event detection results on simulated events. Trajectories
of someone scribbling graffiti and falling down the stairs

6 Conclusions

The presented real-time tracking system was implemented on an 850 MHz com-
patible PC running Windows 2000. It works with colour images in half PAL
format 384x288. It has been tested with live video and image sequences in
BMP and JPEG formats. The minimum processing speed observed is 10 Hz,
from disk images in BMP format. Working with a video signal there is no per-
ceptible difference between processed and un-processed video streaming. The
system can successfully resolve blobs forming and dissolving groups and track
one of them throughout this process. It can also be easily upgraded with back-
ground updating and tracking of multiple objects. With the proposed system,
some predefined events have been detected, showing its suitability for security
tasks, including surveillance and public areas monitoring, where the number of
CCTV cameras mounted makes it impossible by means of its physical and eco-
nomic implications. Reduced human monitoring is still needed to solve the raised
alarms and to monitor system’s selected video footage. Additional information
like the number of people and crossing frequency in a certain area may also be
obtained.
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Abstract. User authentication based on biometrics has explored both
physiological and behavioral characteristics. We present a system, called
Web Interaction Display and Monitoring (WIDAM), that captures an
user interaction on the web via a pointing device. This forms the basis of
a new authentication system that uses behavioral information extracted
from these interaction signals. The user interaction logs produced by
WIDAM are presented to a sequential classifier, that applies statistical
pattern recognition techniques to ascertain the identity of an individual
- authentication system. The overall performance of the combined ac-
quisition / authentication systems is measured by the global equal error
rate, estimated from a test set. Preliminary results show that the new
technique is a promising tool for user authentication, exhibiting compa-
rable performances to other behavioural biometric techniques. Exploring
standard human-computer interaction devices, and enabling remote ac-
cess to behavioural information, this system constitutes an inexpensive
and practical approach to user authentication through the world wide
web.

1 Introduction

Personal identification / authentication plays an important role in current secu-
rity and personalization systems. As opposed to traditional security systems, that
based authentication on something one has or on something one knows (mag-
netic card, keys, etc. in the first case and passwords or personal identification
numbers in the second), recent methodologies explore biometric characteristics.
These methods are based on something one is, leading to increased reliability
and immunity to authorization theft, loss or lent.

We can divide the biometric systems in two types [9]: (1) Identity verification
(or authentication) occurs when a user claims who he is and the system accepts
(or declines) his claim; (2) Identity identification (sometimes called search) oc-
curs when the system establishes a subject identity (or fails to do it) without
any prior claim.

F.J. Perales et al. (Eds.): IbPRIA 2003, LNCS 2652, pp. 246–254, 2003.
c© Springer-Verlag Berlin Heidelberg 2003



A User Authentication Technic Using a Web Interaction Monitoring System 247

Biometric techniques can also be classified according to the type of charac-
teristics explored : (1) physiological — a physiological trait tends to be a stable
physical characteristic, such as finger print, hand silhouette, blood vessel pattern
in the hand, face or back of the eye. (2) behavioural — a behavioural character-
istic is a reflection of an individual’s psychology. Because of the variability over
time of most behavioural characteristics, behavioural biometric systems need to
be designed to be more dynamic and accept some degree of variability. On the
other hand, behavioural biometrics are associated with less intrusive systems,
leading to better acceptability by the users. Two examples of behavioural bio-
metric techniques presently used are handwritten signature verification [6] and
speaker recognition via voice prints [2].

The evaluation of a biometric technique requires the definition of metrics that
can be used for the comparison of performance among different techniques [10],
typically: False rejection rate (FRR) — rate of accesses where a legitim user
is rejected by the system; False acceptance rate — rate of accesses where an
impostor is accepted by the system; Equal error rate (EER) — the value at
which FAR and FRR are equal.

In this paper we propose both a web based user interaction monitoring system
called Web Interaction Display and Monitoring, WIDAM, and a new behavioural
biometric technique based on web interaction via a pointing device, typically
a mouse pointer. The normal interaction through this device is analyzed for
extraction of behavioural information in order to link an identification claim to
an individual.

In the following section we present the user interaction acquisition system,
WIDAM. In section 3 we describe the authentication system, focusing on the
sequential classifier. Section 4 presents experimental results obtained using the
collected data. Conclusions are presented in section 5.

2 The Acquisition System

The acquisition system, WIDAM, (this system is presented with more detail
in [4]) enables the user interaction monitoring, analysis and display on web
pages. The system can be called as a remote display system that enables the
synchronous and asynchronous observation of the user interaction, offering four
different services : (1) Synchronous Monitoring Service — real-time monitoring of
the user interaction; (2) Synchronous Display Service — real-time observation by
other users; (3) Recording Service — storage of the user interaction information
in the server database; (4) Playback Service — retrieval and playback of a stored
monitored interaction.

WIDAM allows the usage of an interaction recording system directly over
a web page, based on the Document Object Model [7] (DOM) of the web page.
The system works in a normal web browser with java and javascript capabilities,
without the need of any software installation. WIDAM is a light weight net-
worked application using low bandwidth comparatively to image based remote
display systems.
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Fig. 1. The WIDAM Architecture

The WIDAM Architecture is composed by a client and server applications,
as depicted in figure 1. The user accesses the WIDAM application via a web
browser that connects to the server. Then, the server sends back to the user a
web page that is capable of monitoring and displaying the user interaction. This
page creates a connection to the server and selects one of the services provided
by WIDAM. Then the client and the server exchange messages using a specific
protocol.

The client works in any web browser capable of executing Javascript code
and Java Applets, independent of the operating system. When the users enters
into a page of the WIDAM system, an applet is launched. This applet creates
a socket connection that enables the message passing from, and to the server.
The client loads the html page and sends an handshaking message through the
open socket, specifying which type of service is requested.

In the case of a Recording Service or Synchronous Monitoring Service, the
script sends a request to the browser, asking for notification of the user interface
events (a sub set of the events from the Document Object Model Events [11]
listed in table 1).

In the case of a Synchronous Display Service or Playback Service, the web
browser creates a virtual mouse pointer and waits for messages from the server
specifying which event should be emulated in the web browser.

Table 1. DOM events captured by WIDAM

ID Event handler Event cause

0 onMouseMove The user moves the cursor.
1 onMouseDown The user presses a mouse button.
2 onKeyPress The user presses a key.
3 onUnload The user exits a document.
4 onMove The window is moved.
5 onSelect The user selects some text.
6 onResize The window is resized.
7 onBlur The window loses focus.
8 onFocus The window receives focus.
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Fig. 2. Interaction test page: the
memory game

Fig. 3. Graph of the user interaction in
the memory game

For the purpose of the authentication technique being developed, the
WIDAM system operated in the Recording Service mode, over a web page with
the memory game: a grid of tiles, each tile having associated a hidden pattern,
which is shown for a brief period of time upon clicking on it; the purpose of the
game is to identify the matching tiles. The WIDAM system presents a web page
to the user, asking for his identification (name, and a personal number). Then
the system presents an interaction acquisition page with the memory game (that
could be any html web page), depicted in figure 2. This page is monitored by
the WIDAM application that records all the user interaction in a file stored in
the web server. Figure 3 shows a graph of a user interaction while playing an
entire memory game. The graph is produced by joining every sequential mouse
movement with lines and using a cross mark to indicate a mouse click.

3 The Authentication System

An experimental system — the authentication system — was developed to verify
the possibility of discriminating between users using their computer interaction
information, specifically based on mouse movements performed between succes-
sive clicks, which we will call a stroke (see figure 4).

Figure 5 presents the acquisition and recognition systems and its respective
building blocks. The acquisition system was addressed in the previous section.
The recognition system comprises the following modules: (a) feature extraction;
(b) feature selection; (c) parametrical learning; (d) statistical sequential classi-
fier.

The recognition system reads the interaction data from the stored data files
produced by the acquisition system. The interaction data passes a feature extrac-
tion procedure, creating a 63-dimensional vector, exploring both spatial (related
to angle and curvature) and temporal (related to duration, position, velocity and
acceleration) characteristics of the strokes. More details can be found in [5].

The system has an enrolment phase, where the global set of extracted features
are used in an algorithm that selects a set of “best”features for each user, using
the equal error rate as performance measure (feature selection block in figure 5),
using the Sequential Forward Selection (SFS) [8] that selects the best single
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Fig. 4. Example of a stroke
— input signals generated by the
mouse move events between succes-
sive mouse clicks

Fig. 5. Authentication system architec-
ture

feature and then adds one feature at time to a the vector of previously selected
features. The algorithm stops when the equal error rate does not decrease.

The classification rule assumes a statistical model for the feature vectors. The
learning phase consists of the estimation of the probability density functions,
p(X) (where X is the feature vector of a stroke), from each user’s data. Consid-
ering that each user constitutes a recognition class, and assuming statistical inde-
pendence between features, p(X) factorizes into p(X | user) =

∏
p(xi| user). We

use as parametrical model for p(xi| user) the weibull [1] distribution (p(x|a, b) =
abx(b−1)e(−ax

b)). Given the data from one user and one feature, maximum like-
lihood estimates of the parameters a and b are obtained.

The classifier’s purpose is to decide if a user is who he claims to be, based
on the patterns of interaction with the computer. We consider that the ith user
is denoted by the class wi, i = 1, . . . , L, and L is the number of classes. As
defined before, a feature vector is associated with one stroke. Given a sequence
of ns consecutive strokes executed by the user, wi, interaction information is
summarized in the vector X = X1...Xns , consisting of the concatenation of the
feature vectors associated with each stroke. Xj = xj1...x

j
nfi

, the feature vector
representing the jth stroke, has nfi elements, nfi being the number of features
identified for user wi in the feature selection phase.

Considering each stroke at a time, and assuming statistical independence
between features, we can write p(Xj |wi) =

∏nf

l=1 p(x
j
l |wi). Considering stroke

independence we can further write p(X|wi) =
∏ns

j=1 p(Xj |wi).
The classifier will decide to accept or reject the claimed identity based on two

distributions: the genuine distribution p(X|wi), and the impostor distribution
p(X| wi) that is based on a mixture of distributions (weibull distributions), one
for each other user not equal to i, expressed as p(X|wi) =

∑
j =i p(X|wi) 1L . In

the previous equation we assume that the classes are equiprobable, p(wi) =
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Fig. 6. User feature vectors size his-
togram

Fig. 7. Equal error rate results of
the verification system. The solid
line is the mean of the equal error
rate of all users. The dashed lines
are the mean plus and minus half
standard deviation

1/L i = 1...L. We can therefore express the posterior probability function as
p(wi|X) = p(X|wi)∑L

k=1
p(X|wk)

= 1− p(wi|X).

Since p(wi|Xj) represents an estimate of the probability of the classification
being correct, we establish a limit, λ, to select one of the decisions, using the
decision rule in equation 1. To present result about the classifier performance
we adjust λ to operate in the equal error rate point.

Accept(X ∈ wi) =
{
true if p(wi|X) > λ
false otherwise (1)

4 Results

We asked 25 volunteers (engineering students) to use the developed system,
playing several memory games during about 10-15 minutes. This way, we created
an interaction repository of approximately 5 hours of interaction, providing more
than 180 strokes per user. The acquisition system monitors the pointing device
with a sample rate of 50 times per second, producing messages form the client
to the server that require approximately 1 Kbytes/s (950 bytes per second) as
the maximum bandwidth. For instance, the five hours of interaction occupies 18
Mbytes of disk space.

In order to use the same number of strokes per user in the tests performed,
we randomly selected 180 strokes from each user. The set of strokes was divided
into two equal parts, one for the training phase and other for the testing phase.
Using the training set we learnt the parametrical distribution p(xi|user) for each
user and each feature. Feature selection used the same data set and was tuned
for each user, based on the performance of the system using sequences of 10
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Table 2. Mean equal error rate (eer) and respective standard deviation (std)
for different stroke sequence lengths (l)

l eer std

1 0.489 0.01
2 0.243 0.09
5 0.151 0.07
10 0.095 0.06
20 0.052 0.04
50 0.013 0.02
100 0.005 0.001

strokes. Figure 6 presents the histogram of the feature vector sizes for all the
users; the average size of the feature vector is 6.

When testing the system for one user, we consider an imposter as one of the
other users. The test function returns the equal error rate given N sequences of
strokes of length l using the classifier tuned for user i. The input sequence of
strokes of a test is composed of N/2 strokes randomly sampled from the testing
set of the user, and N/2 strokes randomly sampled from the testing sets of all
the other users.

One of the free variables of the system is the number of strokes that the
system will use in the verification task. Bootstrap [3] estimates of the system
performance as a function of the sequence stroke length (from 1 to 100 strokes)
was obtained using 10000 bootstrap samples from the test set. The mean du-
ration of a stroke is approximately 1 second. In table 2 we present the mean
results of the equal error rate for all 25 users for several stroke sequence lengths.
A graphical display of these results is shown in figure 7. As shown, the mean
value and the standard deviation of the EER progressively tends to zero as more
strokes are added to the decision rule. This illustrates the refinement of the
performance obtained by the sequential classifier.

Table 3 presents EER values reported in the literature for several biometric
techniques [12]. Preliminary results show that the proposed user authentication
system, based on behavioural information extracted from the interaction with
the computer, can achieve comparable performances with other biometric tech-
niques.

5 Conclusion

We have explored the human computer interaction behavioural information to
create a novel user behavioural biometric verification technique. For collecting
the user interaction through the pointing device movements and clicks in a web
page, we developed a system, WIDAM, working on the world wide web. This
system comprises a user interaction acquisition module, responsible for the col-
lection of user interaction data that is capable of synchronous and asynchronous
recording and playback of web user interaction activity. The biometric technique
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Table 3. Comparison between several biometric techniques

Biometric technique Equal error rate

Retinal Scan 1:10 000 000
Iris Scan 1:131 000
Fingerprints 1:500

Hand Geometry 1:500
Signature Dynamics 1:50
Voice Dynamics 1:50

30s of User Interaction 1:50
60s of User Interaction 1:100
90s of User Interaction 1:200

is implemented in the authentication system that produces the user classification
and estimates of the performance of the decision rule.

This authentication system is based on a sequential statistical classifier that
receives the sequential data produced along the user interaction. A large set of
features were initially extracted from the collected data, using both time domain
related and spatial information from the mouse movement patterns. A feature
selection procedure reduced this initial set to a small number of features, using
a greedy search, and taking the classifier performance, measured by the EER,
as objective function.

The results of the tests with 25 users and a total of 5 hours of interaction
showed that this technique is a promising tool for user authentication, consid-
ering that the performance results are comparable to some of the behavioural
biometric techniques and that it is an inexpensive technique that operates re-
motely using the human-computer interaction behaviour.
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Abstract. A procedure for automatic mosaic construction over long
image sequences is presented. This mosaic is used by an underwater
vehicle to estimate its motion with respect to the ocean floor. The system
exploits texture cues to solve the correspondence problem. The dynamic
selection of a reference image extracted from the mosaic improves motion
estimation, bounding accumulated error. Experiments with real images
are reported.

1 Introduction

A composite image constructed by aligning and combining a set of smaller images
is known as mosaic [1]. In most cases the construction of a mosaic involves recov-
ering the relative motion between the camera and the scene. Mosaics of the ocean
floor are very useful in undersea exploration, creation of visual maps, underwa-
ter navigation, etc. In this context an underwater vehicle carries a down-looking
camera, taking images of the ocean floor to build a mosaic as it performs the mis-
sion. Quite often, the mosaicking systems found in the literature perform local
gray level correlation [2] or compute optical flow [3] to align the images which
form the mosaic. Although these techniques provide good results in standard
images [4], they may lead to detection of incorrect correspondences in underwa-
ter sequences. The special properties of the medium makes underwater images
difficult to process [5]: the elements of the image get blurred, some regions of
interest present high clutter and lack of distinct features. Although most of the
techniques neglect the use of textural information, considering only image inten-
sity, texture provides a rich source of information to solve image alignment [6].
This paper extends our previous work [7, 8] to construct more accurate mosaics
of the ocean floor and over longer image sequences. In [7], every image of the
sequence was registered to the previous one. Therefore, when an inaccuracy is
introduced in the transformation between both images, this error affects not only
the current registration, but all the following ones.

In this paper, we address the problem of building mosaics of the ocean floor
to reduce the error associated to the position of an underwater vehicle when
it performs a mission. In particular, our mosaicking system has been upgraded
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in several ways to overcome the difficulties described above: (i) texture cues
are considered to improve feature correspondences, thus reducing inaccuracies;
and (ii) selection of a reference image extracted from the mosaic, in contrast to
processing every pair of consecutive images.

The remainder of the paper is structured as follows: Section 2 outlines our mo-
saicking methodology, detailing the characterization procedure and the method-
ology applied to the selection of a reference image. Then, experimental results
proving the validity of our proposal appear in Section 3. Finally, Section 4
presents the conclusions of this work.

2 Building a Mosaic

Our mosaicking system is divided into two main blocks, namely: mosaic con-
troller and mosaic engine. The mosaic controller keeps the state of the mosaick-
ing system and takes decisions according to this state. It is responsible of the
mosaic data structure, i.e., updating the mosaic image (Im) according to the
estimated motion. On the other hand, the motion is estimated by the mosaic
engine. It considers the current image (Ic) and a reference image (Ir) and com-
putes a planar homography which describes the motion between both. Selection
of the reference image is performed by the mosaic controller. Figure 1 shows the
relationship between both modules.

2.1 Mosaic Controller

This module aims to analyze how the vehicle is moving and generates the perti-
nent commands to control the mosaic engine. The mosaic controller provides the
engine module with the images which will be used to estimate the motion of the
vehicle. One of these images is the current frame acquired by the camera (Ic).
The second one is a reference image (Ir), extracted from the mosaic image Im
by the controller.

Every iteration of the algorithm starts when current image Ic is acquired.
Then, the geometric distortion caused by the lens (and the water-glass-air inter-
face of the camera housing) is corrected through a simplification of the Faugeras-
Toscani algorithm [9] to correct uniquely radial distortion, instead of performing
full camera calibration [10]. Once lens distortion has been corrected, the cur-
rent image at time instant k, denoted Ic(k), is rotated and scaled so that its
orientation and scale matches that of the reference image Ir(k).

Consider a 3×3 matrix rHc(k) as the homography which transforms the co-
ordinates of a point in image Ic(k) into its corresponding coordinates in the refer-
ence image Ir(k). The motion estimated at the previous time instant rHc(k−1)
is assumed to be valid as an “a priori” motion estimation for instant k, since mo-
tion between two consecutive images is rather small due to the high frame-rate
of the sequence. Then, images Ir(k) and Ic(k), together with “a priori” motion
estimation matrix rHc(k − 1) are passed to the mosaic engine, and it is told
to execute. The output of the mosaic engine is the homography matrix rHc(k),
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Fig. 1. Bloc diagram illustrating the relationship between the mosaic controller
and the mosaic engine

which estimates the motion between Ic(k) and Ir(k) at time instant k. It should
be noted that the engine is executed only when the controller requires it.

Once the engine has finished its execution, the controller decides if Im should
be updated. The controller can be configured to actualize the mosaic every α
images, with α = 1..20. It uses equation (1) to update the mosaic image Im(k)
with the current image Ic(k). Im is only updated in those areas which have
not been updated before by the previous images. Therefore, the first available
information for every pixel is used to actualize the mosaic image. This strategy
of using the less recent information to construct the mosaic is known in the
literature as “use first” [2].

mHc(k) = mHr(k) · rHc(k) (1)
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The next step consists of deciding whether a new reference image Ir has to
be selected for the next iteration. The controller uses matrix rHc(k) to check
if the overlapping between the reference image Ir(k) and current image Ic(k) is
below a given threshold (e.g. 40% of the size of the image). In this case, it has
to select a new reference image Ir(k+1) for the next iteration of the algorithm.
The new reference image will be extracted from the mosaic image Im(k) at the
same position and orientation as that of the last image added to the mosaic
(at time k −mod(k/α)). Following this methodology, drift in the estimation of
the trajectory of the vehicle increases more slowly than registering every pair of
consecutive images.

On the other hand, if the overlap between images Ic(k) and Ir(k) is bigger
than the threshold, the reference image will not change, i.e. Ir(k + 1) = Ir(k).

2.2 Mosaic Engine

The engine begins its execution by detecting interest points in image Ic. The
goal of the interest point detector is to find scene features which can be reliably
detected and matched when the camera moves from one location to another.
Moreover, these features should be stable when lighting conditions of the scene
change somewhat. A slightly modified version of the Harris corner detector [11]
is used to detect the interest points. Once the relevant features of image Ic
have been detected, the next step consists of finding their correspondences in
the reference image Ir. Before searching for correspondences, both images are
smoothed with a 3× 3 Gaussian mask. Given an interest point cm in image Ic,
instead of considering the point as an individual feature, we select an n×n region
R(cm) centered at this point. Then, the system aims to find a point rm in the
reference image Ir, surrounded by an n×n area which presents a high degree of
similarity to cm. This “similarity” is computed as a correlation function [4]:

corr{R(cm), R(rm)} =
cov {R(cm), R(rm)}

σ {R(cm)} · σ {R(rm)} (2)

From equation (2) we can observe that the correlation between two points is
defined as the covariance between the grey levels of region R(cm) in the current
image and region R(rm) defined in Ir, normalized by the product of the standard
deviation of these regions. In practice, these regions are subsampled by a factor q,
reducing the processed pixels from n× n to m×m, where m = ((n− 1)/q) + 1,
and, therefore, decreasing the computational burden.

Equation (2) is computed for all the points of the reference image which fall
inside a small search window. In order to locate this window, the system takes
into account the previous estimated motion rHc(k−1). Consider an interest point
cm̃, defined in the current image and expressed in homogeneous coordinates. The
search window is centered at rc̃, as shown in equation (3).

rc̃ = rHc(k − 1) · cm̃ (3)
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being rc̃ the projection of the interest point cm̃ into the reference image. The
coordinates provided by rc̃ are uniquely used to open the window where equa-
tion (2) is applied to search for the correct correspondence rm̃ of interest point
cm̃.

Equation (2) is normalized by substracting the mean and dividing by a factor
which takes into account the dispersion of the gray levels in the considered
regions. For this reason, this measurement of correlation is very adequate for
underwater imaging, where lighting inhomogeneities are frequent. Unfortunately,
although equation (2) produces good results in absence of rotations, its reliability
decreases as images Ic and Ir present a higher rotational component. For this
reason the mosaic controller rotates and scales the current image, prior to pass
it to the engine.

According to equation (2), given an interest point cm in the current image Ic,
its correspondence rm in Ir should be the point which has obtained the highest
correlation score. Those pairs (interest point, matching) which have obtained
a correlation score lower than a given threshold are deleted. However, exper-
imental work with underwater images has proved that in some cases the true
correspondence is not the one with the highest correlation score [6]. Therefore,
the incorrect correspondences (known as “outliers”) are detected through a two-
step approach: first, discrimination of false matches through textural analysis;
and next, elimination of points describing non-dominant motion by means of
a robust estimator.

In order to characterize incorrect correspondences through textural analysis,
the textural properties of the neighborhood of both the interest point cm and
its estimated correspondence rm are computed. In this way, the regions R(cm)
and R(rm) are characterized by two feature vectors (cv and rv), which encode
their textural properties. Some of the Energy filters defined by Laws (e.g. L5S5,
E3E3, etc.) are used to perform the textural analysis [12]. Depending on the
parametrization of the system, this textural characterization may consist, for
instance, of measuring the texture at some neighboring locations (g0, g1, ..., g8)
as shown in Figure 2. If the Euclidean distance between both vectors is smaller
than a selected threshold, the pair (interest point, matching) is considered to
be an outlier. In fact, this approach is based in the assumption that interest
points (and their correspondences) are located at the border between, at least,
two regions with different textural properties. It is a reasonable assumption
since interest points are detected by finding areas of high variation of the image
gradient through a corner detector, i.e., located in the border of different image
textures.

The second step consists on applying a robust estimation method, the Least
Median of Squares (LMedS), to detect those feature points describing a trajec-
tory which is different from the dominant motion of the image [13]. These “bad”
correspondences are in fact correctly matched points belonging to some moving
object of the scene, such as a moving fish, algae, etc.

Next, the motion estimation rHc(k) between current and reference images is
computed from the remaining pairs of points applying equation (4).
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Fig. 2. Point characterization is performed by computing texture at 9 neigh-
boring locations (g0, g1, ..., g8)
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where λ is an arbitrary non-zero constant. Therefore, solving the homography
of equation (4) involves the estimation of 8 unknowns. By using inhomogeneous
coordinates instead of the homogeneous coordinates of the points, and operating
the terms, the projective transformation of equation (4) can be written as:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
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cxn
cyn 1 0 0 0 −rxn · cxn −rxn · cyn

0 0 1 cxn
cyn 1 −ryn · cxn −ryn · cyn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
·

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

h11
h12
h13
h21
h22
h23
h31
h32

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

rx1
ry1

...

rxn
ryn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(5)

When the engine completes its execution, it gives back the control to the
mosaic controller.

3 Experimental Results

In order to evaluate the proposed technique, several sea trials have been carried
out under real conditions, using URIS, a small Unmanned Underwater Vehicle
(UUV) developed at the University of Girona. The vehicle carries a downward-
looking camera, which takes images of the seafloor. As the vehicle moves, the
acquired images are sent to the surface through an umbilical tether, where they
are stored on a tape to be processed off-line.

The sea trial reported here was carried out in July 2001. This experiment
shows a trajectory performed by the vehicle in an area of the sea floor formed
by rocks and algae. The original trajectory is formed by 4.380 images at a frame
rate of 25 i.p.s. The sequence has been sub-sampled, taking only one image of
every five, thus the mosaicking system processes 876 images.
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Fig. 3. Resulting mosaic after processing a sequence of 876 images. The vehicle
starts its motion at the top-left of the image and then moves down performing
several loops

Figure 3 shows the resulting mosaic. It can be observed in this Figure that
image alignment is quite good, although the underwater terrain is not flat. Un-
fortunately, it is not possible to quantify the errors which are produced in real
sea trials since the real trajectory cannot be recovered from any other sensors
available in the UUV.
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4 Conclusions

In this paper we have presented a methodology to construct mosaics of the ocean
floor to estimate the motion of an underwater vehicle. The construction of visual
mosaics of the floor can provide accurate position estimates for local navigation
of the vehicle. A new texture-based characterization and matching methodology
has been proposed, reducing the number of incorrect correspondences in image
pairs. Moreover, a dynamic selection of the reference image improves, to a large
extent, the performance of the system.
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Abstract. The trade-off between image fidelity and coding rate is
reached with several techniques, but all of them require an ability to
measure distortion. The problem is that finding a general enough mea-
sure of perceptual quality has proven to be an elusive goal. Here, we
propose a novel technique for deriving an optimal compression ratio for
lossy coding based on the relationship between information theory and
the problem of testing hypotheses. As an example of the proposed tech-
nique, we analyze the effects of lossy compression at the best achievable
compression ratio on the identification of breast cancer microcalcifica-
tions.

1 Introduction

During the past two decades, various lossless and lossy image coding techniques
have been developed (for a list of references see [2]). Typical lossless coders can
attain compression ratios of only 2 : 1 or 3 : 1 for most images, thus users often
prefer to deal with lossy algorithms which can achieve high compression rates,
e.g., 50 : 1 or more. The problem is that high compression ratios are possible
at the cost of imperfect source representation. Compression is lossy in that the
decoded images are not exact copies of the originals but, if the properties of the
human visual system are correctly exploited, original and decoded images will
be almost indistinguishable. The trade-off between image distortion and coding
rate may be stated as follows: [6] How much fidelity in the representation are
willing to give up in order to reduce the storage or the number of bits required
to transmit the data?

Here we propose a novel technique for deriving an optimal performance bound
(it has been termed the “best achievable” compression ratio) based on the re-
lationship between information theory and the problem of testing hypotheses.
The best achievable compression ratio for lossy coders determines a boundary
between achievable and non-achievable regions in the trade-off between source
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fidelity and coding rate. The resultant bounds are tight for situations of practical
relevance. These performance bounds are directly achievable by a constructive
procedure as suggested in a theorem, given in Section 2, which proves the re-
lationship between the “best achievable” compression ratio and the Kullback-
Leibler information gain [5].

Section 3 shows an example of the proposed technique for achieving optimal
performance bounds, including lossy compression at the best achievable com-
pression ratio in digitized mammograms. The main conclusions of the paper are
summarized in Section 4.

2 The Best Achievable Compression Ratio

Let X1, X2, · · · , XN be a sequence of N symbols from the set of gray levels
G = {l|l = 1, 2, · · · , l|G|}. A 2D digital image can be interpreted as a se-
quence X1, X2, · · · , XN of N symbols, with Xi being the gray level at pixel i.
We use the notation I to denote a particular sequence of gray levels x1, · · · , xN .

Let I be the original image; Iq(i) be the reconstruction of the original image
at compression ratio q(i); P and Pq(i) be the discrete probability distributions,
with P = (p(l/I))l and Pq(i) = (p(l/Iq(i)))l, that characterize the probability of
occurrence of each gray level l in the original image I and the reconstruction Iq(i),
respectively.

Then Pq(1), Pq(2), · · · , Pq(i), · · · , Pq(K) denote the discrete probability distri-
butions for the reconstructions of the original image at compression ratios
q(1), · · · , q(i), · · · , q(K), respectively; where if i ≤ j then, q(i) ≤ q(j); that is,
q(1) is the lowest compression ratio and q(K) is the highest compression ratio.

In this setting, a classical statistical hypothesis testing to decide between any
two distributions Pq(j) and Pq(n) can be stated as follows:

H1 : P = Pq(j)

H2 : P = Pq(n)

Consider the general decision function g(x1, · · · , xN ) where g(x1, · · · , xN ) = 1
implies that H1 is accepted and g(x1, · · · , xN ) = 2 implies that H2 is accepted.
The two probabilities of error are defined as:

αNj,n = Pr{g(x1, · · · , xN ) = 2/H1 true}
βNj,n = Pr{g(x1, · · · , xN ) = 1/H2 true} . (1)

In general, we wish to minimize both probabilities, but there is a trade-off. Thus
we minimize the probability of error βNj,n subject to a constraint on the other
probability of error: αNj,n < ε.

Let βε,Nj,n be the lowest achievable probability of error Pr{g(x1, · · · , xN ) =
1/H2 true} subject to αNj,n < ε for this problem. Note that more similar distribu-
tions Pq(j) and Pq(n) will produce higher values of the best achievable probability
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of error βε,Nj,n , and therefore, βε,Nj,n may be interpreted as a measure of similarity
between Pq(j) and Pq(n).

We have that, for each compression ratio q(i), we can divide the set of
distributions corresponding to the reconstructions of the original in two sub-
sets: {Pq(1), Pq(2), · · · , Pq(i)} and {Pq(i+1), · · · , Pq(K)}. In the following, for each
level of compression q(i), we will define the probability of error over all the
decision problems of hypothesis testing to decide between a distribution in
{Pq(i+1), · · · , Pq(K)} and any other in {Pq(1), Pq(2), · · · , Pq(i)}.
Definition 1. For a given level q(i), let q(j) be any compression ratio such
that i < j. Consider all the decision problems of hypothesis testing between two
alternatives, H1 : P = Pq(j) and H2 : P = Pq(n), with n such that 1 ≤ n ≤ i. Let
βε,Nj,n , with 1 ≤ n ≤ i, be the lowest achievable probability of error corresponding
to each hypothesis test when the other individual probability of error αNj,n < ε.
Then the overall probability of error for these i decision problems is defined as
the average sum of the individual probabilities of error βε,Nj,n , i.e.,

βε,N← (i, j) =
1
i

∑
1≤n≤i

βε,Nj,n . (2)

The overall probability of error βε,N← (i, j) is essentially determined by the
individual probability of error βε,Nj,n for the hypothesis test between Pq(j) and
the distribution in {Pq(1), · · · , Pq(n), · · · , Pq(i)} that is closest to Pq(j) (for further
details see [3]).

For a given level of compression q(i), the best value in the overall probability
of error βε,N← (i, j), with j such that i < j, is simply given by:

βε,N← (i) = min
i<j≤K

{βε,N← (i, j)} . (3)

Thus, the best value βε,N← (i) is given by the overall probability of error βε,N← (i, j)
for the distribution Pq(j) in {Pq(i+1), · · · , Pq(K)} that is furthest away from the
subset {Pq(1), Pq(2) , · · · , Pq(i)}.

Similarly we can define, for each compression ratio q(i), the probability of
error over all the decision problems of hypothesis testing to decide between
a distribution in {Pq(1), Pq(2), · · · , Pq(i)} and any other in {Pq(i+1), Pq(i+2), · · · ,
Pq(K)} as follows.

For a given level q(i), let q(l) be a compression ratio such that l ≤ i; that is,
q(l) ≤ q(i). Consider now all the decision problems of hypothesis testing between
two alternatives:

H1 : P = Pq(m)

H2 : P = Pq(l)

with m such that i < m ≤ K. Let βε,Nm,l be the lowest achievable probability of
error corresponding to each hypothesis test when the other individual probability
of error αNm,l < ε.
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Definition 2. The overall probability of error for these new K − i decision
problems is given by:

βε,N→ (l, i) =
1

K − i

∑
i<m≤K

βε,Nm,l . (4)

In this case, the overall probability of error βε,N→ (l, i) is essentially determined
by the individual probability of error βε,Nm,l for the hypothesis test between Pq(l)
and the distribution in {Pq(i+1), · · · , Pq(m), · · · , Pq(K)} that is closest to Pq(l) (see
proof of Theorem 1 in [3]).

For a given compression ratio q(i), the best value in the overall probability
of error βε,N→ (l, i), with l such that l ≤ i, is simply given by:

βε,N→ (i) = min
1≤l≤i

{βε,N→ (l, i)} . (5)

Thus, the best value βε,N→ (i) is given by the overall probability of error βε,N→ (l, i)
that corresponds to the distribution Pq(l) in {Pq(1), Pq(2), · · · , Pq(i)} that is fur-
thest away from the subset {Pq(i+1), Pq(i+2), · · · , Pq(K)}.

For a given compression ratio q(i) with 1 ≤ i < K, let βε,N (i) be the av-
erage sum of the best overall probability of error βε,N→ (i) and the best overall
probability of error βε,N← (i), i.e.,

βε,N (i) =
1
2
[
βε,N→ (i) + βε,N← (i)

]
. (6)

Levels of compression q(i) that more clearly separate the set of distributions
in two subsets
{Pq(1), Pq(2), · · · , Pq(i)} and {Pq(i+1), Pq(i+2), · · · , Pq(K)}, will produce lower val-
ues of the average sum βε,N (i) of the best overall probabilities of error βε,N→ (i)
and βε,N← (i).

We will now define some new notation to express equality to first order in
the exponent, as suggested in [1].

Definition 3. The notation aN
.= bN means

lim
N→∞

1
N

log
aN
bN

= 0

and therefore aN
.= bN implies that aN and bN are equal to the first order in the

exponent. The logarithmic base 2 is used throughout this paper unless otherwise
stated.

The best achievable compression ratio can now be defined as follows.

Definition 4. Best Achievable Compression Ratio. The best achievable
compression ratio q(i∗) is the highest level of compression that attains the asymp-
totically best value in βε,N (i), i.e.,

min
1≤i<K

βε,N (i) .= βε,N (i∗) , (7)
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Fig. 1. dF (i) is non-decreasing and dB(i) is non-increasing; the maximum value
of the minimum of {dF (i), dB(i)} is attained if they are equal

and also verifies a condition of consistency

βε,N→ (i∗) .= βε,N← (i∗) . (8)

The following result states the relationship between the best achievable com-
pression ratio q(i∗) and the Kullback-Leibler information gain.

Theorem 1. Let q(i∗) be the highest compression ratio such that:

dB(i∗) = dF (i∗) (9)

where

dB(i) = max
i<j≤K

{
min
1≤n≤i

KL(Pq(j), Pq(n))
}

(10)

and

dF (i) = max
1≤l≤i

{
min

i<m≤K
KL(Pq(m), Pq(l))

}
(11)

with KL(Pq(†), Pq(‡)) being the Kullback-Leibler information gain [5] be-
tween Pq(†) and Pq(‡):

KL(Pq(†), Pq(‡)) =
∑
l

p(l/Iq(†)) log
p(l/Iq(†))
p(l/Iq(‡))

,

where Pq(†) = (p(l/Iq(†)))l characterizes the probability of occurrence of each
gray level l in the decoded image Iq(†) at compression ratio q(†).

Then, q(i∗) is the best achievable compression ratio for the sequence of levels
q(1), q(2), · · · , q(K).

Proof. See [3]. Figure 1 illustrates the functional shape of dF and dB.
This result implies that the performance bound given by the best achievable

compression ratio is operational in that it is directly achievable by a construc-
tive procedure. This optimal level will allow us to determine a boundary between
achievable and non-achievable regions, and consequently, it provides useful in-
formation to benchmark specific applications.



268 Jose A. Garćıa et al.
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Fig. 2. Plot of dB(i) and dF (i) for SPIHT; Best achievable compression ratio
q(i∗)

3 Effects of Lossy Compression
at Best Achievable Compression Ratio

This section analyzes the effects of lossy compression at the best achievable level
on a test image corresponding to a digitized mammogram selected from the Ni-
jmegen database [4] containing some clustered microcalcifications (see Figure 2).

The test image was coded at various compression ratios using the SPIHT
algorithm operating through set partitioning in hierarchical trees [7] and accom-
plishing completely embedded coding. Figure 2 shows the obtained boundary
between achievable and non-achievable regions, in which the best achievable
compression ratio is obtained for the coder by using the constructive procedure
given in Section 2. Figure 2 illustrates the plot of dB(i) and dF (i) for SPIHT. As
suggested in Theorem 1 the best achievable compression ratio q(i∗) is attained
if dB(i∗) = dF (i∗). For this test image micro, it happens at a high compression
ratio of 80 : 1

Figure 2 also shows a plot of the false positive to true positive ratio (FP/TP)
for microcalcification detection upon images reconstructed under various degrees
of lossy compression using SPIHT. In order to derive the false positive to true
positive detection ratio, the images reconstructed after compression were also
reviewed to detect individual microcalcifications. This method can be used for
characterizing compression losses using decoded images. Since it is rated diag-
nostic usefulness rather than general appearance or simply line or edge patterns,
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Fig. 3. Achievable and non-achievable regions using the SPIHT coder for micro

this method relates diagnostic accuracy to compression level. In fact, when the
diagnostic usefulness of the reconstructed images significantly decreases, the false
positive to true positive ratio also shows a significant increase. We show the plot
of dB(i) and dF (i), the point at which dB(i∗) = dF (i∗), the relationship between
this point and the FP/TP ratio, as well as a reconstruction after compression at
the best achievable ratio q(i∗). As can be seen from Figure 2, the false positive to
true positive ratio for the reconstruction at level q(i∗) indicates that the imper-
fect source representation given by the image compressed at q(i∗) is sufficient for
evaluations that take into account diagnostic usefulness. Conversely, the diag-
nostic usefulness of images reconstructed at levels q(i), with i > i∗, significantly
decreases, i.e., the corresponding false positive to true positive rate shows a sig-
nificant increase. This means that the best achievable compression ratio q(i∗)
determines a performance bound for the mammographic image micro; that is,
it will allow us to distinguish between the best achievable operating points and
those that are suboptimal or unachievable for the given image.

Both achievable and non-achievable regions using SPIHT for the test image
are illustrated in Figure 3. For additional examples see [3].
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4 Conclusions

The focus of this paper has been to a large extent the reformulation of the trade-
off between image distortion and coding rate in terms of the derivation of an
optimal compression level based on the relationship between information theory
and the decision problems of hypothesis testing. This optimal level will allow
us to determine a boundary between achievable and nonachievable regions, and
consequently, it provides useful information to benchmark specific applications.

The performance bound given by the best achievable compression ratio is
operational in that it is directly achievable by a constructive procedure, as sug-
gested in Theorem 1. This theorem has stated the relationship between the
best achievable compression ratio and the Kullback-Leibler information gain:
the overall probabilities of error behave exponentially with exponents given by
a function of the Kullback-Leibler gains, and therefore, the best achievable level
of compression corresponds to the argument i that produces the worst value of
these exponents.
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Abstract. This paper describes a hybrid language model defined as
a combination of a word-based n-gram, which is used to capture the
local relations between words, and a category-based SCFG with a word
distribution into categories, which is defined to represent the long-term
relations between these categories. Experiments on the UPenn Treebank
corpus are reported. These experiments have been carried out in terms
of the test set perplexity and the word error rate in a speech recognition
experiment.

1 Introduction

Language modeling is an important aspect to consider in the development of
speech and text recognition systems. The n-gram models are the most extensively
used for a wide range of domains [1]. The n-grams are simple and robust models
and adequately capture the local restrictions between words. Also, the estimation
the parameters and the integration of the model in speech recognition system
are well-known. However, the n-gram models cannot characterize the long-term
constraints of the sentences of the tasks.

Stochastic Context-Free Grammars (SCFGs) efficiently model long-term rela-
tions and have been successfully used on limited-domain tasks of low perplexity.
However, general-purpose SCFGs work poorly on large vocabulary tasks. The
main obstacles to using these models in complex real tasks are the difficulties of
learning and integrating SCFGs.

Several proposals have attempted to solve these problems by combining
a word n-gram model and a structural model in order to consider the syntactic
structure of the language [3, 9].

In the same way, we previously proposed a general hybrid language model [2].
This is defined as a linear combination of a word n-gram model, which is used to
capture the local relation between words, and a stochastic grammatical model,
� This work has been partially supported by the Spanish CICYT under contract
(TIC2002/04103-C03-03).

F.J. Perales et al. (Eds.): IbPRIA 2003, LNCS 2652, pp. 271–278, 2003.
c© Springer-Verlag Berlin Heidelberg 2003
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which is used to represent the global relation between syntactic structures. In
order to capture the long-term relations between syntactic structures and to solve
the main problems derived from large-vocabulary complex tasks, we proposed
a stochastic grammatical model defined by a category-based SCFG together with
a probabilistic model of word distribution in the categories. Finally, experiments
with a Penn Treebank corpus showed significant improvements in the test set
perplexity with regard to the classical n-gram models.

The first part of this work is devoted to presenting the hybrid language
model. In the second part we present the new improvements in the hybrid model
together with the results of their evaluation process. The improvements have
mainly focused on the estimation of better stochastic grammatical models. The
evaluation process has been done using the Wall Street Journal part of the UPenn
Treebank corpus. Two points of view have been considered: in order to compare
results with other stochastic language models, an evaluation in terms of the test
set perplexity results was carried out; in order to evaluate the behavior of this
model in a speech recognition task, recognition performance in terms of the word
error rate results were also reported.

2 The Language Model

An important problem related to language modeling is the computation of
Pr(wk|w1 . . . wk−1) [4]. In order to calculate this probability, we proposed in [2]
a general hybrid language model defined as a linear combination of a word n-
gram model, which is used to capture the local relation between words, and
a word stochastic grammatical model Ms which is used to represent the global
relation between syntactic structures and which allows us to generalize the word
n-gram model.

Pr(wk|w1 . . . wk−1) = αPr(wk|wk−n+1 . . . wk−1)
+(1− α) Pr(wk|w1 . . . wk−1,Ms), (1)

where 0 ≤ α ≤ 1 is a weight factor which depends on the task. Similar proposals
have been presented by other authors [3, 9] along the same line.

The first term of expression (1) is the word probability of wk given by the
word n-gram model. The parameters of this model can be easily estimated, and
the expression Pr(wk|wk−n+1 . . . wk−1) can be efficiently computed [4].

In order to capture long-term relations between syntactic structures and to
solve the main problems derived from large vocabulary complex tasks, we pro-
posed a stochastic grammatical model Ms defined as a combination of two dif-
ferent stochastic models: a category-based SCFG (Gc) and a stochastic model
of word distribution into categories (Cw). Thus, the second term of the expres-
sion (1) can be written as: Pr(wk|w1 . . . wk−1, Gc, Cw).

There are two important questions to consider: the definition and
learning of Gc and Cw, and the computation of the probability
Pr(wk|w1 . . . wk−1, Gc, Cw).
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Learning of the Models The parameters of the models Gc and Cw are es-
timated from a set of sentences from a training sample. We work with a Tree-
bank corpus, where each word of the sentence is labeled with part-of-speech tags
(POStag). From now on, these POStags are referred to as word categories in Cw

and are the terminal symbols of the SCFG in Gc.

With regard to the learning of the Gc, several algorithms that learn SCFGs
by means of estimation algorithms have been proposed. Some of the most widely-
known methods for estimating SCFGs are: the Inside-Outside (IO) algorithm [6]
and an algorithm based on the Viterbi score (VS algorithm). Alternatively, other
algorithms, which only use a certain subset of derivations in the estimation pro-
cess, have also been considered: from structural information content in a brack-
eted corpus (IOb algorithm [8] and VSb algorithm [11]) or from statistical in-
formation content in the k−best derivations [11]. Taking into account the good
results achieved with category-based SCFGs on real tasks [11], some of these
algorithms (VS, VSb and IOb) are considered in this work.

The parameters of the word-category distribution, Cw = Pr(w|c) are com-
puted in terms of the number of times that the word w has been labeled with
the POStag c. It is important to note that a word w can belong to different cat-
egories. In addition, it may happen that a word in a test set does not appear in
the training set, and, therefore, its probability Pr(w|c) is not defined. We solve
this problem by adding the term Pr(UNK|c) for all categories, where Pr(UNK|c) is
the probability for unseen words of the test set.

Integration of the Model The computation of Pr(wk|w1 . . . wk−1, Gc, Cw)
can be expressed as:

Pr(wk|w1 . . . wk−1, Gc, Cw) =
Pr(w1 . . . wk . . . |Gc, Cw)

Pr(w1 . . . wk−1 . . . |Gc, Cw)
, (2)

where Pr(w1 . . . wk . . . |Gc, Cw) represents the probability of generating an initial
substring given Gc and Cw.

This expression is computed by means of a simple adaptation [2] of two well-
known algorithms: the LRI algorithm [5], to obtain the probability of generating
an initial substring; and the Inside algorithm [6], to obtain the probability of
generating a string.

3 Experiments with the UPenn Treebank Corpus

The corpus used in the experiments was the part of the Wall Street Journal
(WSJ) which had been processed in the UPenn Treebank project1 [7]. This cor-
pus consists of English texts collected from the Wall Street Journal from editions
of the late eighties. It contains approximately one million words distributed in
1 Release 2 of this data set can be obtained from the Linguistic Data Consortium with
Catalogue number LDC94T4B (http://www.ldc.upenn.edu/ldc/noframe.html)



274 José Garćıa-Hernandez et al.

Table 1. Characteristics of the WSJ corpus once it was divided into sentences

Data set Directories No. of senten. No. of words

Training 00-20 42,075 1,004,073

Tuning 21-22 3,371 80,156

Test 23-24 3,762 89,537

25 directories. This corpus was automatically labelled, analyzed and manually
checked as described in [7]. There are two kinds of labelling: a POStag labelling
and a syntactic labelling. The size of the vocabulary is greater than 49,000 differ-
ent words, the POStag vocabulary is composed of 45 labels2 and the syntactic
vocabulary is composed of 14 labels. The corpus was divided into sentences
according to the bracketing. For the experiments, the corpus was divided into
three sets: training, tuning and test. The main characteristics of these sets can be
seen in Table 1. The sentences labeled with POStags were used to estimate the
parameters of the category-based SCFGs, and the sentences labeled with both
POStags and with words were used to estimate the parameters of the hybrid
language model.

First, we present new improvements in the estimation of the stochastic gram-
matical models. Then, we describe the experiments which were carried out in
order to test the hybrid language model.

3.1 Experiments Using Category-Based SCFGs

The parameters of an initial SCFG were estimated using the estimation methods
described in the previous section. The initial grammar was in Chomsky Normal
Form and it had the maximum number of rules which can be created with
a given number of non-terminal symbols and 45 terminal symbols (the number
of POStags).

The training set labeled with POStags was used to estimate the parameters of
the models. In order to evaluate the proposed estimation methods, we reduced
the computational effort by not considering the sentences with more than 50
words in the training set. Thus, the number of sentences was 41, 315 (98.2% over
complete training) and the number of words was 959, 390 (95.6% over complete
training).

The perplexity of the POStag part of the tuning set for different estimation
algorithms (VS, VSb and IOb algorithms) and for different number of non-
terminals was computed. In previous works [2], the number of non-terminals was
chosen according to the number of syntactic tags defined in [7]. However, the
obtained results were not satisfactory. Taking into account that the grammars
are in Chomsky Normal Form, we consider that this number of non-terminals is
not realistic. In order to test this hypothesis we increased this value progressively
and the results can be seen in Table 2.
2 There are 48 labels defined in [7], however, some of them do not appear in the corpus.
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Table 2. Number of non-terminals (|N |), tuning set perplexity (tsp) and
number of rules of the final model (size) for the SCFG estimated with the VS,
VSb and IOB algorithms

VS VSb IOb

|N | tsp size tsp size tsp size

14 20.13 195 21.10 256 13.34 471
20 20.42 255 19.38 406 12.33 888
25 17.59 407 16.93 499 11.86 1042
30 17.67 367 17.90 609 11.32 1454
35 16.92 600 16.64 789 10.24 1741

In general, the goodness of the model tended to decrease as the value of N
increased. It can be observed that the best result was obtained by the IOb algo-
rithm. For this algorithm, the percentage of improvement from 14 non-terminals
to 35 non-terminals was 23.24%. However, it is important to note that time
complexity of the estimation algorithms increases linearly with this value. With
respect to the number of iterations needed to converge, the slowest algorithm
was the IOb algorithm. Finally, it can be observed that the size of the final
models increased with N and that the biggest models were obtained by the IOb
algorithm.

3.2 Experiments with the Hybrid Language Model

First, we present perplexity results on the described task. These results are
compared with the results obtained by other authors for the same task. Second,
we present word error rate results on a speech recogniton experiment.

Perplexity Results In order to compare our model with other hybrid models,
we carried out the experiments taking into account the restrictions considered
in other works [3, 9]. The most remarkable restriction was that the vocabulary
was restricted to the 10,000 most frequent words which appear in the training.

First, we describe the estimation of a 3-gram model to be used as both
a baseline model and as a part of the hybrid language model. The parameters
of a 3-gram model were estimated using the software tool described in [10]3.
Different smoothing techniques were tested, but we chose the one which pro-
vides a test set perplexity which is similar to the one presented in [3, 9]. Linear
discounting was used as smoothing technique with the default parameters. The
out-of-vocabulary words were used in the computation of the perplexity, and
back-off from context cues was excluded. The tuning set perplexity with this
model was 160.26 and the test set perplexity was 167.30.

Second, the category-based SCFGs (Gc) of the hybrid model was estimated
with different algorithms such as we described previously. We selected the IOb
3 Release 2.05 is available at http://svr-www.eng.cam.ac.uk/˜prc14/toolkit.html.
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Table 3. Test set perplexity with a 3-gram model and with the hybrid language
model and percentage of improvement for different proposals

Model Perplexity α % improvement
Trigram Interpolated

Previous model (IOb-14) 167.30 152.12 0.73 9.1

Current model (IOb-35) 167.30 142.29 0.65 13.2

(Chelba and Jelinek, 2000) 167.14 148.90 0.4 10.9

(Roark, 2001) 167.02 137.26 0.4 17.8

algorithm with 14 and 35 non-terminals for this experiment. In this way, we
could compare the results obtained with the previous model (14 non-terminals)
and the current model (35 non-terminals).

Finally, the parameters of the word-category distribution Cw = Pr(w|c) were
computed from the POStags and the words of the training corpus. The unseen
events of the test corpus were considered as the same word UNK and we conjec-
tured that the unknown words were not equally distributed among categories,
and we assigned a probability based on the classification of unknown words into
categories in the tuning set. A small probability ε was assigned if no unseen event
was associated to the category. The percentage of unknown words in the training
set was 4.47% distributed in 31 categories and the percentage of unknown words
in the tuning set was 5.53% distributed in 23 categories.

Once the parameters of the hybrid model were estimated, we applied expres-
sion (1). The tuning set was used in order to determine the best value of α for
the hybrid model, and then the test set perplexity was computed. Table 3 shows
the results obtained for different algorithms and the results obtained by other
authors who define left-to-right hybrid language models of the same nature [3, 9].
It should be noted that the differences in the perplexity of the trigram model
were due mainly to the different smoothing techniques4. It can be observed that
the last results obtained by our model are very good, even better if you consider
that both the models and their learning methods are well-consolidated. In addi-
tion, an important improvement of 4.50% was observed when we increased the
number of non-terminals. The weight of the structural model of our proposal
was less than the other models. This may be due to the fact that in the other
models, the structural part has been constructed by using very rich linguistic
information since they used the syntactic tagging and the bracketing to learn the
model. In our model, we only used the bracketing information in the estimation
process of our model Gc.
4 Recently, important reductions in perplexity have been obtained, with the model
proposed in [3], by using very different smoothing techniques. Their best results
were: perplexity of the trigram model 145, perplexity of the interpolated model 130
and percentage of improvement 10.3%.
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Table 4. Word error rate results for several models, with different training and
vocabulary sizes, and the best language model factor

Training Vocabulary LM
Model Size Size Weight WER

Lattice trigram 40M 20K 16 13.7
(Chelba and Jelinek, 2000) 20M 20K 16 13.0
(Roark, 2001) 1M 10K 15 15.1

Treebank trigram 1M 10K 5 16.6
No language model 0 16.8

Previous model 1M 10K 4 16.4
Current model 1M 10K 6 16.0

Word Error Rate Results Now, we describe preliminary speech recognition
experiments which were carried out to evaluate the hybrid language model. Given
that our hybrid language model is not integrated in a speech recognition system,
we reproduced the experiments described in [3, 9] in order to compare our results
with those reported in that works.

The experiment consisted of rescoring a list of n best hypotheses provided
by the speech recognizer described in [3]. A better language model was expected
to improve the results provided by a less powerful language model. In order to
avoid the influence of the language model of the speech recognizer it is important
to use a large value of n; however, for these experiments, this value was lower.

The experiments carried out was the DARPA ’93 HUB1 test setup. This
test consists of 213 utterances read from the Wall Street Journal with a total of
3,446 words. The corpus comes with a baseline trigram model, using a 20,000-
word open vocabulary, and is trained on approximately 40 million words.

The 50 best hypotheses from each lattice were computed using Ciprian
Chelba’s A* decoder, along with the acoustic and trigram scores. Unfortunately,
in many cases, 50 distinct string hypotheses were not provided [9]. An average
of 22.9 hypotheses per utterance were rescored.

The LRI algorithm was used in order to compute the probability of each word
in the list of hypotheses. The probability obtained with the hybrid language
model was combined with the acoustic score and the results can be seen in
Table 4 together with the results obtained for different language models.

We can observe that our language model slightly improved the results ob-
tained by the baseline model, in accordance with the results obtained by other
authors. However, our improvements were slight worst than the improvements
obtained by other authors which used the same training corpus. This behavior
was expected, given that the other models were structurally richer.

4 Conclusions

We have been described a hybrid language and results of its evaluation has also
been provided. The test set perplexity results were as good as the ones obtained
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by other authors, even better if you consider that the models are very simple
and their learning methods are well-known.

The word error rate results were slight worst than the ones obtained by
other authors. However, we remark that these results tended to improve without
including any additional linguistic information.

For future work, we propose to extend the experimentation by increasing the
size of the training corpus in accordance with the work of other authors.
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Abstract. This paper presents a general framework to segment curvi-
linear objects in 2D images. A pre-processing step relies on mathemat-
ical morphology to obtain a connected line which encloses curvilinear
objects. Then, a graph is constructed from this line and a Markovian
Random Field is defined to perform objects segmentation. Applications
of our framework are numerous: they go from simple surve segmentation
to complex road network extraction in satellite images.

1 Introduction

Many different methods have been proposed to segment curvilinear structures
in 2D images. Let us just recall some of them which are, to our humble opinion,
the most promising ones:

– tracking by active testing by Geman and Jedynak (1996);
– unifying snakes, region growing and energy/Bayes/MDL, so-called region

competition, by Zhu and Yuille (1996);
– defining Markovian field on a set of segments by Tupin et al. (1998);
– dynamic programming for saliency optimization by Lindenbaum and Beren-

golts;
– using a Markov point process by Stoica et al. (2000).

These methods suffer from drawbacks. The saliency approach does not rely
on a global optimization process. Tracking-like approaches cannot plainly take
into account features extracted from image regions and require a starting point;
these approaches are thus limited to rather easy segmentation problems. Marko-
vian approaches are often computationally expensive due to the high number of
primitives —small segments— they have to handle. Last, region competition is
also an expensive approach where both the region and variational flavors are not
often pertinent when objects are not regions.

In this paper we propose a general framework for curvilinear object segmen-
tation that overcomes these drawbacks.

F.J. Perales et al. (Eds.): IbPRIA 2003, LNCS 2652, pp. 279–286, 2003.
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This paper is organized as follows. The first section is a preliminary section
that introduces the basic ideas and tools on which the proposed framework relies.
Section 3 then describes the framework itself and illustrates its capabilities on
road extraction in satellite images; afterwards, we conclude in section 4.

2 Preliminaries

2.1 Watershed Transform

The watershed transform (WT), as explained by Vincent and Soille (1991), is
a morphological algorithm usually used for the purpose of segmentation. Con-
sidering a gray level image as a topographic map, let us denote by catchment
basin associated with a regional minimum of this map, all points whose steepest
slope paths reach this minimum. The watershed line is a closed one-pixel thick
crest line which separates every adjacent catchment basins, i.e., regions.

2.2 Region Adjacency Graph and Markov Random Field

A now common framework to segment an image I or to extract objects from I
is based on the watershed transform; it can be summarized as follows.

1. An image G of the gradient norm of I is computed. Contours in the gradient
norm image (GNI) G have high intensity values whereas regions have low
intensity values.

2. The watershed transform (WT) is applied to G which results in getting
a partition of I into regions. The watershed line passes through crest lines
of G, that is, objects contours. This partition, P , is an over-segmentation
since G contains a number of minima greater than the effective number of
objects/regions to segment.

3. The region adjacency graph (RAG) is extracted from P . A node corresponds
to a region (more precisely, a catchment basin) and an edge between two
nodes indicates that these regions are adjacent. Extra information are put
into the graph; for instance they can be statistical estimations concerning
regions of I which are then enclosed in graph nodes, or saliency values of
contours estimated from I and added to graph nodes.

4. The last step aims at grouping regions according to given criterions in order
to get a final segmentation. To that aim, a Markov Random Field (MRF) is
defined onto the RAG and the segmentation process is handled by a Marko-
vian relaxation.

This framework is powerful since it remains general —it can be applied
to various imagery segmentation problems— and since the final segmentation
results from a global process on high-level image primitives (regions in that
case). Moreover, it enables operational segmentations even when images are
over-sized and when objects are difficult to segment; for instance, Géraud et al.
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(a) Closing of GNI with a Disk (r = 4, 3) (b) Area Closing of GNI (a = 50)

(c) W obtained from image (a) (d) W obtained from image (b)

Fig. 1. Watershed Transform Results with the Same Final Number of Regions

(1995) succeed in segmenting internal brain structures from magnetic resonance
images. Let us mention that this framework has been discussed by many au-
thors such as Kim and Yang (1994); Haris et al. (1998); Bleau and Leon (2000);
Sarkar et al. (2000), and a multi-scale version of this framework has been pro-
posed by Gauch (1999).

2.3 Minima Suppression and Area Closing

A classic algorithm to suppress minima in images is the morphological closing
operator. When these is no prior information about the shape of image objects,
closing is usually performed with a structural element being a disk in order to
preserve isotropy. However, artifacts appear in resulting images: in particular,
crest lines can strongly move when one wants to remove many minima, that is,
when filtering strength (i.e., the disk radius) increases.

Conversely, an area closing operator does not present this drawback. This
operator is a “connected filter”, as described by Salembier and Serra (1995),
which removes minima whose area (influence zone) is less than a given threshold.
A fast implementation of this operator is provided by Meijster and Wilkinson
(2002).

Figure 1 illustrates the contour shifting / un-shifting properties of both “clas-
sical” and area closing operators. Starting from the classical house image, we
apply closing operators to its gradient norm image (GNI); the negatives of the
results are depicted by images (a) and (b). We then apply the watershed trans-
form algorithm, which respectively leads to images (c) and (d). Please note that
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these segmentation results contain the same number of regions. However, con-
tours are shifted when the classical closing is involved which is not the case with
the area closing. Moreover, in the former case regions have more uniform sizes
and are spread more uniformly over the image space than in the latter case.
This is another drawback since we prefer segmentations that are more adapted
to original image data.

3 Proposed Framework

Although region-based methods are not well suited to segment curvilinear ob-
jects, we now propose a framework which relies on a region segmentation algo-
rithm to address this issue.

3.1 Framework Description

Our framework is very similar to the one described in section 2.2.

Pre-Processing. From an original image containing curvilinear objects we com-
pute a gray level image where pixel values denote their potential of belonging
to these objects. Curvilinear objects are thus located on some parts of the crest
lines of this “potential” image.

Morphological Filtering. The filtering step consists in computing an area closing
of the potential image and then running the watershed transform. The “closed”
potential image has much less minima than the “original” potential image while
properly retaining crest lines location (Cf. discussions of sections 2.1 and 2.3).
Therefore, the resulting watershed line includes the curvilinear objects.

Curve Adjacency Graph. From the watershed line, we build a curve adjacency
graph (CAG). A node of this graph (red bullets in the picture below) represents
a shed, that is, a connected part of the watershed line separating two adja-
cent basins. An edge (green lines in the picture below) is drawn between two
nodes/sheds if one end of the first shed is connected with a end of the second
one through the watershed line.
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For every node we make the distinction between edges coming from connec-
tions to one shed end (yellow anchors) and those coming from connections to
the other shed end. This distinction is symbolized by yellow and blue anchors in
the picture above.

Markovian Relaxation Segmenting curvilinear objects now turns out to be
a graph labeling problem. Upon the graph structure, we define a Markov random
field. Let us denote by X the observation field, by Y the result field, by xs and ys
their respective restriction to a given node s, by YVs the restriction of Y to the
neighborhood of s. The variable ys has a Boolean realization where 1 means
object and 0 means not object. Under the Markovian assumption we have:

p(ys|X,Y − ys) = 1
Z exp(−(U(xs, ys) + U(YNs))).

The first energy term, U(xs, ys), models a priori knowledge about curvilinear
objects, and the second energy term, U(YNs) deals with labeling contextual
information. Since we have expressed the object segmentation problem as an
energy minimization problem, a relaxation process is performed to finally get
the segmentation result.

3.2 Framework Adaptation

In order to apply this framework to a given segmentation application, this frame-
work should be adapted.

The first step depends on the particular application and on the original image
data. For instance, when the original image contains a curve to be segmented
and when this curve is dark pixels on white background, the potential image can
be as simple as the original image once inverted. An other example is the case of
road network extraction from a multi-channels satellite image; then the proper
channels should be processed (fused) to build the potential image.

Setting the area parameter of the morphological filtering step also depends
on both application and data. As explained in section 2.3, this parameter re-
moves image local minima. Thus, considering the watershed transform result,
this parameter has an effect of merging small catchment basins. When a curvi-
linear object contains a loop, this loop can disappear if its area is lower than the
area parameter value.

Last, defining the energies for the Markov random field is also data depen-
dent. Features associated with nodes —a priori knowledge about piece of curvi-
linear objects— are numerous; they can be the potential mean value along the
piece of curve, a curvature measurement, its saliency as discussed by Najman
and Schmitt, and so on. Features related to contextual energy express knowledge
about the global shape of the curvilinear objects and the connections between
its different parts; for instance, a feature can be a continuity measure when the
object is a smooth curve or, in the contrary, a measure that ensures that the
object is only composed of straight lines and π/2 breaks.
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(a) Original Image in Natural Colors (b) Watershed Line when a = 50

(c) Watershed Line when a = 500 (d) Final MRF Labeling

Fig. 2. Application to Road Network Extraction

3.3 Illustration

We have applied our framework to different image segmentation issues. In this
section, we present a result in the field of road extraction network. It is illus-
trated with a small part (700×380 pixels) of a Landsat image from St-Johns city,
Canada, having a 25 m resolution and 7 spectral channels; see figure 2. This orig-
inal image is under “Copyright c© 2000. Government of Canada with permission
from Natural Resources Canada” (http://geogratis.cgdi.gc.ca/). Applying
the whole road extraction process to an image having 2.106 pixels takes less than
20s on a 1,7 GHz personal computer running GNU/Linux and using our image
processing library Olena (Cf. section “notes and Comments” after section 4)
which provides fast implementation of algorithms.

As one can see on figures 2 (b) and 2 (c), with different values of the area
parameter the resulting watershed line is more or less simplified but data of
interest are not affected. Extra information about applying the proposed method
to road network extraction are given in Géraud (2003).

4 Conclusion

We have presented a method to extract road network from satellite images. We
have transposed the recognition scheme “WT + RAG + MRF”, described in
section 2.2 and which is dedicated to image segmentation, to the problematic of
road network recognition. To that aim, we propose a recognition scheme that is,
as far as we know, original: “area opening + WT + CAG + MRF”.



This recognition scheme is a global optimization process so it provides robust
and reproducible results. Moreover, it is general and can easily be adapted to
various image processing fields where the recognition of curvilinear structures is
involved.

Notes and Comments. Source code of our method is available on the Inter-
net from the location http://www.lrde.epita.fr. It has been developed using
olena, our generic image processing library. olena is free software under the
GNU Public Licence (GPL) and information about this library are presented
by Darbon et al. (2002).
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Edifici O, Universitat Autònoma de Barcelona (UAB)
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Abstract. This paper presents a novel human action model based on
key-frames which is suitable for animation purposes. By defining an ac-
tion as a sequence of time-ordered body posture configurations, we con-
sider that the most characteristic postures (called key-frames) are enough
for modeling such an action. As characteristic postures are found to cor-
respond to low likelihood values, we build a human action eigenspace,
called aSpace, which is used to estimate the likelihood value for each
posture. Once the key-frames have been found automatically, they are
used to build a human action model called p–action by means of inter-
polation between key-frames. This parameterized model represents the
time evolution of the human body posture during a prototypical action,
and it can be used for computer animation. As a result, realistic and
smooth motion is achieved. Furthermore, realistic virtual sequences in-
volving several actions can be automatically generated.

1 Introduction

Keyframing is the process of automatic generation of intermediate frames based
on a set of key-frames supplied by the animator. In computer animation, the
term key-frame has been generalized to apply to any variable whose value is
set at specific frames and from which values for the intermediate frames, called
in-betweens, are interpolated according to some prescribed procedure [7]. Key-
frames are created by specifying an appropriate set of parameter values, which is
related to the body configuration, at a given time. This process of interpolation is
important in creating effective animation, due to the fact that interpolation can
occur in both space and time. Usually, most applications create a curved path
between translation key-frames where possible. But the speed of the interpolation
may be non-linear as well so that, for example, the change begins slowly, speeds
up, and slows down into the next key-frame.

However, keyframing requires that the animator possesses a detailed under-
standing of how moving objects should behave over time as well as expresses
that information through keyframed configurations. Standard interpolation al-
gorithms (linear, cubic or spline) can be applied to generate the corresponding
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in-betweens. Consequently, given a sample action sequence, we can apply the
keyframing technique with a minimum of human intervention in order to achieve
automatic animation.

In this paper, we first describe shortly different developments found in the
literature which consider key-frames. Next, we enhance the work presented in [5]
(where a novel action eigenspace called aSpace was built based on a Point Distri-
bution Model) to obtain a parametric representation of human actions. Subse-
quently, we select automatically the most characteristic body postures, i.e., the
key-frames, for a given action. These postures constitute the basis of our final
parametric human action model, called p–action. Facilities of such p–actions to
animation are discussed. Experimental results and conclusions are lastly pro-
vided.

2 Background and Previous Work

We define an action as a sequence of time-ordered body posture configurations. If
one considers the complete set of body postures for a given action sequence, it is
obvious that the sequence contains redundant information: several postures are
found to be repeated. A posterior analysis determines that there exists a more
reduced group of human postures that do not appear as frequently as the redun-
dant ones: they are found to identify an action. They give enough information to
state, by only considering these reduced group of human postures, which action
is being performed. But also, these characteristics human postures can be used
to discriminate between different actions.

Such capabilities argue for representing an action by selecting few frames
from the entire sequence. It can be found in the literature an increasing number
of papers which attempt to perform human action tracking and recognition by
only considering few poses. In [1], human motion tracking is applied during
a gymnastic exercice which is known in advance. Tracking is performed by using
a set of key-frames for each exercise, which are computed beforehand. Also in [2],
few body poses are considered to achieve human action recognition. However, no
criteria is used to select the key-frames, which are found randomly. In [9], human
action tracking and recognition is performed by considering a set of stored key-
frames. However, it is not clear how many key-frames are required for a given
tennis stroke, due to the fact that they are provided beforehand.

In this paper, the set of key-frames for a given action is found automatically
and is demonstrated to be suitable for representing such an action by performing
animation.

3 Parametric Eigenspaces

Consider an action as a sequence of human postures. Each human posture model
is based on a stick figure, which is composed of ten rigid parts and six joints,
similar to that presented in [4]. A sequence of n frames corresponding to a perfor-
mance of a given action was considered to be composed of a set of body posture
configurations Sj = {x1,x2, ...,xn}, where
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(a) (b) (c)

Fig. 1. Parametric eigenspace for the bending action. Only the three mos
prominent dimensions are displayed. (a) Manifold obtained by interpolation be
tween the projections (black dots) of the postures of a single performance. (b
Manifolds obtained by interpolation between the projections of the postures o
several performances. Each manifold corresponds to a performance. (c)Manifol
(thick line) obtained by interpolation between the means of pose distributions [3

xi = (ui,Θi)T . (1

Θi corresponds to the ten angle values which define the configuration of th
stick figure, and ui corresponds to the hip center coordinates.

An action A is learnt using r different sequences A = {S1,S2, ...,Sr}. I
order to provide a proper learning set which is generic enough, the same actio
is performed several times by different actors of different sizes. For our exper
ments, 25 performances for each action were recorded. As a result, nearly 200
frames are included for each action. Note that each performance sequence is no
compulsory to contain the same number of frames.

Such a learning data set was used to compute the action class ΩA calle
aSpace and defined as:

ΩA = (E,Λ, x̄), (2

where E = (e1, ..., em) corresponds to the eigenvectors of the reduced space, Λ
to the m largest eigenvalues and x̄ to the mean body posture configuration fo
that action. A detailed description about aSpaces can be found in [5]. Next, w
enhance such a representation to cope with animation requirements.

If the acquisition rate of the camera is large enough to record smooth change
of the posture between frames, consecutive human postures become strongl
correlated and, therefore, their projections in the aSpace become close to on
another. Consequently, if we avoid drastic changes, a smoothly varying manifol
in the aSpace can be computed, which is called the parametric eigenspace repre
sentation [3]. By means of parameterization, we attain a control mechanism ove
our aSpaces representation in order to generate a relatively natural sequence o
postures which satisfies the requirements of the animator.

So first, each body human posture configuration xi of a performance Sj of ou
learning set A is projected to the eigenspace ΩA. Projections yi of consecutiv
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body postures are located on piece-wise smooth manifolds parameterized by the
variation of the pose over time (see Fig. 1.(a)). This temporal variation of the
posture is referred to as p, which is normalized for each performance, that is,
p ∈ [0, 1]. Usually, p is given in percentage: for example, p = 50% refers to
the human body posture configuration at the middle of an action performance.
Thus, by varying p, we actually move along the manifold. The idea of describing
the time evolution of the action model by using the normalized pose is similar
to that proposed in [4] for the walking action.

Therefore, we consider the projections yi of a given performance Sj as the
control values for a interpolating curve gj(p), which is computed using a stan-
dard cubic-spline interpolation algorithm [8]. This process is repeated for each
performance of the learning set, thus obtaining r manifolds. These manifolds are
parameterized by the temporal variation of the posture (see Fig. 1.(b)):

gj(p), 0 ≤ p ≤ 1, j = 1, ..., r. (3)

For example, assume that an aSpace is well represented by the three largest
eigenvalue eigenvectors, that is, m = 3. Then, the cubic polynomial would be
defined as:

gj(p) = (uj(p), vj(p), wj(p)), (4)

which, in fact, represents three equations, one for each dimension:

uj(p) = aup
3 + bup

2 + cup+ du. (5)

Then, the mean manifold for the action ΩA is found: for each performance Sj ,
points lying in the manifold gj(p) are indexed by their parameter p:

g(p) = [g1(p), ...,gr(p)]T , 0 ≤ p ≤ 1. (6)

Afterwards, the mean is computed for each index p. The mean manifold called
ḡ(p) is obtained by interpolating between these means using a standard cubic-
spline interpolation algorithm. Fig. 1.(c) shows the point clouds in the aSpace
corresponding to the bending action and its interpolated parametric curve ḡ(p).

This action representation is not influenced by the duration of a performance
(expressed in seconds or number of frames). It is obvious that the posture con-
figurations presented during a performance do not change with any variations of
speed [2]. Thus, only the temporal variation of the human posture is modeled.

Unfortunately, this resulting parametric manifold is influenced by noise fac-
tors, such as abnormal posture configurations presented during any action per-
formance or imprecision in the location of the human body joints. These issues
affect the mean calculation for each index p. As a result, the manifold presents
abrupt changes of direction.

The problem arises from the fact that any subject performs an action in the
way he or she is used to. Furthermore, it is highly unlikely that the same actor
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performs different times the same action in a completely similar manner. S
we need to determine how a prototypical action representation can be derive
by considering individual and highly variable performances as the learning set
And this is possible, since people can distinguish a given action despite of th
performer. So only few human posture configurations are considered to represen
a given action, which will constitute the key-frame set for that action.

4 Automatic Key-Frame Selection

Given an action A, our goal consists in extracting the most characteristic bod
posture configurations, which will correspond to the set of key-frames for that ac
tion, i.e.KA = {k1,k2, ...,kk}. This set will be used to compute the in-betweens
that is, the intermediate frames between key-frames, by using interpolation a
gorithms.

As expounded before, when an action sequence is analyzed, quite few char
acteristic body postures can be found. From a probability point of view, char
acteristic postures are the least likely body postures exhibited during the actio
performances. This fact is simply a consequence of the very reduced number o
frames where these postures appear. So we need to represent the action in term
of a probability distribution in order to compute the likelihood that a sampl
xj is an instance of the action class ΩA, that is, P (xj |ΩA). Low values actuall
correspond to less repetitive samples, that is, very characteristic postures fo
that action. Thus, by selecting those samples that are less likely, we assure tha
they provide most entropy of such an action class.

The aSpace can also be used to compute the action class conditional densit
P (xj |ΩA), assumed to be Gaussian [3]. Also, once the manifold ḡ(p) has bee
calculated, the mean action performance is described by the projections that li
in such a manifold. Consequently, we compute the likelihood values for the se
quence of pose-ordered points xj in such a manifold. Due to high-dimensionalit
of the data, Moghaddam and Pentland in [6] proposed a more efficient and ro
bust manner to compute such a likelihood. As a result, an estimation of th
Mahalanobis distance, which considers only the largest eigenvalue eigenvector
of the eigenspace, is applied for each point of the manifold ḡ(p). Thus, we obtai
a distance function that estimates the likelihood value for each posture. Not
that this distance measurement is also related to important changes of directio
of the manifold.

Applying a pose ordering to each distance, peaks of this function correspon
to locally maximal distances or, in other words, to the least likely samples
So each peak of the distance function corresponds to a key-frame ki, and th
number of key-frames k is determined by the number of peaks. Thus, we obtai
the set KA of time-ordered key-frames for the action A. Examples of key-frame
obtained from the manifold computed in running aSpaces are shown in Fig. 2.
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Fig. 2. Key-frames generated for a running action

5 Parametric Action Representation or P–action

Once the key-frames have been selected, a new manifold is obtained by inter-
polating between the key-frame set using a standard cubic-spline interpolation
algorithm. This interpolated parametric curve is also defined to as a function of
the pose p:

fA(p), 0 ≤ p ≤ 1, (7)

which can be written explicitly as (assuming that three eigenvectors are enough
for representing the aSpace):

fA(p) = (u(p), v(p), w(p)), (8)

which represents three equations, one for each eigenvector (i.e. dimension of the
aSpace), similarly to the definition of ḡ(p) in Eq. (5).

As shown in Fig. 3, fA(p) represents a manifold which smooths the manifold
ḡ(p): by using interpolation, we attain a reduction of the roughness derived from
the learning set. Mathematically, smoothness is determined by how many deriva-
tives of the curve equation are continuous: by using cubic splines, second-order
continuity between segments is attained. Thus, points belonging to manifold
fA(p) represent the typical postures exhibited for that action.

The break points of the spline correspond to the projections of the key-
frames found before. Consequently, the curve is made up of several segments,
which correspond to transitions between key-frames: each segment represents
how the body posture evolves from one key-frame to its next in temporal order.
Thus, the action as a whole is represented as a parametric curve, which consists
of a sequence of key-frames plus the transition between these key-frames.

We denote fA(p) as the parametric action representation or p–action. A p–
action is also parameterized by the pose p, which represents the time evolution
of the human posture during a prototypical action. In consequence, pose-ordered
points lying in a p–action are the projections of a sequence of body postures that
viewers can recognize easily as a particular performance for that action.

Using characteristic postures (i.e., the key-frames) guarantees that the viewer
can recognize easily which action is being animated. Despite of the fact that the
manifold can include points used in the learning stage, it also contains human
body postures which were not learnt due to the cubic-spline interpolation step.
Thus, a smooth performance is achieved. Also, a mechanism of control over our
action representation is attained by considering the parameter p, which can be
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(a) (b) (c)

Fig. 3. P-actions obtained by interpolation (solid curve) of the key-frame
(black dots) found in ḡ(p) (dot curve) for bending (a), punching (b) and runnin
(c) actions

used to specify the temporal order of the postures during a new animated se
quence. These characteristics justify the utilization of the p–action for animatio
purposes.

6 Animation Using P–actions

Animation can be achieved by sampling the p–action manifold, that is, consid
ering those yk ∈ fA(p). In fact, these points correspond to projections of huma
body posture configurations. Therefore, the original stick figure configuration x
of Eq. (1) can be found as:

Fig. 4. P–action computed in the running aSpace: by varying the paramete
pose p, we actually move along the manifold fA(p), thus obtaining the tempora
evolution of the human body posture during the prototypical performance of th
running action
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(a) (b) (c)

Fig. 5. Figure (a) shows the parametric curves in the universal aSpace. Figure
(b) and Figure (c) corresponds to a mixed action (bending, running, and bend-
ing again). Figure (b) shows the resulting manifold by varying the parameter
pose p from p = 0% to p = 50%, and figure (c) shows the variation of p from
p = 50% to p = 90%. Due to the interpolation step, transitions between actions
occur smoothly

xk =
m∑
i=1

eiyki + x̄. (9)

As a result, a 3D model can be built from xk in order to generate a syn-
thetic sequence. In Fig. 4, the manifold corresponding to the running action is
shown. The action is satisfactorily synthesized by moving along that curve, thus
providing realistic and smooth motion to computer-animated sequences.

In order to synthesize sequences with several actions involved, a universal
aSpace is built. In this eigenspace, the learning samples correspond to the com-
plete set of actions. As before, a manifold for each action is computed, as shown
in Fig. 5.(a). Dots represent the key-frames for each action, and the curves de-
scribe the manifolds obtained by interpolation from these key-frames. Thus, the
animator just need to select the desired key-frames of the actions being involved
in the new sequence. Subsequently, the system will generate the corresponding
in-betweens in order to change from one selected key-frame to the next one by
interpolation.

Note that the critical point here lies in the transition between actions. Despite
of the fact that no learning samples corresponding to action transitions have been
included in the universal aSpace, the cubic spline interpolation step will generate
physically meaningful body posture variations to change smoothly from one
action to the next. Thus, switching between actions is feasible in a continuous and
realistic manner. In Fig. 5.(b) and 5.(c), two actions in the universal aSpace are
presented as dot curves. In Fig. 6, a sequence performance is shown, during which
four actions are played: bending, punching, running and bending again. Note
that there are some postures which were not learnt, that is, transitions between
actions appear due to the interpolation nature of the manifold computation.
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Fig. 6. Parametric curve in the universal aSpace: by varying the paramete
pose p, the set of postures exhibited during the prototypical performance o
several mixed actions is presented. First row corresponds to bending, secon
row to punching, third row to running, and fourth row to bending again. Not
that p = 20%, p = 60% and p = 80% correspond to transition frames betwee
actions, which are generated due to the interpolation algorithm. See explainin
text for details

7 Conclusions

We developed a novel human action model based on the keyframing technique
We consider the key-frame set of a given action as the most characteristic huma
body postures for such an action. A human posture is modeled as a stick figur
and defined in terms of the global angle values of its body parts. Most char
acteristic postures are found automatically by computing the likelihood valu
for each body posture in a human action eigenspace called aSpace. These pos
tures are found to identify such an action and to discriminate between differen
actions. Using interpolation between key-frames, a human action model calle
p–action is calculated. This parametric human action representation represent
the time evolution of the human body posture during a prototypical action. I
this paper, p–actions are used to perform computer animation, thus achievin
realistic and smooth motion. Furthermore, virtual sequences with several action
involved can be generated by means of interpolation between the key-frames o
the actions involved in such sequences. As a result, transitions between differen
actions (which involve to synthesize human body postures not presented in th
learning set) are generated in a continuous and realistic manner.
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The design of the p–action model is the first step for animation. At present,
we have parameterized such a manifold in terms of the arc length. Thus, the re-
lationship between the parametric value p and the corresponding distance along
the manifold is known. As a result, the speed at which the animated sequence
is synthesized can be controlled.

In the literature, key-frames are mostly used for tracking and recognition.
Once our model has been presented as suitable to perform animation, extension
to recognition is straightforward. By considering the key-frame set, which is
the core of the p–action representation, existing key-frame-based human action
recognition algorithms can be applied directly. Furthermore, as key-frames are
found automatically, automatic action learning can be developed. Lastly, key-
frames can incorporate additional information in order to be useful for tracking
purposes.
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Abstract. This paper addresses the robust matching of lines simulta-
neously to the computation of homographies between two views, when
structure and motion are unknown. Using viewpoint non invariant mea-
sures, such as image dependent parameters, gives a lot of non matched
or wrong matched features. The inclusion of projective transformations
gives much better results with short computing overload. We use line
features which can usually be extracted more accurately than points
and they can be used in cases when there are partial occlusion. In the
first stage, the lines are matched to the weighted nearest neighbor using
brightness-based and geometric-based image parameters. From them, ro-
bust homographies can be computed, allowing to reject wrong matches,
and growing also additional matches in the final stage. Although lines
and points are dual features to compute homographies, some problems
related to data representation and normalization using lines are consid-
ered. Results show that the robust technique turns out stable, and its
application is useful in many situations. We have used it for robot homing
and we also present automatic matching of lines at aerial images.

1 Introduction

In this paper we address the problem of robust matching of lines in two im-
ages when camera motion is unknown. Using lines instead of points has been
considered by some researches [1]. Straight lines can be accurately extracted in
noisy images, they capture more information than points, specially in man-made
environments, and they may be used where occlusions occur.

However, line matching is more difficult than point matching because the end
points of the extracted lines is not reliable. Besides that, there is not geometrical
constraint, like the epipolar, for lines in two images. The putative matching of
features based on image parameters has many drawbacks, giving non matched
or wrong matched features. Previously the problem of wide baseline matching
has been addressed establishing a viewpoint invariant affinity measure [2]. We
use the homography in the matching process to select and to grow previous
matches which have been obtained combining geometric and brightness image
� This work was supported by projects DPI2000-1265,DPI2000-1272.

F.J. Perales et al. (Eds.): IbPRIA 2003, LNCS 2652, pp. 297–307, 2003.
c© Springer-Verlag Berlin Heidelberg 2003
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parameters. Perspective images of plane scenes are usual in perception of man
made environments, and the model to work with them is well known. Points
or lines on the world plane in one image of the world plane are mapped to
points or lines in the other image by a plane to plane homography [3]. This is
an exact transformation for planar scenes or for small baseline image pairs. As
known, there is no geometric constraint for infinite lines in two images, but the
homography can be considered a first approximation for a general 3D scene.

To compute homographies, points and lines are dual geometric entities, how-
ever line-based algorithms are generally more difficult than point-based ones [4].
Thus, some particular problems related to data representation and normalization
must be considered in practice. We compute homographies from corresponding
lines in two images making use of classical normalization of point data [5], and
avoiding singularities.

Robust estimate is actually unquestionable technique to obtain results in real
situations where outliers and spurious data are present [6, 7]. In this paper the
least median of squares method [8] has been used to estimate the homography.
It provides not only the solution in a robust way, but also a list of previous
matches that are in disagreement with it, which allows to reject wrong matches.

The simultaneous computation of matches and projective transformation be-
tween images is useful in many applications, but we have used it for robot hom-
ing. Our algorithm can also be applied in photogrammetry where points are the
feature mostly used [9], but lines are plentiful in urban scenes. We have put into
practice our matching with aerial images obtaining satisfactory results.

2 Basic Matching

In several works, the matching is made over close images. In this context, cor-
respondence determination by tracking geometric information along the image
sequence has been proposed as a good solution [10], [11]. We determine corre-
spondences between lines in two images of large disparity without knowledge
about motion or scene structure. We use not only the geometric parameters but
also the brightness attributes supplied by the contour extractor (the lines are
extracted using our implementation of the method proposed by Burns [12]). So,
agl and c (average grey level and contrast) of the line are combined with geo-
metric parameters of the segments such as midpoint coordinates (xm, ym), the
line orientation θ (in 2π range with dark on the right and bright on the left) and
the length l of the extracted line.

Significant motion between views or changes on light conditions and mea-
surements noise makes that few or none of the defined line parameters remain
invariant between images.

2.1 Similarity Measures

In the matching process two similarity measures are used, a geometric measure
and a brightness measure. We name rg the difference of geometric parameters
between both images (1, 2), rg = [xm1 − xm2, ym1 − ym2, θ1 − θ2, l1 − l2]

T .
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As previously [11], we define the R matrix to express the uncertainty due to
measurement noise in the extraction of features in each image

R =

⎡⎢⎢⎣
σ2
⊥S2 + σ2

‖C
2 σ2

⊥CS − σ2
‖CS 0 0

σ2
⊥CS − σ2

‖CS σ2⊥C2 + σ2
‖S

2 0 0

0 0 2
σ2⊥
l2

0
0 0 0 2σ2

‖

⎤⎥⎥⎦ ,

where C = cos θ y S = sin θ. Location uncertainties of segment tips along the
line direction and along the orthogonal direction are represented by σ‖ and σ⊥
respectively. With this geometric representation we can assume no correlation
between midpoint location and θ and l parameters [10].

Additionally we define the diagonal matrix P = diag(σ2xm
, σ2ym , σ

2
θ , σ

2
l ) to

represent the uncertainty of variation of the geometric parameters due to camera
motion and unknown scene structure.

Thus, from those matrixes we introduce S = R1 + R2 + P to weigh the
variations on the geometric parameters of corresponding lines due to both, line
extraction noise (R1 in image 1 and R2 in image 2) and unknown structure
and motion. Note in R that σ‖ is bigger than σ⊥. Therefore measurement noise
of xm and ym are coupled and the line orientation shows the direction where
the measurement noise is bigger (along the line). However, in P the orientation
does not main because the evolution of the line between images is mainly due
to camera motion which is not dependent on the orientation of the image line.

The matching technique in the first stage is made to the nearest neighbor.
The similarity between the parameters can be measured with a Mahalanobis
distance like, dg = rgTS−1rg.

A second similarity measure has been defined for the brightness parameters.
In this case we define the diagonal matrix B = diag(σ2agl, σ2c ), where σagl and
σc represent the uncertainty of variations of the agl and c. Both depend on
measurement noise and on changes of illumination between images.

Naming rb the variation of the brightness parameters between both images,
rb = [agl1 − agl2, c1 − c2]

T , the Mahalanobis distance for the similarity between
the brightness parameters is, db = rbTB−1rb.

2.2 Matching Criteria

Two image lines are stated as compatible when both, geometric and brightness
variations are small. For one line in the second image to belong to the compatible
set of a line in the first image, the following tests must be satisfied:

– Geometric compatibility. Assuming that the noise is Gaussian distributed,
the similarity distance for the geometric parameters is distributed as a χ2

with 4 d.o.f. Establishing a significance level of 5%, the compatible lines
must fulfill, dg ≤ χ24(95%).

– Brightness compatibility. Similarly, refereing to the brightness parameters,
the compatible lines must fulfill, db ≤ χ22(95%).
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A general Mahalanobis distance for the six parameters is not used because
the correct weighting of so different information as brightness based and location
based in a sole distance is difficult and could easily lead to wrong matches. Thus,
compensation between high precision in some parameters with high error in other
parameter is avoided.

A line in the first image can have more than one compatible line in the second
image. From the compatible lines, the line having the smallest dg is selected as
putative match. The matching is carried out in both directions from first to
second image and from second to first, in such a way that, a match (n1,n2) is
considered valid when the line n2 is the putative match of n1 and simultaneously
n1 is the putative match of n2.

In practice the parameters σj(j = ⊥, ‖, xm, ym, θ, l, agl, c) introduced in
R,P,B must be tuned according to the estimated image noise, expected camera
motions and illumination conditions, respectively.

3 From Lines to Homographies

The representation of a line in the projective plane is obtained from the ana-
lytic representation of a plane through the origin: n1x1 + n2x2 + n3x3 = 0. The
equation coefficients n = (n1, n2, n3)T correspond to the homogeneous coordi-
nates of the projective line. All the lines written as λn are the same than n. The
case n3 = 0 corresponds to a line through the origin of the virtual image plane.
As cameras have a limited field of view, observed lines have usually n3 close to
0. Similarly, an image point p = (x, y, 1)T is also an element of the projective
plane and the equation n ·p = nT ·p = 0 represents the belonging of point p to
the line n, which shows the duality of points and lines.

A projective transformation between two projective planes (1 and 2) can be
represented by a linear transformationT21, in such a way that p2 = T21p1. Con-
sidering the above equations for lines in both images, we have n2 =

[
T−121

]T
n1.

A homography requires eight parameters to be completely defined, because there
is an overall scale factor. A corresponding point or line gives two linear equa-
tions in terms of the elements of the homography. Thus, four corresponding lines
assure a unique solution for T21, if no three of them are parallel. To have an
accurate solution it is interesting to have the lines as separate in the image as
possible.

3.1 Computing Homographies from Corresponding Lines

Here, we obtain the projective transformation of points (p2 = T21p1), but us-
ing matched lines. To deduce it, we suppose the start (s) and end (e) tips of
a matched line segment to be ps1,pe1,ps2,pe2, which usually will not be cor-
responding points. The line in the second image can be computed as the cross
product of two of its points (in particular the observed tips) as

n2 = ps2 × pe2 = p̃s2pe2, (1)
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where p̃s2 is the skew-symmetric matrix obtained from vector ps2.
As the tips belong to the line we have, pTs2n2 = 0; pTe2n2 = 0. As the tips of

line in the first image once transformed also belong to the corresponding line in
the second image, we can write, pTs1T

T
21n2 = 0; pTe1T

T
21n2 = 0. Combining with

equation (1) we have,

pTs1T
T
21p̃s2pe2 = 0 ; pTe1T

T
21p̃s2pe2 = 0. (2)

Therefore each couple of corresponding lines gives two homogeneous equa-
tions to compute the projective transformation, which can be determined up
to a non-zero scale factor. Developing them in function of the elements of the
projective transformation, we have(

Axs1 Ays1 A Bxs1 Bys1 B Cxs1 Cys1 C
Axe1 Aye1 A Bxe1 Bye1 B Cxe1 Cye1 C

)
t =

(
0
0

)
,

where t = (t11 t12 t13 t21 t22 t23 t31 t32 t33)T is a vector with the elements of T21 ,
and A = ys2 − ye2, B = xe2 − xs2 and C = xs2ye2 − xe2ys2.

Using four corresponding lines, we can construct a 8 × 9 matrix M. The
solution corresponds with the eigenvector associated to the least eigenvalue (in
this case the null eigenvalue) of the matrix MT M. In order to have a reliable
transformation, more than the minimum number of matches and an estimation
method may be considered. Thus from n matches a 2n×9 matrixM can be built,
and the solution t can be obtained from SVD decomposition of this matrix [3].
In this case the relevance of each line depends on its observed length, because
the cross product of the segment tips is related to the segment length.

It is known that a previous normalization of data avoids problems of numer-
ical computation. As our formulation only uses image coordinates of observed
tips, data normalization proposed for points [5] has been used.

3.2 Robust Estimation

The least squares method assumes that all the measures can be interpreted with
the same model, which makes it to be very sensitive to out of norm data. Ro-
bust estimation tries to avoid the outliers in the computation of the estimate.
From the existing robust estimation methods [6], we have chosen the least me-
dian of squares method. This method makes a search in the space of solutions
obtained from subsets of minimum number of matches. The algorithm to obtain
an estimate with this method can be summarized as follows:

1. A Monte-Carlo technique is used to randomly select m subsets of 4 features.
2. For each subset S, we compute a solution in closed form TS .
3. For each solution TS , the median MS of the squares of the residue with

respect to all the matches is computed.
4. We store the solution TS which gives the minimum median MS.
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A selection of m subsets is good if at least in one subset the 4 matches are
good. Assuming a ratio ε of outliers, the probability of one of them been good can
be obtained [8] as, P = 1−[

1− (1 − ε)4
]m. For example, if we want a probability

P = 0.999 of having one good at least, with ε = 35% of outliers, the number of
subsets m should be 34.

Once the solution has been obtained, the outliers can be selected from those
of maximum residue. As in [6] the threshold is fitted proportional to the stan-
dard deviation of the residue, estimated as [8], σ̂ = 1.4826 [1 + 5/(n− 4)]

√
MS .

Assuming that the measurement error is Gaussian with zero mean and standard
deviation σ, then the square of the residues follows a χ22 distribution with 2 de-
grees of freedom. Taking, for example, that 95% probability is established for the
line to fit in the homography (inlier) then the threshold will be fixed to 5.99 σ̂2.

4 Final Matches

From here on, we introduce the geometrical constraint introduced by the esti-
mated homograpy to get a bigger set of matches. Actually we compute an only
homography in the image. This would be right if the scene points were on a plane.
Although this fails in some situations, the results are good when the distance
from the camera to the scene is large enough with respect to the baseline. For
example, this assumption gives very good results in robot homing, where image
disparity is mainly due to camera rotation, and therefore the sole homography
captures the robot orientation, that is the most useful information for a robot
to correct its trajectory. We have also made some experiments to segment into
several scene planes, to obtain line matching in more general situations. This
segmentation of planes could be very useful to make automatic 3D model of
urban scenes.

Our objective here is to obtain at the end of the process more good matches,
also eliminating wrong matches given by the basic matching. Thus final matches
are composed by two sets. The first one is obtained from the matches selected
after the robust computation of the homography that passe additionally an over-
lapping test compatible with the transformation of the segment tips. The second
set of matches is obtained taking all the segments not matched initially and those
being rejected previously. With this set of lines a matching process similar to
the basic matching is carried out. However, now the matching is made to the
nearest neighbor segment transformed with the homography. The transforma-
tion is applied to the end tips of the image segments using the homography T21

to find, not only compatible lines but also compatible segments in the same line.
In the first stage of the matching process there was no previous knowing of

camera motion. However in this second step the computed homography provides
information about expected disparity and therefore the uncertainty of geometric
variations can be reduced. A new tuning of σxm , σym , σθ and σl, must be consid-
ered. To automate the process, a global reduction of these parameters has been
proposed and tested in several situations, obtaining good results with reductions
about 1/5. As the measurement noise (σ‖ and σ⊥) has not changed, the initial
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Fig. 1. Images showing the final matches when the robot rotates 18 degrees.
Only one match is no good (10), which is a wrong match as segment although
good as line

tuning is maintained in this second step. Note that the brightness compatibility
set is the initially computed, and therefore it must not be repeated.

5 Experimental Results

A set of experiments with different kind of images has been carried out to test
the algorithm proposed. The images correspond to different applications: Indoor
robot homing, architectural models and aerial images. In the algorithms there
are extraction parameters which allows to obtain more or less lines according
to its minimum length and minimum gradient. There are also parameters to
match the lines, whose tuning has turned out simple and quite intuitive. In the
experiments we have used some small variations with respect to the following
tentative tuning parameters σ⊥ = 1, σ‖ = 10, σagl = 8, σc = 4, σxm =
60, σym = 20, σθ = 2, σl = 10. When these changes are important we indicate
them in the particular experiment.

We have applied the algorithm presented for robot homing. In this application
the robot must go to previously learnt positions using a camera [13]. The robot
corrects its heading from the computed projective transformation between learnt
and actual images.

In this experiment a set of robot rotations (from 2 to 20 degrees) has been
made. The camera center is about 30 cm. out of the axis of rotation of the robot
and therefore this camera motion has a short baseline. In Table 1 the number
of matches in the three steps with this set of camera motions are shown. The
number of lines extracted in the reference image is 112.

From this experiment the progressive advantage of the simultaneous compu-
tation of the homography and matching can be seen. When the image disparity
is small, the robust estimation of the homography does not improve the basic
matching. However, with a disparity close to 70% of the image size, the basic
matching produces a high ratio of wrong matches (> 30%), that are automat-
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Table 1. Number of matches in the tree steps of the algorithm, with some robot
rotation, indicating also the number of wrong matches (W). Here, the matches
that are good as lines but wrong as segments (not overlapped) are considered
wrong

Robot Rotation σxm Basic After T21 Final

4◦ 60 73 (5W) 56 (1W) 76 (0W)

8◦ 60 53 (6W) 31 (0W) 52 (0W)

12◦ 100 41 (9W) 30 (2W) 33 (1W)

16◦ 100 27 (9W) 17 (3W) 30 (1W)

20◦ 140 28 (10W) 17 (1W) 24 (0W)

ically corrected in the final matching. We observe that in this case the system
also works even with a large image disparity.

To simplify, only the images corresponding to the 18 degrees of robot rotation
are shown. A 38 % of wrong matches are given by the basic matching. At the
final matching stage, all the matches are good when considered as lines, although
one of them can be considered wrong as segment (Fig. 1).

Other experiments have been carried out indoor. In Fig. 2 we show the two
images taken with a stereo system having 30cm. of baseline. The number of lines
extracted are 83 and 93 respectively. The basic matching gives a 45 matches but
16% are wrong matches. After the computation of the homography all are good
but only 35 matches remain. At the final stage 66 matches are given, and only
two can been considered wrong as segment, although they are good as lines.

5.1 Aerial Images

In this experiment, two aerial images with quite large stereo between them are
used (Fig. 3). In photogrammetry applications putative matching has usually
a high ratio of spurious results. This is confirmed in our case, where the basic
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are good when considered as lines, although two of them are wrong as segments.
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Fig. 3. Two aerial images with quite large stereo. The first row shows the
lines extracted (approximately 300 lines/image). From them, the basic matching
provides 121 matches (64 being wrong). Second row shows the matches at the
final stage (105 matches, 3 being wrong that are corresponding to contiguous
cars)

matching has given a ratio of wrong matches higher than 50% , which is the the-
oretical limit of least median of squares method. However, if we select a smaller
percent of the squares of the residue instead of the median, the robust method
works properly. The results in Fig. 3 have been obtained with a percent of 30%.
The basic matching provides 121 matches, 64 of them being wrong. The robust
computation of the homography provides 55 matches, 11 of them being wrong as
segment but good as infinite line. Among the 105 final matches, there are only 3
wrong matches which correspond to contiguous cars. Note that the final matches
are duplicated with respect to the matches obtained with the homography. Note
also that the final matches selected are mainly located on the ground. There are
some lines on the roofs of the buildings but they are nearly parallel to the flight
of the camera which is coherent with the model of homography used.
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6 Conclusions

We have presented and tested a method to automatically obtain matches of lines
simultaneously to the robust computation of homographies. The robust compu-
tation works especially well to eliminate outliers which may appear when match-
ing is based on image properties and there is no information of scene structure
or camera motion. The homographies are computed from lines extracted and
the use of lines has advantages with respect to the use of points. The geometric
mapping between uncalibrated images provided by the homography turns out
useful to grow matches and to eliminate wrong matches.

All the work is made automatically with only some previous tuning of param-
eters related to expected camera motion. As can be seen in the experiments, the
proposed algorithm works with different types of scenes and the tuning phase
is simple and intuitive. As limitation of this work, the matching depends on
the mapping between the lines and the homography computed. So, plane scenes
or situations where disparity is mainly due to rotation, give the best results.
However, it is also possible to compute several homographies according to scene
structure which is the goal we are actually working for.
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Abstract. We propose a novel local appearance modeling method for
object detection and recognition in cluttered scenes. The approach is
based on the joint distribution of local feature vectors at multiple salient
points and their factorization with Independent Component Analysis
(ICA). The resulting densities are simple multiplicative distributions
modeled through adaptative Gaussian mixture models. This leads to
computationally tractable joint probability densities which can model
high-order dependencies. Our technique has been initially tested with
natural and cluttered scenes with some degree of occlusions yielding
promising results. We also propose a method to select a reduced set of
learning samples in order to mantain the internal structure of an object
to be able to use high-order dependencies reducing the computational
load.

1 Introduction

For appearance based object modeling in images, the choice of method is usu-
ally a trade-off determined by the nature of the application or the availabil-
ity of computational resources. Existing object representation schemes provide
models either for global features [13], or for local features and their spatial re-
lationships [10, 1, 12, 5]. With increased complexity, the latter provides higher
modeling power and accuracy. Among various local appearance and structure
models, there are those that assume rigidity of appearance and viewing angle,
thus adopting more explicit models [12, 10, 9]; while others employ stochastic
models and use probabilistic distance and matching metrics [5, 8, 1].

Recognition and detection of objects is achieved by the extraction of low
level feature information in order to obtain accurate representations of objects.
In order to obtain a good description of objects, extracted low level features
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must be carefully selected and it is often necessary to use as many salient fea-
tures as possible. But one of the most common problems in computer vision
is the computational cost of dealing with high dimensional data as well as the
intractability of joint distributions of multiple features.

We propose a novel local appearance and color modeling method for object
detection and recognition in cluttered scenes. The approach is based on the joint
distribution of local feature vectors at multiple salient points and factorization
with Independent Component Analysis (ICA). Taking this new statistically in-
dependent space to create k = 3 tuples (k = 3 salient points) of the most salient
points of an object, we are able to obtain a set of joint probability densities
which can model high-order dependencies. In order to obtain a good estimation
of the tuple space, we use an adaptative Gaussian mixture model based on the
Minimum Description Length (MDL)[14] criterion to optimally represent our
data.

We have tested our method in a real and complex environment where we
detect a real object (the US Pentagon building) after 9/11/01. We demonstrate
that our technique is able to detect a complex object with a damaged portion of
the building and under different natural conditions but we have to select a prop-
erly number of training tuples. Our method is based on high-order dependencies
but, since the object consists of several keypoints, the number of possible tu-
ples for learning is extremely huge. Thus, we propose a method to select the
learning tuples in order to be able to work with high-order dependencies using
a reasonable amount of computational resources.

2 Methodology

We propose to use an adaptative Gaussian mixture model as a parametric ap-
proximation of the joint distribution of image features of local color and appear-
ance information at multiple salient points.

Let i be the index for elementary feature components in an image, which
can be pixels, corner/interest points [3, 4], blocks, or regions in an image. Let xi
denote the feature vector of dimension n at location i. xi can be as simple
as {R,G,B} components at each pixel location, some invariant feature vectors
extracted at corner or interest points [7, 10, 11], transform domain coefficients
at an image block, and/or any other local/ regional feature vectors.

For model-based object recognition, we use the a posteriori probability de-
fined as maxlP (Ml|T ) where Ml is the object model and T = {xi} represents
the features found in the test image. Equivalently, by assuming equal priors,
classification/detection will be based on maximum likelihood testing:

maxlP (T |Ml) (1)

For the class-conditional density in equation (1), it is intractable to model de-
pendencies among all xi’s (even if correspondence is solved), yet to completely
ignore these dependencies is to severely limit the modeling power of the probabil-
ity densities. Objects frequently distinguish themselves not by individual regions
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Fig. 1. System diagram for k-tuple density factorization using ICA and Gaus-
sian mixture models

(or parts), but by the relative location and comparative appearance of these re-
gions. A tractable compromise between these two modeling extremes (which does
not require correspondence) is to model the joint density of all k-tuples of xi’s
in T. Figure (1) shows a general scheme of our methodology.

2.1 Joint Distribution of k-Tuples

Instead of modeling the total joint likelihood of all x1, x2, . . . xI , which is an
(I × n)-dimensional distribution, we model the alternative distribution of all k-
tuples as an approximation:

P ({(xi1 , xi2 , . . . , xik )}|Ml) (2)

This becomes a (k×n)-dimensional distribution, which is still intractable (Note:
k < n and k << I). We can use multi-dimensional histograms as an approxima-
tion of the joint distribution of image features with, i.e 20 histogram bins along
each dimension, and such a framework would require 20(k×n) bins. Therefore,
a factorization of this distribution into a product of low-dimensional distribu-
tions is required. We achieve this factorization by transforming x into a new
feature vector S whose components are (mostly) independent. This is where
Independent Component Analysis (ICA) comes in.

2.2 Density Factorization with ICA

ICA originated in the context of blind source separation [2, 6] to separate ”in-
dependent causes” of a complex signal or mixture. It is usually implemented by
pushing the vector components away from Gaussianity by minimizing high-order
statistics such as the 4th order cross-cumulants. ICA is in general not perfect
therefore the IC’s obtained are not guaranteed to be completely independent.

By applying ICA to {xi}, we obtain the linear mapping

x ≈ AS (3)
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(a) (b)

Fig. 2. Graphical models: (a) fully-connected graph denoting no independence as-
sumptions (b) the ICA-factorized model with pair-wise only dependencies

and

P ({(Si1 , Si2 , . . . , Sik)}|Ml)

≈
m∏
j=1

P ({(sji1 , sji2 , . . . , sjik)}|Ml) (4)

where A is a n-by-m matrix and Si is the ”source signal” at location i with
nearly independent components (Note: m < n). The original high-dimensional
distribution is now factorized into a product of m k-dimensional distributions,
with only small distortions expected. We note that this differs from so-called
”naive Bayes” where the distribution of feature vectors is assumed to be factor-
izable into 1D distributions for each component. Without ICA the model suffers
since in general these components are almost certainly statistically dependent.

After factorization, each of the k dimensional factored distributions becomes
manageable if k is small, e.g., k = 2 or 3. Moreover, matching can now be
performed individually on these low-dimensional distributions and the scores
are additively combined to form an overall score.

Figure (2) is a graphical model showing the dependencies between a pair of
3-dimensional feature vectors x1, x2. The joint distribution over all nodes is 6-
dimensional and all nodes are (potentially) interdependent. The basic approach
towards obtaining a tractable distribution is to remove intra-component depen-
dencies (vertical and diagonal links) leaving only inter-component dependencies
(horizontal links). Simultaneously, we seek to reduce the number of observed
components from n = 3 to a smaller number m = 2 of ”sources”. Ideally, a per-
fect ICA transform results in the graphical model shown in the right diagram
where the pair S1, S2 only have pair-wise inter-component dependencies. There-
fore, the resulting factorization can be simply modeled by 2D histograms or
Gaussian mixture models1.
1 We should note that in practice with an approximate ICA transform, the diagonal
links of the original model are less likely to be removed than the vertical ones.
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(a) (b) (c)

Fig. 3. (a) Satellite image of the US Pentagon building (prior to 9/11/01).
(b) extracted building region used for learning. (c) a new test image of the
same region taken after 9/11/01 under different natural conditions and with the
damaged portion of the building missing (removed after site cleanup). (Note: All
images have been rescaled for display purposes)

3 Experimental Results

Our experimental results have been focused on the use of k = 3 tuples in order
to analyze the effect of choosing different learning tuples. We used a Harris
operator [4, 11] to detect interest points and extracted the first 9 differential
invariant jets [7] at each point as the corresponding feature vector x. Using
these jets as our feature results in a local appearance model which is not only
invariant to in-plane rotation (and translation) but is also robust with respect
to partial occlusions. We must emphasize however that our methodology is not
restricted to differential invariant jets and can in principal be used for any local
set of features, for example, color, curvature, edge-intensity, texture moments.
We then performed ICA to get m < 9 independent components for the feature
vectors (jets). Using a k = 3 tuple model results in a set of 3D Gaussian mixture
models which were used to model our 3-tuple joint component densities.

We tested our system with real and cluttered scenes where objects can be
affected by different natural factors. This is the case presented in figure (3)
which shows the modeling of the US Pentagon building before and after the
September 11 terrorist attack. Figure (3.a) presents a real image of the pentagon
building and figure (3.b) shows the extracted building used for our learning and
modeling. Figure (3.c) depicts a test image which was taken after the bombing
debris was cleared away by the cleanup crew (leaving a whole section of the
building missing).

Image of figure (3.b) has been used as training and the number of extracted
keypoints is approximately 250. All possible k = 3 tuples that we can generate
from 250 keypoints is extremely huge (like 250× 249× 248 = 15438000) and it
is impossible to learn a mixture of Gaussians with this huge number of training
tuples. Our idea is to select a subset of them in order to find a representative
set of tuple candidates to learn the Gaussian mixture models and obtain a good
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Fig. 4. Given 3 local features (x1, x2 and x3) to create a k = 3 tuple, we obtain
the middle point and when all the distances (R1, R2 and R3) between the middle
point to all the three features are less than a predefined radial value (Rthr), this
tuple is considered for training

representation of the natural object. In order to manage with natural occlusions,
tuples must be carefully selected. Thus, we defined a radial threshold (Rthr) and
we only consider those tuples that the distance between each keypoint of the
tuple with respect to the middle point of the tuple is less than Rthr. This idea
is represented in figure (4) where we can see three local features (x1, x2 and x3)
and the middle point of the tuple. When all the three distances (R1, R2 and R3)
between each feature and the middle point are less than Rthr, the tuple will be
considered for training. As can be seen, this idea comes out in order to consider
tuples with close keypoints to mantain the object structure.

This present work shows that a good criterion to choose a set of learning tu-
ples is fundamental in order to obtain satisfactory results. Our pentagon object
used for learning is about 120× 120 pixels and, as seen in figure (3), it consists
of several structured parts but repeated along the object. After obtaining all the
pentagon keypoints, we have considered a set of learning tuples with a radial
threshold of 25, 30, 35, 40 and 45 pixels because we need to mantain the struc-
ture of the object. For example, a radial threshold of 45 pixels is about a quarter
of the pentagon and, as seen, it should be enough because our pentagon con-
tains a repeated structure. In case that a learning object consists of several and
different structured parts, the radial threshold for our learning tuples should
be analyzed more carefully. Detection maps corresponding to different radial
thresholds can be seen in figure (5) where we can appreciate that small radial
thresholds lead to bad detection maps and big radial thresholds lead to good (or
acceptable) detection maps. We should state that the number of training tuples
when we use big radial thresholds are really huge and our adaptative gaussian
mixture model needs a considerable amount of computational resources.

Since we are testing our method with an object with a missing part, see
figure (3.c), detection maps of figure (5) are understandable in the sense that
part of the pentagon may not be recognized properly. When using a Rthr = 25
pixels, results are not acceptable since the pentagon is not correctly detected and



314 David Guillamet et al.

(a) Rthr = 25 pixels

(b) Rthr = 30 pixels

(c) Rthr = 35 pixels

(d) Rthr = 40 pixels

(e) Rthr = 45 pixels

Fig. 5. Detection maps corresponding to different radial thresholds
(from Rthr = 25 to Rthr = 45 pixels)
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a lot of external regions are considered as the pentagon. But, when using Rthr =
40 pixels, pentagon is correctly detected and only a few external regions are
considered as being part of the pentagon object.

4 Conclusions

A novel probabilistic modeling scheme was proposed based on the factorization
of high-dimensional distributions of local image features. Our framework was
tested using real imagery where the US Pentagon building is learned and de-
tected in other natural conditions and with a damaged portion of the building
missing. These experiments with complex and cluttered scenes demonstrate that
this technique is well suited to object detection and localization tasks in natu-
ral environments. As seen, one of the problems is the huge number of training
tuples obtained when considering high-order dependencies and the associated
computational resources required that are extremely high. Thus, we propose
a method to select a reduced set of learning tuples in order to mantain the in-
ternal structure of the object to be able to use high-order dependencies reducing
the computational load.
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Abstract. We present an experimental evaluation of the subspaces ob-
tained on positive data using the Principal Component Analysis (PCA),
Non-negative Matrix Factorization (NMF) and Weighted Non-negative
Matrix Factorization (WNMF) techniques in order to compare which
technique provides a subspace that mantains the neighbourhood struc-
ture of the original space. Different distance metrics are used both in
the original and the projected spaces in order to find which one is more
adapted to our data. Results demonstrate that for our positive data
(color histograms) a good candidate that preserves the original neigh-
bourhood is NMF in conjunction with L1 distance metric when the χ2

metric is used in the original space. Since this is the most widely used dis-
tance metric when having histogram representations, our initial results
seem to be relevant.

1 Introduction

Over the past few years, several pattern recognition systems for visual ob-
ject recognition have been proposed based on principal component analysis
(PCA) [8, 7, 14, 1, 12, 13]. Although details vary, these systems can all be de-
scribed in terms of the same preprocessing and run-time steps. All of them are
characterized by the learning of a set of feature vectors and finding a subspace
representation that captures the structure of the data. Usually, when calculat-
ing the covariance matrix of the problem, eigenvectors are sorted by decreasing
eigenvalue only taking the most representative ones which correspond to the
directions of maximum variance. Once the subspace is fully-described by a pro-
jection matrix, the classification of a new feature vector is accomplished by
projecting and finding the nearest neighbor in the subspace.

Recently, a new approach for obtaining a linear representation of data has
been proposed. This new technique, called Non-negative Matrix Factorization
(NMF), was used in the work of Lee and Seung [5] to find parts of objects in an
unsupervised way. Non-negative Matrix Factorization differs from other methods
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Tecnologia grant TIC2000-0399-C02-01.

F.J. Perales et al. (Eds.): IbPRIA 2003, LNCS 2652, pp. 317–325, 2003.
c© Springer-Verlag Berlin Heidelberg 2003



318 David Guillamet and Jordi Vitrià

by its use of non-negativity constraints. Their work was tested with a set of
faces [5] and the obtained NMF bases are localized features that correspond
with intuitive notions of the parts of faces.

Both methods, PCA and NMF, can be viewed as maximum likelihood learn-
ing in a latent variable model. The space that is generated by a PCA transform
can be associated to a natural metric [7]. Otherwise, since NMF generates a non-
negative space, it does not exist a natural metric to use. This is the reason why
a distance metric must be defined in this space in order to compare and classify
projected data.

This paper presents experimental evaluations of traditional distance measures
in the context of visual object recognition when using both PCA and NMF
techniques. Also, a weighted version of NMF is introduced that outperforms
results obtained using NMF. Since NMF is based on positive restrictions, we
have used local color histograms as object features in order to verify which is
the most suitable technique to represent our original data. An extended analysis
of different distance metrics in the original space has been carried out in order to
compare both techniques. Also, different distance metrics have been compared
in the projected spaces obtained using PCA and NMF. An extended analysis to
compare both projected spaces with the original space has been done noticing
very interesting results.

2 PCA and NMF Techniques

2.1 Principal Component Analysis (PCA)

In the context of visual data classification, and due to the high dimensional-
ity of data, similarity and distance metrics are computationally expensive and
some compaction of the original data is usually needed. Principal Component
Analysis is an optimal linear dimensionality reduction scheme with respect to
the mean squared error (MSE) of the reconstruction. For a set of m training
vectors X = {x1, . . .xm} the mean (ν = 1

m

∑m
j=1 x

j) and covariance matrix
(Σ = 1

m

∑m
j=1(x

j − ν)(xj − ν)T ) can be calculated. Given a projection matrix E
composed of the r eigenvectors of Σ with highest eigenvalues, the r-dimensional
representation of an original, n-dimensional vector x, is given by the projection
y = ET (x − ν).

2.2 Non-negative Matrix Factorization (NMF)

NMF is a method to obtain a representation of data using non-negativity con-
straints. These constraints lead to a part-based representation because they allow
only additive, not subtractive, combinations of the original data [5]. Given an
initial database expressed by a n × m matrix V, where each column is an n-
dimensional non-negative vector of the original database (m vectors), it is pos-
sible to find two non-negative matrices (W and H) in order to approximate the
original matrix Viμ ≈ (WH)iμ =

∑r
a=1WiaHaμ. The dimensions of the factor-

ized matrices W and H are n× r and r ×m, respectively. Usually, r is chosen
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so that (n+m)r < nm. Each column of matrix W contains a basis vector while
each column ofH contains the weights needed to approximate the corresponding
column in V using the bases from W.

In order to estimateW andH, an objective function has to be defined. A pos-
sible objective function is given by F =

∑n
i=1

∑m
μ=1[Viμlog(WH)iμ− (WH)iμ].

This objective function can be related to the likelihood of generating training
samples in V from the bases W and encodings H under a Poisson model. An
iterative approach to reach a local maximum of this objective function is given
by the following rules [5]: Wia ←Wia

∑
μ

Viμ

(WH)iμ
Haμ,Wia ← Wia∑

j
Wja

,Haμ ←
Haμ

∑
iWia

Viμ

(WH)iμ
. Initialization is performed using positive random initial

conditions for matrices W and H. The convergence of the process is also en-
sured. See [5, 6] for more information.

Once a set of W bases is found to represent a certain data class, a new data
vector is projected using the same iteration rules as explained before but taking
the class matrix W as a constant reference. Thus, taking the constant matrix
W of a data class and starting with a positive random matrix factor H, we will
obtain a set of projected coefficients (H) that would be the projected coefficients
of a new data vector expressed using the set of bases W of a given data class.

A weighted version of NMF can be introduced by considering a weight matrix
Q that takes into account the probability of each training data vector over the
whole set of training vectors. Iterative update rules are the same as the ones
related before for the NMF with the addition of a new matrix Q. This weighted
model can be seen as the result of multiplying both sides of the factorization with
a m by m diagonal weight matrix Q and to estimate the bases and encodings
for the new factorization model, VQ ≈WHQ. Where the diagonal element qμ
corresponds to the weight of training vector μ, with 1 ≤ μ ≤ m. It is also
assumed that all the weights sum to unity. The modified objective function in
this case takes the form FQ =

∑m
μ=1 qμ

∑n
i=1[Viμ log((WH)iμqμ) − (WH)iμ].

Now, the iterative update rules to obtain the new matrices subject to this new
objective function are defined by: Wia ← Wia∑

μ
qμHaμ

∑
μ

qμViμ

(WH)iμ
Haμ, Wia ←

Wia∑
j
Wja

, Haμ ← Haμ

∑
iWia

Viμ

(WH)iμ
. See [3] for more information.

3 Distance Metrics

Five commonly used distance metrics are tested in this work: L1, L2, Cos, χ2

and Histogram intersection. Assuming that we are working with n dimensional
vectors, L1 metric between two vectors x and y is defined as

distL1(x, y) =
n∑
i=1

|xi − yi| (1)
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L2 metric between two vectors x and y is defined as

distL2(x, y) =

√√√√ n∑
i=1

(xi − yi)2 (2)

Cos metric between two vectors x and y is defined as

distCos(x, y) =
xT y

‖ x ‖ · ‖ y ‖ (3)

where ‖ . ‖ denotes the norm. This measure is also defined as the cosine of the
angle between two vectors and is usually used to extract a measure of correlation
between vectors. χ2 metric is usually used when we try to obtain a measure of
similarity between histograms and is defined as

distχ2(x, y) =
1
2

n∑
i=1

(xi − yi)2

xi + yi
(4)

Finally, the histogram intersection [11] measure is not a true metric but it is
usually used in the context of color histogram classification because it provides
the best recognition results. Histogram intersection between two histograms x
and y is defined as

distInt(x, y) =
n∑
i=1

min(xi, yi) (5)

4 Methodology

Since our intention is to compare three techniques used on the dimensionality
reduction of the original space, it is interesting to compare which is the technique
that mantains the neighbourhood of the original space. We analyze how two
vectors that are close in the original space are related in the projected spaces of
the analyzed techniques, NMF/WNMF and PCA, in order to find which is the
technique that can reproduce the original space more exactly. Figure 1 shows
a graphical example of this idea. Figure (1.a) shows a sample vector X1 and its
5 neighbours in the original space using some distance d. When projecting the
original space to a reduced one using some technique, NMF/WNMF or PCA
in our particular case, the original space of figure (1.a) is transformed to the
space represented in figure (1.b) where we can appreciate that only two original
vectors, X3 and X7, mantain its neighbourhood with X1. Figure (1.c) represents
a projected space obtained using another technique where we can see that three
original vectors, X3, X32 and X21, mantain its neighbourhood with X1. With
this example and only evaluating the neighbourhood of X1, the projected space
of figure (1.c) is closer to the original space than the one represented in figure
(1.b).
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(a) Original space (b) Projected space 1 (c) Projected space 2

Fig. 1. Considering a sample vector X1 and its 5 neighbours, (a) represents the
5 nearest original vectors of X1. Assuming that we used a technique to reduce
the original space to another one, (b) represents the 5 nearest reduced vectors of
the projected vector (X ′1) of its original vector X1. (c) represents the projection
of the same original space to a reduced space using another technique. The first
projected space (b) holds 2 vectors and (c) holds 3 vectors from the original
space in its neighbourhood. Thus, the second projected space is closer to the
original one for this specific vector X1

5 Experimental Results

Our experiments are focused on the evaluation of 45 different pharmaceutical
products having 6 different instances per product. These products present sev-
eral color ambiguities (some products are nearly similar only differing in reduced
regions) and, in all the images, the background color is black and the illumina-
tion is controlled. Figure (2.a) shows a subset of the pharmaceutical products
used in the experiments. We used a Harris operator [4, 10] to detect interesting
keypoints in our products. Once a keypoint is considered, we extract a local color
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Fig. 2. (a) 9 of the 45 pharmaceutical products used in our experiments. (b)
Amount of information captured using a PCA space and 3 different dimensions
of the projected space (2, 14 and 30)
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histogram from its neighborhood and we will use this color histogram as a salient
feature of the object. Since we find desirable to be able to capture the objects
at any rotation angle, the extracted local color histograms should be invariant
to this feature. Thus, we extract each histogram from a circular mask from the
neighborhood of a keypoint because it minimizes the rotational effects that the
image can suffer. Once each instance of one product is represented by a collec-
tion of local color histograms, we join all the local color histograms that belong
to the same product in one object class. Taking 3 instances of each product as
training data and the other three as testing data, we join all the histograms of
each set of data in one object model. Thus, each object class is represented by
an average of 1000 local color histograms.

Each object model is projected to a PCA and a NMF/WNMF space using
different dimensionalities of the projected space. We fixed these dimensionalities
to: 2,6,10,14,18,22,26 and 30. Each local color histogram is represented by a 512
dimensional vector, but we have to note that nearly all the components of each
histogram are null. Thus, using 30 dimensions to represent a projected space
should be enough to capture the relevant information contained in each color
histogram. With a PCA space, we are able to know the amount of information
that can be captured by the projected space. Figure (2.b) shows the amount
of information that is represented using three different dimensions of the PCA
space with respect all the 45 object models of our database. It is clear that 2
dimensions is not enough to capture reliable information from the original space,
but 30 dimensions should be enough since nearly all the objects mantain a 99%
of the information of the original space.

In computer vision, one common task is to match two sets of data corre-
sponding to two different objects in order to find a matching between them.
Here, we reproduce this idea by having 45 different pharmaceutical products
that we compare using different subspace representations, distance metrics and
neighbourhoods. Figure 3 shows the graphical results when we compare the train-
ing data vectors of object 3 against the testing data vectors of object 6 using
a dimensionality of the projected spaces of 22 dimensions and a k = 5 near-
est neighbour classifier. Also, different distance metrics are used in the original
space and in the projected spaces. Figure (3.a) gives us an idea of how a pro-
jected space is related to the original space using different distance metrics and,
in this particular case, a L2 distance in the projected space of PCA is the best
combination to reproduce the same neighbourhood of the original space when
using the L2 metric. Also in this figure (3.a), it is interesting to note that the
WNMF technique outperforms significantly the NMF results. This improvement
is clearly manifested when using the histogram intersection, L1 or a χ2 test as
a distance metric in the original space and using a L1 metric in the projected
space.

Figure (3.b) compares the three methods between them when fixing the di-
mensionality of the problem to 30 and using a fixed neighbourhood of k = 13.
When comparing one object against another one, as in figure 3, we only take into
account when one method represents the original space better than the other
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Fig. 3. (a) Comparison of object vectors of model 3 against the object vectors of
model 6 using a projected space of 22 dimensions and a K = 5 nearest neighbour
classifier using three different techniques: PCA, NMF and WNMF. Horizontal
axis reflects the three different distance metrics used in the projected spaces
of PCA, NMF and WNMF. Vertical axis reflects the percentage of vectors that
mantains its neighborhood with the original space. (b) Graphical results obtained
when comparing PCA versus NMF (black columns), PCA versus WNMF (gray
columns) and WNMF versus NMF (white columns) when using 30 dimensions
and k = 13 neighbours for a nearest neighbour classifier. When using a χ2, L1

or histogram interesection as distance metrics in the original space, NMF and
WNMF are significantly better than PCA (performances below 50%). Also, since
the white column (WNMF versus NMF) is always above 50% means that WNMF
is better than NMF for all the cases

one, that is, if we compare PCA versus NMF (label PCA-NMF in figure (3.b)),
we only take into account when PCA is better than NMF for each particular
comparison. Since we have 45 pharmaceutical products, we have 45× 45 = 2025
evaluations. Figure (3.b) shows that when one column is above 50% means that
one method performs better than the other one out of these 2025 evaluations.
Thus, this figure is useful for extracting some interesting conclusions of this work.

The first conclusion is that WNMF, as a modification of the original NMF,
performs better than the NMF in all the comparisons. When using a L2 metric in
the original space of color histograms, PCA performs always better with respect
to NMF and WNMF (100% in figure (3.b)).The best distance metric to use
with PCA is L2 and this is not a novelty since PCA creates its subspace as an
optimal reduction scheme with respect to the mean squared error, so that, L2

is the natural distance metric to use in the reduced space. When using the Cos
metric in the original space, PCA starts decreasing its performance in front of
NMF and WNMF, but it is still better because it has a percentage of 70% to
80% of performance as seen in figure 3. The most important conclusion is that
NMF or WNMF techniques are better than PCA when using the L1 metric in
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the subspace and compared to the χ2, L1 or the histogram intersection metrics
used in the original space.

We should say that with this study, we are only comparing how a projected
space is related to the original one in terms of neighbourhoods but not stating
which is the best classification technique. Additionaly, since our data is repre-
sented through histograms we should say that the most common distance metric
used in the literature is the χ2 as can be seen in relevant studies [2, 9].

6 Conclusions

This paper analyzes an alternative technique to Principal Component Analysis
(PCA), the so called Non-negative Matrix Factorization (NMF) and a weighted
version of it. These techniques are based on reducing an original space to a sub-
space where dimensionality is lower and the main question is whether this new
subspace representation can be used for classification/recognition purposes. This
study is a first attempt in order to analyze how the subspaces obtained using
PCA and NMF/WNMF are related to the original ones. We evaluated the neigh-
bourhood of the original vectors with respect to their projections in the different
subspaces of PCA and NMF/WNMF. Different distance metrics in the original
space and in the subspaces are evaluated in order to find how to preserve the
original neighbourhood. As a result, we state that the NMF technique combined
with the L1 norm is well suited for reproducing the neighbourhood of a given
space when χ2 is used. This is a very important result since our original data
is represented using color histograms (positive data) and is a very common to
use χ2 when having histogram representations. Also, we can also experimentally
state that WNMF performs slightly better than NMF for all the cases.
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Abstract. In this paper, a new embedded wavelet packet image coder
algorithm is proposed for an effective image coder using correlation be-
tween partitioned coefficients. This new algorithm presents parent-child
relationship for reducing image reconstruction error using relations be-
tween individual frequency sub-bands. By parent-child relationships, ev-
ery coefficient is partitioned and encoded for the zerotree data structure.
It is shown that the proposed wavelet packet image coder algorithm
achieves lower bit rates than SPIHT. It also demonstrates higher PSNR
under the same bit rate. The perfect rate control is compared with the
conventional methods. These results show that the encoding and de-
coding processes of the proposed coder are simpler and more accurate
than the conventional ones for texture images that include many mid
and high-frequency elements such as aerial and satellite photograph im-
ages. The experimental results imply the possibility that the proposed
method can be applied to real-time vision system, on-line image process-
ing and image fusion which require smaller file size and better resolution.

Keywords: Wavelet Packet, SPIHT, Image Compression, CPSO

1 Introduction

Most of the images collected from airplanes or satellites are texture imagery
containing plenty of middle frequency. Contrary to the dyadic wavelet transform
which recursively decomposes low frequency components, the wavelet packet
transform is suitable for analyzing or presenting non-stationary signals such as
texture images by its adaptability to each frequency band [1]. In high altitude
photograph images such as aerial or satellite photograph images, buildings and
landscapes are usually represented as recursive textures. After FFT as a pre-
processing, it is notified that high frequency components are dominated in these
images. The wavelet packet transform usually shows better performance than
the conventional wavelet transform in the processing of information which has
high frequency component [2, 3, 4].
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However, the wavelet packet transformation should lose the multi-resolution
structure of wavelet basis function. It is because that the zerotree method could
not be directly introduced in the wavelet packet transform. That is, it is impos-
sible to construct the tree that has its coefficients located in the same spatial
relationship.

In this paper, a coefficient partitioning scanning order (CPSO) is newly de-
fined using decomposition information, which is derived from wavelet packet
decomposition. From this definition, a new wavelet packet image coder algo-
rithm, which applies the zerotree by partitioning its coefficient, is developed. In
the proposed algorithm, input images are transformed into wavelet packets us-
ing 9-7 biorthogonal filters over full bandwidth and optimal basis functions are
selected on the basis of entropy. Then, parent-child relationships are defined in
the packet-transformed coefficients depending upon its sub-band decomposition
information and the essentiality of coefficients. From this relationship, CPSO
is constructed. After partitioning the coefficients, each coefficient is quantized
hierarchically and decoded.

This paper is organized as follows; the characteristics and the points of issue
of the conventional algorithms are concerned in Section 2. Then, the proposed
wavelet packet image coder algorithm is introduced in Section 3. In the Section 4,
the improvement of the new algorithm over the conventional algorithms in bit-
rate and PSNR is demonstrated by the experimental results. Finally, Section 5
summarizes the results, discusses some technical issues and suggests some further
research prospects.

2 Wavelet Packet Image Coder Algorithm

The wavelet packet image coder algorithm can be divided into three sections as
shown in Fig. 1. First, input images are partitioned over all bandwidth using
proper wavelet filters and based on the partitioned coefficients, and then input
images are divided again by the wavelet packet or basis function, which provides
optimal conditions for image coding. Second, quantize wavelet packet coefficients
using scalar quantizer, vector quantizer or hierarchical quantizer. Third, we get
the bit stream using entropy encoder such as Huffman Arithmetic encoder [6].

2.1 Wavelet Packet Transform

The image is first decomposed into the wavelet packet. In the wavelet packet
transform for signal compression, several wavelet decomposition criteria such as
entropy measurement, shareholding, rate-distortion tradeoff can be considered.
Among these algorithms, the singletree algorithms introduced by Ramchandran
and Vetterli is known as optimal in the sense of rate-distortion [2, 8]. However,
this algorithm needs to be applied to all of the scalar quantizer for each node and
calculate quantization distortion and bit rates, and then it finds out optimal basis
using these calculation results. These calculations introduce the computational
complexity, which makes real-time application difficult. And, because a scalar
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Fig. 1. Wavelet Packet Coding Algorithm

quantization process has been already included in the packet transformation
scheme, multilevel quantization, which is a core technique of the zerotree wavelet
popular in pyramid structure wavelet transform, cannot be applied. Therefore,
in the embedding approach using additive successive quantization, it may be no
longer optimal. In our research, we use an entropy-based algorithm with a simple
scheme [6].

2.2 EZW and SPIHT Algorithm

EZW (Embedded Wavelet Transform) [3] algorithm has known as the most popu-
lar one among the other image wavelet code algorithms. In spite of it simplicity,
it has good bit rate distortion performance and the embedding characteristic
that the large and major coefficients re transferred earlier than other ones. This
characteristic is very helpful to progressive transmission

SPIHT (Set Partitioning In Hierarchical Tree) is well known as an improved
model of EZW [5]. In opposition to EZW which decides transfer order using the
dominant and subordinate pass, SPIHT decides transfer order more effectively
using the LIP (List of Insignificant Pixel) and LIS (List of Insignificant Sets).

These two algorithms construct a tree with zero quantized coefficients us-
ing the relationships between bilateral bandwidths. In conclusion, it introduces
efficient reduction of the amount of data which are sent to decoder. However,
because the hierarchical structure with multi-level resolutions is not clear in the
wavelet packet, it is not easy to use the relationship between bilateral band-
widths. That is, in the wavelet packet, the parent-child relationship, which is
used in the EZW or SPIHT, is not easy to maintain.
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3 Coefficient Partitioning Wavelet Packet Coder
Algorithm

In this section, CPSO is defined using the split information of sub-band, which
is provided from wavelet packet decomposition, and then, a new wavelet packet
coder algorithm that quantizes each coefficient with zerotree on CPSO is sug-
gested.

3.1 Structure of Proposed Coder

The structure of the proposed coefficient partitioning algorithm and quantization
procedure is as follows;

First of all, an input image is decomposed into wavelet packet using 9-7 tap
biorthogonal filter and first-order entropy.

After the wavelet packet decomposition has done, each coefficient is parti-
tioned depending on its split information and the essentiality of each coefficient,
and processed with the successive quantization. During these processes, the new
CPSO, which uses the relationships between individual bandwidths, is defined
for applying the zerotree algorithm to the wavelet packet transform.

3.2 CPSO for Proposed Algorithm

In the dyadic wavelet transform, all of the parent nodes have always 4 children
nodes, which have same frequency space, except the lowest frequency sub-band.
However, in the wavelet packet transform, the children nodes cannot apply a con-
ventional zerotree algorithm directly.

In this section, the new coefficient partition scanning order is defined using
the parent-child relationship (the relationship of identical space) based on the
zerotree method.

In the proposed algorithm, CPSO is defined as the next three conditions.

Condition 1. If child sub-band S is more decomposed than band P, which is
related with the parent node, it does not have a child node. This bandwidth
finds out the significant coefficients through the raster scan after finishing the P
band threshold scanning as shown in the Figs. 2-a and 2-b. We call it CPSO0.

Condition 2. If child sub-band S is not decomposed, it has 4 children nodes.
It is described in Fig. 2-c. Equation (1) describes condition 2. We call it CPSO4.

{D(x, y) | S(x + i, y + j), where i = 0, 1 and j = 0, 1} . (1)

where D(x, y) is the set of children nodes and S(x, y) is a child node in sub-band.

Condition 3. If child sub-band S, in the higher resolution than P band of
parent node, is decomposed into 4 sub-bands, each coefficient located in the
same space of the sub-band becomes a child node. It is described in Equation
(2) and Fig. 2-d. We call it CPSO1.

{D(x, y) | Sk(x, y), where k = 0, 1, 2, 3} . (2)
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(a) (b)

(c) (d)

Fig. 2. Examples of CPSO in the wavelet packet transform; (a) example of
CPSO0, (b) other example of CPSO0, (c) example of CPSO4, (d) example of
CPSO1

where D(x, y) is the set of children nodes and Sk(x, y) is a child node in sub-
band.

3.3 Coder Algorithm

In most of wavelet packet transforms except top-down algorithm, the informa-
tion, which indicates each band’s decomposition, has to be transferred with
transformed coefficients in a header format.

In this paper, during the coding process, the child node scheme of each co-
efficient is verified using this information and CPSO is extracted depending on
these results. In this list of decomposition information SM (Split Mark), 1 is
assigned for the decomposed band and 0 for the un-decomposed band

Following is a pseudocode for the coding algorithm, excluding the wavelet
packet decomposition and the entropy coding. The list of the detected coefficients
DC saves the coordinate of coefficient which has bigger absolute value than the
specific threshold in the list of waiting coefficients WC, and in the list of root of
waiting coefficients WCR used with the SM, the split information of each node
indicates a child or descendant represented as 1 or 0 for the variety of un-scanned
descendant. cx,y is a wavelet transform coefficient for the coordinate of spatial
dimension {x, y} and the first threshold value T0 for identifying a significant
value, T0 = max{cx,y}/2.
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while (up to target compression ratio)
while (each coefficient saved in WC)

if |cx,y| ≥ T0
then

Output 1, output 1 or 0 for +/- bit,
add coordinate to the list DC and delete from the WC

else
Output 0

fi
end
while (each coefficient saved in WCR)

if |cx,y| ≥ T0
then

Output 1 and determine scanning order in children
nodes according to SM.
if (CPSO0)

Add coordinate to the list WCR.
fi
if (CPSO1)

D(x, y) =

{
each coefficient located in same with x, y
at Sk(x, y)

fi
if (CPSO4)

D(x, y) =

{
(2*x, 2*y), (2*x, 2*y+1)
(2*x+1, 2*y),(2*x+1, 2*y+1)

fi
while (in D(x, y))

if |cx,y| ≥ T0
then

Output 1 and 1 or 0 for +/- bit,
add it to the DC.

else
Output 0, and it to the WC

fi
Determine scanning order in descendent nodes
according to SM.
According to CPSO, determine D(x, y)
and move the tree to the WCR

end
else

Output 0
fi

end
end
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4 Experimental Results

In this chapter, the experimental results for 512 x 512 remote sensing images,
which are sample-1 (see Fig. 3) and sample-2 (see Fig. 4) are summarized in
Table 1 and in Figs. 7 and 8 for comparing the different algorithms. Figs. 5
and 6 are coefficients which are decomposed with wavelet transform packet.
These samples are collected from www.spaceimaging.com web site, which sup-
plies the most advanced satellite and aerial images. These images are selected
to experiment and demonstrate for the superiority of the proposed algorithm
against the conventional algorithm. These kinds of images are usually composed
of simplified and recursive geometrical structures such as rectangular, circles,
lines and groups of points by high altitude view. Most of high frequency compo-
nent images have shown better performance in the partitioning of image using
wavelet packet decomposition [7].

Two-dimensional separable length 9-7 biorthonormal wavelet filters were used
for wavelet packet decomposition. After applying coefficient partitioning scan-
ning order, the proposed algorithm in this paper is compared with the results of
the conventional SPIHT algorithm.

Comparing the performance between the proposed algorithm and conven-
tional algorithm has done by bit rate and PSNR (Peak Signal to Noise Ratio).
PSNR, is defined as Equation (3).

PSNR = 10× log10
2552

MSE
dB (3)

Bit rate directly refers to the size of file obtained from the coding procedure
to be consistent with SPIHT coder.

In the proposed algorithm, such as SPIHT, all of output data of coder indicate
only 1 or 0. That is, whether or significant coefficient, sign of coefficient and SM
(split mark), which include the packet decomposition information coder also
represent whether or decomposition using only 1 or 0.

Accordingly, the proposed algorithm can do bit operation for all of the output
data and reduce the file size more than the conventional algorithm when it is
saved.

Table 1 and Figs. 7 and 8 show the results of performance comparison between
two algorithms. Bit rate for performance comparison uses the bit per pixel unit
against size, including all of header information. In case of the sample images,
the proposed coefficient partitioning wavelet packet method using CPSO shows
1 or 2 dB higher performance, compared to the SPIHT in the higher compression
rates.

As concerns parent-child node relationship, which has usually applied in the
wavelet packet, it cannot be utilized multi-resolution structure that the wavelet
transform does. The result in Table 1 shows that the image adaptability of
wavelet packet transform can compliment sufficiently the parent-child relation-
ship at the wavelet packet for the images which have relatively middle or high
bandwidth frequency signal such as aerial or satellite images.
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Fig. 3. Satellite image of Fresno,
USA as sample-1

Fig. 4. Satellite image of Car-
olina, USA as sample-2

Fig. 5. Wavelet Packet Decom-
position result of sample-1 as
shown in Fig. 3 (Fresno)

Fig. 6. Wavelet Packet Decom-
position result of sample-2 as
shown in Fig. 4 (Carolina)

Fig. 7. PSNR of sample-1 Fig. 8. PSNR of sample-2
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Table 1. Results of the performance comparison between CPSO and SPIHT

Bit rate Sample #1 (PSNR) Sample #2 (PSNR)
(bpp) SPIHT CPSO SPIHT CPSO

0.125 25.10 26.19 16.31 28.71

0.25 27.80 29.12 29.26 29.35

0.5 31.61 32.08 32.61 33.33

1.0 36.22 36.44 35.66 36.89

5 Conclusions

In this work, using the relationships between sub-bands, the new wavelet packet
transform image coder algorithm is proposed. The proposed algorithm, CPSO,
demonstrates improving the image compression algorithm that uses the conven-
tional wavelet transform.

In the CPSO algorithm, the new parent-child relationship is extracted using
the relationships between individual frequencies sub-bands at the wavelet packet
transform, decide the coding order of coefficient to reduce image reconstruction
error.

There are improvements in bit rate and distortion performance by decoding
wavelet packet transform coefficient with the zerotree method.

The experimental results demonstrate very high PSNR at the bit rate and
show a great improvement in total image compression time.

From these results, it is shown that the encoding and decoding processes of
the proposed coder are simpler and more accurate than the conventional method
for texture images, which include many mid and high-frequency elements such
as aerial and satellite photograph images.

It shows that the proposed algorithm has a great possibility to improve real-
time vision system, on-line image processing and JPEG2000.
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Abstract. Three different methods for the synthetic generation of hand-
written text are introduced. These methods are experimentally evaluated
in the context of a cursive handwriting recognition task, using an HMM-
based recognizer. In the experiments, the performance of a traditional
recognizer, which is trained on data produced by human writers, is com-
pared to a system that is trained on synthetic data only. Under the most
elaborate synthetic handwriting generation model, a level of performance
comparable to, or even slightly better than, the system trained on the
writing of humans was observed.

Keywords: handwriting recognition, cursive handwriting, classifier training,
synthetic training data, hidden Markov model (HMM)

1 Introduction

Automatic handwriting recognition has become a major area of research [1].
Significant progress has been achieved and first commercial systems entered the
market [2, 3]. Nevertheless there is still ample room for improvement. A serious
problem in handwriting recognition is the dependency of all available recog-
nition methods on large amounts of training data. Virtually any method for
handwritten character, word, or sentence recognition (e.g. neural network, sta-
tistical classifier, hidden Markov model, or support vector machine) needs to be
trained. As a rule of thumb, the larger the training set is, the better will be
recognition rate of the system. However, the collection of training data in hand-
writing recognition is a tedious and expensive process with clear limitations.

In the area of machine printed character recognition it was proposed to use
synthetic data for training. A number of successful activities in this direction
have been reported in the literature. Using a character degradation model, Baird
successfully constructed a Tibetan OCR system using training data that was ini-
tialized with real images but augmented by synthetic variations [4]. Using the
same degradation model, a full-ASCII, 100- typeface classifier was developed
* corresponding author
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using exclusively synthetic training data [5]. A recent review of document image
degradation models and their use in synthetic data generation for OCR can be
found in [6]. A system for machine printed Arabic OCR that was trained on
synthetic data only is described in [7].

In the present paper we discuss a number of methods to generate synthetic
handwritten text that can be used to train handwriting recognition systems. The
basic idea is to use image templates of single characters and n-tuples of charac-
ters, and concatenate them to generate synthetic handwritten text. All templates
are produced by human writers. A similar approach was reported in [8]. How-
ever, the aim in [8] was not to generate synthetic data for a recognition system,
but just to produce naturally looking handwritten notes from ASCII text, to be
used for personal communication. The methods proposed in the present paper
are experimentally evaluated in the context of an HMM based sentence recog-
nizer that was developed earlier [9, 10]. Aim of the experiments is to measure the
recognition rate of the recognizer using synthetic training data and compare it to
the performance achieved with training data produced by human writers. Other
work on the synthetic generation of handwriting has been reported in [11–13].

2 Generation of Synthetic Training Data

In this section, we introduce a number of methods, with increasing degree of
complexity, to generate synthetic training data for handwriting recognition sys-
tems.

2.1 Synthetic handwriting based on individual characters extracted
from a form

The method described in this sub-section is based on a software tool for the gen-
eration of handwritten notes from ASCII files [14]. Each writer who contributes
to the training set fills in one specially designed form. This form is divided into
boxes. There exists one box for each character from the underlying alphabet.
The forms filled in by the individual writers are scanned and an image is ex-
tracted for each character. Then, given an ASCII text and the character images
extracted from a form as described before, a handwritten version of the ASCII
text is generated by simply concatenating the corresponding character images.
An example of a page of text, synthetically generated with this method, is shown
in Fig. 2. For the purpose of comparison, the same text written by the writer
who filled in the underlying form is shown in Fig. 1. Obviously, this approach
is extremely simple. Consequently, there are some shortcomings in the synthetic
text images. First, there are no ligatures1. Secondly, all instances of the same
character in a text are always identical. This clearly restricts the usefulness of
1 A ligature is a stroke that connects two consecutive characters
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Fig. 1. Example of a text written by a human writer

Fig. 2. Example of a synthetically generated text based on character templates pro-
duced by the same writer as in Fig. 1, using the method of Section 2.1

this method in the automatic generation of training data for handwriting recog-
nition systems, as we shall se later in Section 3.
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Fig. 3. Same example as in Fig. 2, but using the method of Section 2.2

2.2 Synthetic handwriting based on individual characters extracted
from natural text

It is well known that the shape of a character depends on its context. From this
point of view, the template images used in the method introduced in Section 2.1
are rather unnatural because all characters are written in isolation. Under the
method described in this sub-section, each writer contributing to the training
set not just fills isolated characters in the boxes on a form, but writes some given
text, which typically consists of five to ten lines. The text to be written must be
selected - or defined - in such a way that each character occurs at least once.

Once a writer has produced a text, it is scanned and preprocessed using the
same procedures as described in [9]. That is, the skew of the page is detected
and corrected, and the individual lines of text are extracted. Next, each text line
is normalized. The normalization steps include slant correction, and normalizing
the text line’s width, height, and position with respect to the baseline.

After preprocessing, individual character subimages are extracted from a
line of text. For this step, a semi-automatic procedure is applied. Under this
procedure, the Hidden-Markov-Model (HMM) based recognizer described in [9,
10] is run on a line of text in the forced alignment mode. For more details on the
forced alignment method for segmenting text lines into words and characters,
the reader is referred to [15]. Finding the optimal alignment between the ground
truth and the handwritten text line image is accomplished fully automatically.
However, some misalignments are inevitable. To overcome these misalignments
some manual correction is done in a postprocessing step.
Once an image template has been generated for each character of the un-

derlying alphabet, synthetic handwritten text can be generated similarly to the
method described in Section 2.1. That is, the handwritten version of a given
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ASCII text is generated by concatenating the corresponding character images.
An example of this method is shown in Fig. 3. Here the same ASCII text is
used as in Fig. 2. Clearly, this method still has the shortcomings pointed out
in Section 2.1, namely, lack of ligatures and identical prototype images for each
character. Nevertheless, it may be argued that the shape of the individual char-
acters is more natural than under the method described in 2.1.

2.3 Using n-tuples of characters

In [8] it was suggested to use n-tuples of characters as basic templates in order to
generated naturally looking synthetic handwritten text. As a matter of fact, the
two shortcomings pointed out before can be overcome if n-tuples of characters
rather than individual characters are used as the elementary building blocks for
the synthesized text. First, character n-tuples will normally include ligatures,
and secondly, it is very likely that a character not only occurs in one, but in
several n-tuples. Hence the synthetic handwritten text will usually include more
than one instance per character. In the experiments described in Section 3, we
used template images of 1-, 2-, and 3-tuples of characters. However, the method
can be easily extended to tuples of higher order. In the following we describe the
procedure greater detail.

First a dictionary of n-tuples is constructed. In [8] such a dictionary is com-
piled using the most frequent groups of letters appearing in the Brown corpus
[16]. Here we adopted an alternative approach and extracted all 2- and 3- tuples
of characters occurring in a subset of the texts that were used in the experiments.
This set of 2- and 3-tuples was complemented by all 1-tuples, i.e. all individual
characters of the alphabet. The total number of 2- and 3-tuples included in the
dictionary is 712.

Given the dictionary of n-tuples, any text that is to be synthesized is subject
to a parsing procedure that splits the text into a sequence of n-tuples from the
dictionary. For this splitting process, a simple greedy parsing strategy is used
[17].
Given an arbitrary ASCII text, its synthetic handwritten version is gener-

ated by first splitting it into a sequence of n-tuples from the dictionary using
the greedy parsing strategy, and then concatenating the template images that
correspond to the n-tuples. The template images of the n-tuples are extracted
from handwritten text similarly to the forced alignment procedure described in
Section 2.2. That is, the HMM forced alignment procedure yields the location of
each character in the image of a line of text. From this information the n-tuples
included in the dictionary can be extracted. As an example, the original text
of Fig. 1, produced by the n-tuple method is shown in Fig. 4. Obviously, this
version of the text looks more natural than its counterparts shown in Figs. 2 and
3
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Fig. 4. Same example as in Fig. 2, but using the method of Section 2.3

3 Experimental Results

The recognizer used in this work is the one described in [9, 10]. The main focus
of the experiments described in this section is on the question how a recognizer,
trained in the traditional way on data produced by human writers, will compare
with one that is trained on synthetic data. For all experiments a subset of the
IAM database was selected. A detailed description of this database can be found
in [21].

For the experiments, nine different text fragments, each written on a separate
sheet of paper by 16 different writers were selected. So the dataset selected for
the experiments consists of a total of 144 text fragments. These text fragments
include 1190 word instances over a vocabulary of 357 words. One of these text
fragments is shown in Fig. 1.

The aim of the first experiment was to provide a figure of reference against
which the various methods for synthetic training data generation could be mea-
sured. In this experiment the HMM classifier described in [9, 10] was trained and
tested on natural, i.e. human produced, data exclusively. The 144 text fragments
selected from the IAM database were split in a proportion of 80% − 20% into
training and test set, respectively. All 16 writers were equally distributed over
both the training and test set. A 5-fold cross-validation was conducted. In this
experiment a recognition rate of 70.8% on the word level was measured. This
experiment will be referred to as Experiment 1 in the following.
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Next the performance of the classifier was measured using natural test data
and training data synthetically generated by the method described in Section
2.1. In this experiment exactly the same protocol and the same dataset as in Ex-
periment 1 were used. The only difference was in the training data. Here the same
text fragments, but synthetically produced, using character templates from the
writer who generated that natural training text fragment, replaced each natural
handwritten text fragment. The test data in this experiment was the same as in
Experiment 1, i.e. it was all natural. In this experiment, which will be referred
to as Experiment 2 below, a recognition rate of 65.8% was measured. Thirdly,
the synthetic handwriting method described in Section 2.2 was experimentally
evaluated, using the same procedure as in Experiment 2 except for the different
method to produce the synthetic training data. In this experiment, which will
be referred to as Experiment 3 below, a recognition rate of 68.5% was achieved.

Finally the n-tuple method described in Section 2.3 was evaluated. The pro-
cedure was analogous to Experiments 2 and 3. This experiment will be referred
to as Experiment 4 below. A recognition rate of 71.1% was measured.

A summary of all experimental results is shown in Fig. 5. Obviously, the
recognition performance of the HMM classifier used in this work depends on the
quality of the training data. First of all, we notice a clear performance drop if
synthetic training data produced with the method described in Section 2.1 is
used instead of natural handwriting. For synthetic training data, the increase
from 65.8 to 68.5% indicates that single characters, written in isolation, are
less suitable for the generation of useful training data than single characters
extracted from whole words or sentences. Moreover, generating synthetic hand-
written text with just one template per character class and without any ligatures
(Experiments 2 and 3) seems not sufficient to achieve a level of performance sim-
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ilar to one obtained through the use of natural training data. However, under
the more elaborate model presented in Section 2.3 the recognition performance
of the system based on synthetic training data even slightly outperformed the
system trained with natural data.

4 Summary and Conclusions

In this paper the generation of synthetic data for the development of handwriting
recognition systems is proposed. The basic idea is to use templates of individual
characters together with n-tuples of characters and concatenate them into words
and sentences. All templates are extracted from handwriting probes of human
writers. In a series of experiments it was shown that training a handwriting
recognition system on synthetic data only can lead to a recognition performance
as good, or even better, than that of a system trained in the traditional way
using handwriting produced by humans.

The acquisition of training data in handwriting recognition is costly. This
observation is confirmed by the fact that the repository of publicly available
databases is quite limited. A potential danger of this limitation is the excessive
use - and sometimes abuse - of these databases. Some of these databases are
getting ’worn out’. The use of synthetic data in the development of handwriting
recognition systems may be a promising way to overcome this dilemma. More-
over, through synthetic generation almost unlimited amounts of training data
can be generated. According to the results presented in [22–24], this may allow
us to build recognizers with a very high recognition accuracy.

There are a number of issues to be potentially addressed in future research.
First of all, the parameter space of the methods described in Section 2 hasn’t
been fully explored. For example, one could use n-tuples with n larger than 3,
or an optimal parsing procedure when splitting a word into n-tuples. Secondly,
one could provide not just a single template for each character and each n-tuple,
but extract multiple templates and choose among them at random when pro-
ducing some given text. In this way, more variation in the synthetic handwriting
can be expected. Thirdly, it would be interesting to see how training on syn-
thetic data compares with natural data in case of larger vocabularies, a larger
number of writers, and for classifiers other than HMMs. Further issues to be
addressed in future are the mixture of natural and synthetic training data, the
use of synthetic data for testing, and the application of distortion models [4], [25].
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José J. Guerrero2, and Carlos Sagüés2
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Abstract. In this paper we present a complete chain of algorithms for
detection and tracking of moving objects using a static camera. The sys-
tem is based on robust difference of images for motion detection. How-
ever, the difference of images does not take place directly over the image
frames, but over two robust frames which are continuously constructed
by temporal median filtering on a set of last grabbed images, which al-
lows working with slow illumination changes. The system also includes
a Kalman filter for tracking objects, which is also employed in two ways:
assisting to the process of object detection and providing the object state
that models its behaviour. These algorithms have given us a more robust
method of detection, making possible the handling of occlusions as can
be seen in the experimentation made with outdoor traffic scenes.

1 Introduction

Detection of moving objects is an important problem in applications such as
surveillance [1], object tracking [2], and video compression [3]. There exist a lot of
related approaches. So, Haar-wavelet transform is used to describe an object class
in terms of a dictionary of local, oriented and multi-scale intensity differences
between adjacent regions [4] and it is applied to detect pedestrians in driver
assistance systems. The AMOS method [3] is an active system that uses low-
level segmentation and a high-level object tracking, although it needs an initial
segmentation made manually by the user.

Nevertheless when detecting moving objects, methods based on difference
are more often used, although they have also some drawbacks. Thus, the dif-
ference map is usually binarized by thresholding at some predefined value but,
as known, that threshold is critical, since a too low threshold will swap the
difference map with spurious changes, while a too high threshold will suppress
significant changes. There are several thresholding techniques specifically de-
signed to be effective in these cases [5], but they do not take into account the
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relation between frames in order to eliminate noise and they are, in general,
computationally expensive. Additionally these approaches have some difficulties
with small or slow-moving objects. In this sense, to make more robust the detec-
tion of changes, intensity characteristics of groups of pixels at the same location
may be compared using an statistical approach [6].

All these works give good results, however in cases of occlusions or cluttered
images their performance get worse. To solve this problem, some approaches
employ techniques based on estimation or optical flow. In this context, some
authors use a Kalman filter with snakes in order to track non-rigid objects [7].
In this case, the system detects and rejects spurious measurements, which are
not consistent with previous estimations of motion. A Kalman filter and a neural
system is used to avoid the gross errors in motion trajectories [8]. In other case,
Kalman filter along with XT-slices (spatial-temporal) are used to analyze the
human motion [9]. Sometimes the filter is used to recover lost regions when
tracking vehicles in a road [2], or even, groups of filters each one specialized in
a motion model are proposed in [10].

Our video-sensor is based on difference of images including long time infor-
mation robustly filtered by the median of a set of images. This makes the method
less sensible to the threshold, and changes of illumination have less influence.
The pure segmentation algorithms work well in a few applications, but they fail
in many cases. As commented, to solve these fails, researchers have used these
algorithms together with estimation tools. In our video sensor we complement
the idea of robust difference with a Kalman filter as an assistant to improve the
system performance. Thus, the prediction provided by the Kalman filter is used
to search on the difference map when the segmentation has failed. Besides that,
the Kalman filter provides state information to control the object behaviour,
avoiding problems when occlusions or slow moving objects are present.

The paper is organized in four sections. In the first one, we explain the de-
tection of moving objects based on the robust difference of images. Secondly,
we present the tracking algorithm working in two ways: assisting to detection,
and providing object state. In the third section, we show the different experi-
ments carried out and the obtained results. Finally, the conclusions are exposed
in fourth section.

2 Detection and Segmentation Task

To search the object of interest, the proposed method analyzes changes over
a sequence of images, instead of just between two images. This is carried out
using the difference between a reference frame and current frame. The reference
frame is obtained from a set of previous images in the sequence. The new frame
is obtained from current frame and a shorter subset of neighbor images.

To obtain a noise-free reference frame we should use some smoothing. Linear
filters suppress Gaussian noise but perform very poorly in case of noise patterns
consisting of strong and spike-like components. This is the usual situation in
a sequence of images where gray level of background pixels stays approximately
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constant except in a few, corrupted by noise. In these cases, the noise can be
effectively rejected using a rank value filter. In particular, the median filter has
become very useful in robust estimation in presence of outliers, in relation to
other traditional methods like root mean square.

The reference frame Mk is obtained by a temporal median filter of an input
sequence of n images [11], where every frame has m × p pixels. This noise-free
reference frame, is given by:

Mk =

⎡⎣ median(1, 1, k) · · · median(1, p, k)
· · · · · · · · ·

median(m, 1, k) · · · median(m, p, k)

⎤⎦ (1)

Being median(i, j, k) = median{F (i, j, k − n− l + 1), . . . , F (i, j, k − l)} the
median of gray level (F ) in the image, where i = 1, . . . ,m and j = 1, . . . , p.
Besides, k denotes the current time, n is the number of images used to obtain
the reference frame and it represents the horizon of background filtering, and l
is the number of images used to obtain the current frame.

The parameter n should be properly selected to eliminate the noise. Thus,
if n is high enough, we will obtain a reference frame even if there are moving
objects in the initial images. This reference frame is updated with every new
image and it takes into account the illumination changes in such a way that the
object motion detection is not disturbed.

Similarly the current frame (Nk) is computed from a set of (l) previous
images. This set represents the horizon of motion filtering, which is related with
the minimum velocity to be detected. The ”l” parameter should also be properly
selected: high enough to eliminate noise, but not too high because fast small
objects could be lost. Finally, the detection of the moving blobs is made by
the definition of a MOV ILk frame, which is obtained from the thresholding
difference between the current and the reference frames as:

MOV ILk(i, j) =
{

1 if |Mk(i, j)−Nk(i, j)| > σ
0 otherwise , σ is the threshold. (2)

3 The Tracking Task

With the robust method exposed above, we have the moving blobs which cor-
respond to the objects of interest. Sometimes, this method can fail because of
illumination problems, poor contrast, etc, and certain assistance is required to
reduce the effect of these problems.

We have been working with the problem of tracking to match lines in a nav-
igation system [12], using the Kalman filter. As known, this filter is a mathe-
matic equations set, which provides a very efficient least squares solution using
a dynamic model. It results very powerful in several aspects. For example, it
gives future estimate from past information, it can be used with maneuvering
targets and it can manage different dynamic models in according to object be-
haviour [10]. Although in these works linear models are used, some authors work
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Fig. 1. Block diagram of the detection of moving objects

with a non-linear motion model to segment lines using the Extended Kalman
filter [13] but our video-sensor proposes a tracking of objects based on standard
Kalman filter.

To track moving objects we have chosen a state vector (x) which is composed
by four parameters: x and y positions and vx and vy velocities, which define
the state of our objects. A constant velocity model with zero-mean random
acceleration has been considered.

3.1 Kalman Filter: Working as Segmentation Assistant

The main mission of the filter is to track objects that have been detected by the
previous task in order to avoid their loss. The threshold used in the process of
image difference (Equation 2) may cause the loss of pixels of low contrast corre-
sponding to moving objects. Besides, as commented in section 2 a morphological
filtering has been used, which may eliminate some blob corresponding to ”good”
but small, far away placed or partially occluded moving objects.

The Kalman filter gives a predicted position and its covariance, in such a way
that the full system (in the Recovering phase) may look for corresponding pixels
in the difference image (Fig. 1). If these pixels are found, then their centroid is
used as measurement of Kalman filter.

3.2 Kalman Filter: Controlling the State of the Object

The second novel use of the Kalman filter is the control and assessment of
the state of the object (si). To model the behavior of the moving objects, six
states and seven transitions have been defined (Fig. 2). The states are Init, Lo-
calized with blob, Localized without blob, Stopped & localized, Lost,
andOverlapped. Five transitions are related to the evolution of moving objects
and two are related to time conditions.
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Transitions The transitions related with the evolution of the moving object
are:

– T1: This transition is fired when the blob associated to a moving object is
detected after the morphological filter.

– T2: This transition is fired when the blob is not detected but the correspond-
ing pixels are detected at the difference image (Recovering phase).

– T3: This transition is fired when the Kalman filter estimates the position of
the moving object, but neither its blob can be detected after the morpho-
logical filter nor corresponding pixels can be found at the difference image.

– T4: This transition is fired when a moving object overlaps with other moving
object. So, only one blob is detected after the morphological filter which is
associated with the closest object.

– T5: This transition is fired when the object velocity supplied by Kalman
filter gets down a certain value.

The transitions related to time conditions are

– TT1: Time transition from Stopped & localized state when the time at
that state is higher than tStop time.

– TT2: Time transition from the Lost state when the time at that state is
higher than tLost.
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States An explanation for the different states follows:

– Init. This is the initial state, where the system looks for a new moving object.
From this state there is just one output transition to Localized with blob
state (T1). This happens when a new large enough blob is detected, being
not close to the influence zone of an overlapping. Likewise, there are two
input transitions from Stopped & localized (TT1) and Lost (TT2) states.
When some of them is fired the component corresponding to the object is
deleted.

– Localized with blob. In this state, the robust method is able to detect the
blob because the blob is large enough. The centroide of this blob is used as
measurement for the Kalman filter. When an object comes to this state from
Init, a new component is created.

– Localized without blob. In this case, the detected blob after the morpho-
logical filtering is very small and it is eliminated. However some correspond-
ing pixels are found at difference image around the position estimated by
Kalman filter. So, the centroid of these pixels will be used as measurement
for the Kalman filter (Recovering phase, Fig. 1).

– Lost. This is the state of the object whose blob has not been detected neither
after the morphological filter nor in the Recovering phase. This normally
happens when the moving object is occluded by a static object. In this state,
Kalman filter continue estimating for tLost time without measurement.

– Stopped & localized. As told, the velocity of the object is given by the
Kalman filter. According to this value, it is possible to deduce when the ob-
ject is stopped. If the object remains in Stopped & localized state during
a time t > tStop, it will be deleted and will evolve to Init state.

- Overlapped. This is the case in which a moving object is occluded by other
moving object, and therefore both objects will evolve to this state. While
this happens both objects will have the same measure due to the fact that
only one blob is detected.

4 Experiments and Discussion

Due to the limited extension of this paper we present some images showing the
algorithm working in different situations. In this sense, four example sequences
are depicted in Fig. 3. Comments about this figure are included in the legend.

In these images, bounding boxes on the object of the image indicate that the
corresponding blob has been detected. Likewise, the size of crosses is proportional
to the estimation covariance, in such a way that we may have little cross when
corresponding pixels are detected and a large cross when they have not been
detected. In the last case, there is no measurement for the Kalman filter.

5 Conclusions

In this paper we have presented a complete chain of algorithms to detect and
track moving objects using a static camera. The proposed system performs ro-
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Fig. 3. EXP.1 (a) The ”A” object is in the Localized with blob state; (b)
it evolves by the T3 transition to the Lost state; (c) finally, it evolves by TT2
to Init state. EXP.2 (d) The ”A” object is in the Localized with blob state;
(e) it evolves by the T3 transition to the Lost state; (f) finally, it evolves by
T1 to Localized with blob state. EXP.3 (g) The ”A” and ”B” objects are
both in the Localized with blob state; (h) both objects evolve by the T4
transition to the Overlapped state; (i) finally, the ”A” object evolves by the
T1 transition to the Localized with blob state, and the ”B” object evolves
by TT2 to the Init state. EXP.4 (j) The ”A” and ”B” objects are both in the
Localized with blob state; (k) the ”A” object evolves by the T4 transition to
the Overlapped state, while the ”B” object evolves to the Lost state; (l) finally
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bust motion detection and object tracking even with illumination changes, using
no special hardware requirements. The motion algorithm is based on image dif-
ference between two median filtered frames. In contrast to other methods of
difference, which need to take a background free of other moving objects, the
smoothing of reference and current frames allows to detect moving objects even
though there are moving objects at the initial background. The detection and
segmentation algorithms are complemented with a Kalman filter to track and
match different moving objects along the sequence. The Kalman filter is also
used in two ways: Assisting to the motion detection, and providing information
to model the behaviour of the objects. This results in a much better method of
detection which also makes possible the handling of occlusions.
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José Jasnau Caeiro1,2 and Armando Ventura2

1 INESC-ID, SIPS
Apartado 13069, 1000-029 LISBOA, Portugal
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Abstract. The purpose of this paper is to describe a method devel-
oped for estimation of the diameter of circular disks resulting from anti-
bacterial cultures, immersed in a bacterial gel, using digital images of
the growth recipients (Petri dishes). This methodology uses a chain of
several image processing algorithms that are applied to the Petri dishes
images until a set of diameter estimates are produced.
The experimental protocol is presented and the results are analyzed in
terms of the best non-linear filtering method as a function of the diameter
error estimate at the output of the system.

1 Introduction

One way of determining the effect of anti-bacterial cultures is to introduce them
in fixed amounts in a bacteria culture and to observe, after pre-determined time
intervals, how many bacteria have been killed. Since the area where bacteria are
killed is approximately defined by a circular disk, the effect of the anti-bacterial
culture may be determined by estimating the diameter of the disks. For each
anti-bacterial culture a large set of samples must be created experimentally. The
slow and error-prone human procedure for determination of the diameters of
the disks can be replaced by procedures based on digital processing of the im-
ages bacteria cultures. Two basic approaches can be followed: region or contour
based. It is fairly common the choice of area determination procedures using
thresholded images but they suffer the problems resulting from imprecise border
determination. Edge detection methods usually determine more accurately the
position of the object borders.

Simple disk diameter estimation procedures are reliable enough to solve the
problem, as is shown in this paper, although more complex methodologies could
eventually increase the precision of the measurements. These methodologies in-
clude optimal fitting or voting/clustering approaches. The first group of meth-
ods are based on the optimization of an objective function. The second group of
methods are more robust against outliers.

Using non-linear pre-filtering some improvement can be obtained in the pre-
cision of the measurements since the image properties that somehow lead to
outliers are reduced (non-Gaussian type noise) by some of these filters.
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Although the determination of anti-bacterial disk diameter estimation is an
useful application of image processing techniques no mention of such a procedure
in the available scientific literature, as far as we know.

This paper is organized as follows. In Section 2 we proceed to the input
data characterization, presenting the origin of the images and shortly describing
some of their properties. Section 3 the disk diameter estimation methodology is
discussed and the constituting algorithms are reviewed. The input and output of
each element of the system is elucidated. Section 4 is devoted to the presentation
of the experimental protocol and the analysis of the experimental data. The
paper ends with Section 5 where some general conclusions are taken from this
work and some future research directions are pointed out.

2 Image Characterization

The diameter estimation system uses as input data digital images from bacteria
cultures grown in standard 100mm Petri dishes. Several types of bacteria and
anti-bacterial cultures form the set of images. Images present changes according
to several factors: type of cultures; background illumination; room temperature;
culture development time, etc.. To illustrate the type of data input to the system
a sample of images is presented in Figure 1. These images were acquired with
768× 576 spatial pixel resolution and a 8-bit gray-level intensity resolution. The
image represented in Figure 2 shows several common properties of the set of
images to be processed. The bacteria culture, (the image background represented
as region R1 in Figure 2), is formed by a mix of random processes. Bacteria
colonies have a tendency to aggregate thus creating whiter parts. Anti-bacterial
regions, R2, share the same property. The histogram of the image represented on
Figure 2 shows the presence of some noise due to the random growth of bacteria
and the killing of the bacteria. The small black circular disk is where the anti-
bacterial solution is introduced. A part of the agar is removed and replaced by
this solution. The area where bacteria are killed is dark gray and of a circular
shape. The more active the anti-bacterial solution is the bigger the diameter
of this disk becomes. Usually these diameters are measured by humans using
mechanical devices. It is slower and more error-prone than an image processing
based method.

3 Diameter Estimation Methodology

The disk diameter estimation system is presented in Figure 3. The original im-
age I is initially pre-processed by the non-linear filter system. It can be visually
seen that the background region, Rb, due to the existence of different types of
bacteria cultures presents different formation patterns. Streaks of small dark
areas are mingled with a clearer background.

The first step in the procedure is the application of a non-linear filter to the
input image I in order to smooth out the irregularities that arise in the images
due to the growth of colonies of bacteria and the death of bacteria in these
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 1. Set of images from the anti-bacterial cultures grown in Petri dishes. All
images were captured in a 768× 576 image format

(a) (b)

Fig. 2. Close-up of anti-bacterial culture growth area
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Fig. 3. Block diagram of the disk diameter estimation system using as data the
digital images of anti-bacterial cultures

clusters. A set of non-linear filters was chosen from (Dougherty and Astola) [3],
(Kuosmanen and Astola) [2] to be experimentally tested and includes: modified
nearest neighbor ; Hodges-Lehman; comparison and selection; selective average;
modified trimmed mean; C-filter ; ranked-order and weighed order statistic. The
next step is the application of the widely used Canny edge detection method
(Canny) [1] to the pre-processed image F . It consists in the application of a
gradient amplitude estimation filter followed by non-maxima suppression and
hysteresis thresholding. The derivative of Gaussian approximation was used for
the gradient estimation filter since it is very widely used. After the edge detection
procedure an edge map E is formed. This edge map is a binary image with values
belonging to the set V = {Edge,NonEdge}. The input images allow relatively
large values of the scale factor, σ, to be chosen since the disk circles are relatively
far away from each other.

A connected components algorithm is then used to determine the objects
present in the edge map (Haralick) [4]. The diameter and diameter variance are
estimated for each connected object. Several methods were tested and the one
which consistently presented the lowest diameter estimation variance across the
range of images and non-linear filters was chosen.

Perimeter measurement and maximal and minimal diameter in OX and OY
are simple methods of determining the diameter. Instead we chose the diameter
estimation procedure represented by the pseudo-code in Figure 4. The diameter
is estimated by searching, for each element (xi, yi) of the object S, the maximum
distance maxik to another element (xk, yk) of the same object S. All these
individual maximum distances are added to the variable distance:

distance =
∑
i

maxik,

and the diameter is estimated as d = distance/N , where N is the number of
points constituting the object S. A simple procedure was setup to distinguish
between objects that are circle shaped and non-circle shaped. All the objects
for which the ratio of the highest maximum individual distance to diameter
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Input: List of Coordinates of the object(X,Y)

Output: Diameter of the Object

let max_distance=0.0, distance=0.0, sum=0.0

for i=1 to NumberOfCoordinates

for j=1 to NumberOfCoordinates

let distance = sqrt( pow(coordinates[i].X - coordinates[j].X,2) +

pow(coordinates[i].Y - coordinates[j].Y,2) )

if (distance > max_distance) then

let max_distance=distance

end

let sum=sum+max_distance

let max_distance=0.0, distance=0.0

end

let output=sum/NumberOfCoordinates

Fig. 4. Pseudo-code representing the diameter estimation procedure

estimate is found to be greater than 1.5, are considered to be non-circle shaped.
More complex shape descriptors could be considered instead of this ratio but
since the majority of objects in the images are fundamentally circles we chose
not to.

4 Experimental Results

We determined the selective average filter to be the one that performed best
in the diameter estimation procedure we propose. The experiment which lead
to this conclusion was setup under the assumption that the estimate which
consistently returned the lowest diameter estimate variance would be the best.
We therefore chose the error at the output of the system for the performance
evaluation. We used the same image for all the experiments and chose several
scale factors, σ for the Canny edge detector. As for the hysteresis thresholding
part of the Canny method the high threshold value was chosen to be tH = 90%
and the low threshold value tL = 10%.

We present in Table 1 a sample of the results of the application of some non-
linear filters to the disk originated by the anti-bacterial culture on top of the
image represented in Figure 1(e). Using a scale factor σ = 3.5 we get diameter
estimates within the interval [90.24, 93.63] (all diameters were measured in pixel
units). The range of diameter variances is the interval [1.88, 11.89]. Other filters
that performed well are the weighed order statistic filter and the C-filter. We
should note that a 1.5 percent relative error is achieved with the best filter for
the results presented in Table 1. The selective average filter is presented in the
literature as a non-linear filter that may enhance the edge contrast properties.
Many of the non-linear filters do not blur the edges.
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Table 1. Estimated error in the determination of the diameter for the different
non-linear filters for a scale factor for the Canny edge detection method σ = 3.5

non-linear filter diameter variance

selective average filter 91.94 1.88
weighed order statistic filter 93.63 2.06
C-filter 91.80 2.47
modified nearest neighbor filter 91.72 3.17
comparison and selection filter 92.06 3.60
ranked-order filter 91.62 11.50
Hodges-Lehman filter 90.24 11.75
modified trimmed mean filter 90.69 11.89

5 Conclusions

An application of image processing techniques was developed for the estimation
of diameters of anti-bacterial cultures grown in Petri dishes. The method returns
consistent values with low error on the output. The selective average filter was
experimentally determined to be the best performing for this type of images.

Further work should include a better characterization of the stochastic pro-
cesses originating the image regions (bacteria and anti-bacteria regions) thus
allowing a more solid choice of pre-filtering methods. More robust methods for
circle diameter estimation should also be studied, namely those based on the
circle based Hough transform. Another research possibility is the application of
circle fitting procedures using optimal approaches.
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Abstract. We describe a technique for extracting vertices from range
images of cluttered box-like objects. Edge detection is performed and
an edge map is acquired. Extraction of vertices is carried out using the
edge map and comprises two steps: Linear boundary detection in 3D
and boundary grouping. In order to recover the four parameters of a 3D
linear segment, we decompose the problem in two 2D subproblems, each
recovering two line parameters. These subproblems are solved by means
of the Hough Transform, constrained in this way so that accurate and
efficient propagation of the edge points localization error is achieved.
Pairs of orthogonal boundaries are grouped to form a vertex. The or-
thogonality of a boundary pair is determined by a simple statistical test.
Our strategy comprises many advantages, the most important of which
robustness, computational efficiency and accuracy, the combination of
which is not to be found in existing approaches.

1 Introduction

Automatic unloading and sorting of piled objects is of great importance to the
industry, because it undertakes a task that is very monotonous, strenuous and
sometimes quite dangerous for humans. Objects which are often encountered in
industrial sites and distribution centers are mainly rigid boxes as in Fig. 4 (a)
or deformable box-like objects (sacks) full of material as in Fig. 5 (a). It is
advantageous to employ range imagery for dealing with the problem mainly due
to relative insensitivity on lighting conditions and object texture. It is since
years known in the computer community that a three-dimensional visible vertex
provides the strongest constraints for accurately determining the position of
convex, three-dimensional objects and thus are very good approximations of the
location of the objects in space. Since the objects we are dealing with are either
boxes or box-like objects, their vertices can still be used for generating accurate
object location hypotheses. For this reason the robust and accurate detection of
object vertices in range images is of extreme importance to this application.

Although a variety of methods for detecting corners in intensity images have
been reported, this is not the case for range images. The majority of the existing
approaches (like [3],[1] and others) use region information to extract vertices.
The disadvantage is that the objects need to expose more than one surfaces to
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the sensor for accurate estimation of the vertex position. In [7], edge detection
was performed on the input range image, object boundaries were detected using
the Dynamic Generalized Hough Transform [8] and vertices were extracted by
grouping orthogonal object boundaries. This allows for accurate vertex detection
even if the objects expose only one surface. However the error in the localization
of the edge points was not taken into consideration, which made the approach
not as robust as desired.

The technique discussed in this paper comprises the same two parts, as was
the case in [7]: Linear boundary detection and boundary grouping. However there
are essential differences between the two approaches: The three dimensional lin-
ear object boundaries are recovered, via application of an iterative algorithm
to the edge map of the range image: In each iteration Hough Transforms are
executed and a set of models are recovered, followed by a model selection pro-
cess which retains the best models in terms of accuracy. The Hough Transforms
are constrained so that the edge points localization error is accurately propa-
gated to the parameter space. Boundaries comprising a fixed fraction of the edge
points are sought in each iteration. Finally, orthogonal pairs of boundaries are
grouped to a vertex. The orthogonality of a pair of recovered linear boundaries
is determined via a statistical test.

This strategy results in a variety of advantages over existing systems: Ro-
bustness due to introduction of error propagation which reduces the detection
rate of false positives, and due to robust boundary grouping guided by a sta-
tistical test. Accuracy, due to the incorporation of a model selection process,
which retains the most accurate boundaries. Computational efficiency since the
algorithm’s complexity is linear to the number of edge points. Low memory con-
sumption since accumulations use one dimensional structures. Versatility since
exposure of only one object surface is enough for vertex detection, so that the
system can deal with jumbled or neatly placed configurations of boxes. And last
but not least simplicity as the flow diagrams that follow indicate. Our approach
is described in detail in the subsequent sections.

2 Detection of Linear Object Boundaries in 3D

Input of our system are range images acquired from a laser range finder. Edge
detection is performed on the image and an edge map is created. Such a map is
depicted in Fig. 4 (b) and corresponds to the intensity image of Fig. 4 (a). The
sensor coordinate frame is attached to the edge map. A range edge point D is
defined by the coordinates D(Xs, Ys, Zs). The values Xs,Zs express its position
on the two-dimensional image plane, Ys expresses its depth value. We decided
to use the detector of [6] which performs approximation of the image scan lines
with linear and quadratic segments. The major advantages of this method with
regard to local edge detectors are its computational efficiency and its accuracy.
The latter is due to the fact that whether a range point is classified as edge
point or not does not depend on local information but on the parameters of
the approximated segments which intersect at the point, the determination of
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which is influenced by a big number of range points. However the localization
accuracy of the edge points is still not satisfactory. The surface of the target
objects can not be always well approximated by parabolic segments, especially
in areas where small local surface deformations occur. This is not very likely
to happen when the objects are rigid boxes or deformable but full of material.
Additionally, error is introduced by the laser sensor data acquisition process.
The problem we face is in which way can we robustly recover the parameters of
the 3D linear object boundaries of the objects from the edge map.

2.1 Parameter Recovery with the Hough Transform

The Standard Hough Transform (SHT) is the most common method employed
for recovering multiple parametric models from images. Despite this, the SHT
technique in its original form does not address the problem of localization error.
Another weakness of the SHT is its computational inefficiency when dealing with
models with many degrees of freedom. Lets suppose the model sought has N
parameters and each image point constraints p of them. For each image point,
the SHT increments all the bins comprising a N − p -dimensional manifold of
an N -dimensional accumulator. In our case the models (3D lines) have N = 4
degrees of freedom and each point constraints p = 2 line parameters. Applying
the SHT, will be both memory consuming, since a 4D accumulator is needed, as
well as computationally inefficient, since mapping of a single edge point requires
updating a 2D manifold of the accumulator.

A plethora of algorithms have been proposed to address the computational
inefficiency of the SHT. Lets suppose mainly for simplicity p = 1, that is, we
regard 2D images. The idea is to decrease the number of required accumulator
updates per mapping by constraining the pose of the model. This is done by
simultaneously mapping k (1 < k ≤ N) instead of one pixels to the parameter
space. If so, the dimensionality of the manifold along which the accumulator
must be updated drops from N −1 to N −k. In [11],[2] k = N is regarded which
implies N −k = 0. In this case update of only one accumulator cell per mapping
is needed. Unfortunately these approaches are not free of problems: Mapping
large sets of pixels gives rise to a combinatorially explosive number of possible
sets. Randomization techniques have been proposed to reduce the number of sets
examined.

Other researchers propose a somewhat different solution, which is based on
decomposing the Hough Transform into subproblems. Each subproblem is solved
within the context of a trial: A set of points with cardinality d(d < N) (distin-
guished set) is randomly selected. Random subsets of the remaining points with
cardinality v (varying sets) are then considered, so that d + v = N . The union
of the two sets is then mapped to the parameter space by updating one cell,
since the points in the union fully constrain the pose of the model. After all
the varying sets have been examined, the accumulator maxima are extracted.
A trial is considered successful if those maxima satisfy user-defined criteria. The
process finishes when a fixed number of trials t has been performed. There is
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a variety of algorithms which may result from this framework by assigning differ-
ent values to the cardinality (d) of the distinguished set, the number of varying
subsets (r) examined within a trial and the number of trials (t). Leavers [8]
sets d = 1, r is automatically determined by the framework, and t is the num-
ber of connected components found in the edge map. More recently Olson with
his RUDR (Recognition using Decomposition and Randomization) technique [9]
considers d = N − 1 and r = n − 1 where n the number of edge pixels in the
image. A trial is considered successful when at least m points lie on the model.
Finally, if γ the probability of failure in finding a model in the image, then the
number of trials is given by (1).

t =
log( 1γ )

(mn )N−1
(1)

The selection of the particular cardinality for the distinguished set results to
the fact that in each trial the transform is constrained to lie on a one-dimensional
manifold, that is a curve (Hough Curve), in the parameter space. Many advan-
tages are gained from this selection: Firstly, one dimensional data structures are
used for the accumulation process, so the memory requirements are reduced to
O(n). Secondly, the complexity is O(tr) or O(tn). Since all quantities in (1) are
user-defined constants (mn is a constant fraction of the input data), the overall
algorithm complexity turns out to be linear to the number of pixels. Thirdly, if
localization error is considered, a set of pixels maps not exactly on the Hough
Curve, but to an area (error cloud) of the parameter space which lies close to
the Hough Curve. The projection of the cloud to the Hough Curve will thus be
a good approximation of it. This allows for simple, accurate and efficient error
propagation to the parameter space. The error is expressed in a straightforward
way via square boundaries in the image space whose side length (δ) is measured
in pixels. The combination of these benefits are not to be found in other ap-
proaches simultaneously, up to our knowledge, and for this reason the adoption
of RUDR framework seems to be the best choice for dealing with our problem.

2.2 Line Detection in 3D

In our case, each edge point constraints two out of the four line parameters. It is
thus not possible to directly apply the decomposition technique discussed above,
because we cannot select a particular cardinality of the distinguished set which
will allow for constraining the transform to lie on an one-dimensional curve, as
in the 2D case. Therefore we came to the idea to break the problem down to
2D subproblems, and the natural way to do it is to examine two such subprob-
lems, each recovering two line parameters using the RUDR technique. In detail:
A trial is initiated by randomly selecting a distinguished point D(Xd, Yd, Zd),
which supposedly belongs to the linear boundary L, shown in the edge map of
Fig. 4 (c). At first, the two parameters of the 2D orthogonal projection of L
to the image plane (ZX) are estimated. Fig. 1 (a) illustrates: The orthogonal
projections of all the edge points to the image plane are taken into account. Lets
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(a) Line detection in the image (ZX) plane (b) Line detection in the LZXY plane

Fig. 1. 3D Line detection in two steps

consider Dzx the projection of D. A two-dimensional RUDR trial is performed
on the image plane with Dzx as distinguished point and the parameters of Lzx
are retrieved. The corresponding range points to the pixels contributed to the
accumulator’s maximum (drawn as “*” in Fig. 1 (a)) are then projected to the
plane defined by Lzx and the axis Y of the sensor coordinate system. Lets con-
sider now DLZXY the projection of D to this plane. A second two-dimensional
RUDR trial is performed on this plane with DLZXY as distinguished point to
retrieve the remaining two parameters of L. Fig. 1 (b) illustrates. The range
points finally determined to belong to the line L correspond to the 2D points
drawn as “*” in this figure. The flow diagram of the trial for detection of a 3D
line is depicted in Fig. 2 (a).
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Fig. 2. Flow diagrams
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2.3 Model Selection

Boundary detection to the edge map of Fig. 4 (b) is presented in Fig. 3 (a), where
the detected lines are superimposed to the edge map. The problem observed, is
that the line detection process outputs redundant lines. This is a consequence of
the randomization. Our algorithm as is, cannot guarantee that more than one
points belonging to the same boundary will not be used as distinguished pixels of
the recovery process. Simply removing the range points determined to belong to
a boundary after a successful trial and continue the process is questionable. We
cannot assure that some of these points cannot be used by a later trial to recover
a model which represents the boundary better. Instead of retaining a locally
sufficient model it is preferable to wait until all the trials take place and retain the
models which satisfy some global optimality criteria. It is logical to assume that
a recovered model should be favored over another if it describes a bigger number
of image points more accurately. The latter statement is a simplified version of
the Minimum Description Length (MDL) principle for model selection, which
has been used quite frequently in various computer vision applications, lately
in [5], [10]. We adopt the strategy of in [5] p.123 for formalizing our approach,
mainly due to its compactness and simplicity: Lets suppose that the recovery
process outputs M models (in our case 3D lines). We regard a vector m of
size M , the element mi of which has the value 1 if the model i is contained
in the final description and 0 if not. We consider as well a M × M matrix
Q, the diagonal terms qii of which express the benefit value for a model, while
the others qij handle the interaction between the possibly overlapping models i
and j. A model benefits when considered in the final description if it describes
many data points with high accuracy as expressed by (2), where Vi the variance
and |Mi| the number of points of the model i, K1, K2 user defined constants.

qii = K1|Mi| −K2Vi (2)

We always penalize overlapping models, thus the benefit of overlapped models
is negative and analogous to the number of points explained by both models, as
expressed by (3).

qij = −K1|Mi

⋂
Mj |

2
(3)

The function the maximization of which will result to the selection of the optimal
set of models, is given by (4).

F (m) =mTQm (4)

Many approaches can be applied for maximizing (4), among them simulated
annealing or neural networks. A greedy algorithm of O(M2) is selected [5] for
efficiency reasons. Fig. 3 (b) illustrates the results of model selection on the lines
detected in Fig. 3 (a).

We name the process of line Detection followed by model Selection the D-S
process, the flow diagram of which is illustrated in Fig. 2 (b). The algorithm’s
complexity is the complexity of the line detection plus the complexity of the
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(a) Before segment selection (b) After segment selection

Fig. 3. Effect of segment selection

selection that is O(tn)+O(M2) ≈ O(n), since t = O(1) and n�M . In terms of
memory consumption, all we need is one dimensional accumulator of size O(n)
plus a two dimensional matrix of size M × M . The D-S process inherits its
robustness from the RUDR approach but it is more accurate because the best
segments are retained by the selection process.

2.4 Acceleration via Point Removal

Our algorithm as is, performs t trials followed by model selection to extract
3D lines from the input edge map on which at least m points lie. The model
selection, guarantees that the remaining linear segments describe the edge points
to which they correspond in an optimal way. In other words, it is highly probable
(this probability is given by the quantity 1− γ) that no other segments can be
found comprising m or more points other than those already discovered. This
observation results to a substantial algorithm acceleration: We adopt an iterative
approach, every iteration of which comprises a D-S process retrieving lines with
at least m points followed by a point removal, so that all the points determined
by the D-S to lie on lines are eliminated from further consideration. We start
by looking for long segments, so m is assigned a big value (mmax) and then we
gradually reduce the number of points expected to be found on a segment by m

2
until a lower threshold (mmin) is reached. The execution time of the D-S step
is proportional to the number of edge points in the image times the number of
trials. The latter is inversely proportional to the number of points expected to
lie in the lines. By looking for lines comprising many points first, we reduce the
number of trials and thus the execution time of the current D-S step. By point
removal reduction of execution time of the subsequent D-S steps is guaranteed.
Thus an overall algorithm acceleration is realized. The flow diagram of the entire
algorithm is depicted in Fig. 2 (b).
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3 Boundary Grouping

We define a 3D vertex as an aggregate consisting of two orthogonal 3D linear
segments and a vertex point defined by their intersection. In the ideal case, two
linear segments X,Y comprise a vertex if the dot product of their direction
vectors x,y is zero, that is: r = xTy = 0. However due to uncertainty in the
estimation of the segment parameters the dot product can never be exactly zero
and a threshold must be introduced to determine the validity of a grouping
hypothesis. The threshold depends on the uncertainty in the calculation of the
line parameters and thus is difficult to define. The dot product is a bilinear
function of the direction vectors. Thus rigorous uncertainty propagation can be
achieved and a statistical test can determine whether the grouping hypothesis is
to be rejected or not, based on a user defined significance value. In [4] a compact
framework for testing uncertain geometric relations is presented, on which our
method is based. If we assume Gaussian noise and if Σxx and Σyy the covariance
matrices of the direction vectors x and y respectively, the variance of their dot
product is given by the expression:

σ2r = xTΣyyx+ yTΣxxy (5)

The optimal test statistic for the hypothesis H0 : r = 0 is given by: z = r
σr
∼

N(0, 1). We select a significance value α and compare the value z with the
value N1−α(0, 1). If z > N1−α(0, 1), the grouping hypothesis is rejected. In all
our experiments α was set to 0.05. The overall grouping algorithm has as follows:
All possible pairs of detected lines are considered and those pairs passing the
statistical test along with their intersection points are inserted to the set of the
detected vertices.

4 Experimental Results

We applied our algorithm in various range images corresponding to piled objects.
Two test cases are presented here: Rigid card-board boxes (Fig. 4) and sacks
(bags) full of material (Fig. 5). The edge map, the recovered 3D line segments
and the extracted vertices are as well depicted. In both cases all the objects linear
boundaries were successfully recovered except those which were very noisy and
comprised few number of points. For the boxes case we had n = 1015 edge points
and assumed error of δ = 0.6 pixels during the detection in the image plane and
δ = 4 pixels during line detection in the LZXY plane. The corresponding values
for the sacks test case were n = 1260, δ = 1, and δ = 4. In both cases, the
probability of failure was γ = 0.01 and the model selection parameters were set
to K1 = 1, K2 = 0.1. Two algorithm iterations were executed: The first detected
lines comprising at least 60 and the second 30 range points. The execution time
for vertex detection was about 12 seconds in both cases in a Pentium 3, 600MHz.
Note that if we execute only one iteration in the context of which lines comprising
30 points are sought from the first place, the execution time rises to about 19
seconds. This verifies that the iterative algorithm and point removal actually
reduce the overall execution time.
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(a) Intensity (b) Edge Map

(c) 3D Line Segments (d) Vertices

Fig. 4. Boxes

(a) Intensity (b) Edge Map

(c) 3D Line Segments (d) Vertices

Fig. 5. Sacks
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5 Conclusions

We presented a technique for detecting vertices in range images of cluttered
objects in two steps: Boundary extraction and grouping. Recovery of the four
parameters of the linear boundary segments was performed by a sequence of
problem decomposition, model selection and point removal, integrated into an
iterative framework. Efficient and accurate propagation of error to the parame-
ter space was achieved so that robustness was realized. Boundary grouping via
a statistical test contributed to the system’s robustness. Vertex extraction cor-
responds to the recovery of a subset of the parameter set describing each object
on the pallet. In the future we intend to use this framework as a starting point
for the recovery of the remaining parameters of each object.
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Abstract. We compare two successful discriminative classification al-
gorithms on three databases from the UCI and STATLOG repositories.
The two approaches are the log-linear model for the class posterior prob-
abilities and class-dependent weighted dissimilarity measures for nearest
neighbor classifiers. The experiments show that the maximum entropy
based log-linear classifier performs better for the equivalent of a single
prototype. On the other hand, using multiple prototypes the weighted
dissimilarity measures outperforms the log-linear approach. This result
suggests an extension of the log-linear method to multiple prototypes.

1 Introduction

In this paper, we compare two classification algorithms that are both discrim-
inative. Algorithms for classification of observations x ∈ IRD into one of the
classes k ∈ {1, . . . ,K} usually estimate some of their parameters in the training
phase from a set of labeled training data {(xn, kn)}, n = 1, . . . , N . The training
procedure can take into account only the data from one class at a time or all of
the competing classes can be considered at the same time. In the latter case the
process is called discriminative. As discriminative training puts more emphasis
on the decision boundaries, it often leads to better classification accuracy.

We examine the connection between two discriminative classification algo-
rithms and compare their performance on three databases from the UCI and
STATLOG repositories [5, 6].

The principle of maximum entropy is a powerful framework that can be used
to estimate class posterior probabilities for pattern recognition tasks. It leads
to log-linear models for the class posterior and uses the log-probability of the
class posterior on the training data as training criterion. It can be shown that
its combination with the use of first-order feature functions is equivalent to
the discriminative training of single Gaussian densities with pooled covariance
matrices [4].

F.J. Perales et al. (Eds.): IbPRIA 2003, LNCS 2652, pp. 370–377, 2003.
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The use of weighted dissimilarity measures, where the weights may depend
on the dimension and class and are trained according to a discriminative crite-
rion, has shown high performance on various classification tasks [9]. Also for this
method, a strong connection to the use of Gaussian densities can be observed if
one prototype per class is used. For more than one prototype per class, the sim-
ilarity leads to a mixture density approach. These connections to the Gaussian
classifier are used to compare the two discriminative criteria.

2 Classification Framework

To classify an observation x ∈ IRD, we use the Bayesian decision rule

x �−→ r(x) = argmax
k

{p(k|x)} = argmax
k

{p(k) · p(x|k)} .

Here, p(k|x) is the class posterior probability of class k ∈ {1, . . . ,K} given the
observation x, p(k) is the a priori probability, p(x|k) is the class conditional
probability for the observation x given class k and r(x) is the decision of the
classifier. This decision rule is known to be optimal with respect to the number
of decision errors, if the correct distributions are known. This is generally not
the case in practical situations, which means that we need to choose appropriate
models for the distributions.

If we denote by Λ the set of free parameters of the distribution, the maximum
likelihood approach consists in choosing the parameters Λ̂ maximizing the log-
likelihood on the training data:

Λ̂ = argmax
Λ

∑
n

log pΛ(xn|kn) (1)

Alternatively, we can maximize the log-likelihood of the class posteriors,

Λ̂ = argmax
Λ

∑
n

log pΛ(kn|xn) , (2)

which is also called discriminative training, since the information of out-of-class
data is used. This criterion is often referred to as mutual information criterion
in speech recognition, information theory and image object recognition [2, 8].

Discriminative training was used in [9] to learn the weights of a weighted
dissimilarity measure. This weighted measure was used in the nearest neighbor
classification rule improving significantly the accuracy of the classifier in com-
parison to other distance measures, for which the parameters were not estimated
using discriminative training.

3 Maximum Entropy, Gaussian and Log-linear Models

The principle of maximum entropy has origins in statistical thermodynamics, is
related to information theory and has been applied to pattern recognition tasks
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such as language modeling [1] and text classification [7]. Applied to classifica-
tion, the basic idea is the following: We are given information about a probability
distribution by samples from that distribution (training data). Now, we choose
the distribution such that it fulfills all the constraints given by that informa-
tion (more precisely: the observed marginal distributions), but otherwise has
the highest possible entropy. (This inherently serves as regularization to avoid
overfitting.) It can be shown that this approach leads to log-linear models for
the distribution to be estimated.

Consider a set of so-called feature functions {fi}, i = 1, . . . , I that are sup-
posed to compute ‘useful’ information for classification:

fi : IRD × {1, . . . ,K} −→ IR : (x, k) �−→ fi(x, k)

It can be shown that the resulting distribution that maximizes the entropy has
the following log-linear or exponential functional form:

pΛ(k|x) =
exp [

∑
i λifi(x, k)]∑

k′ exp [
∑

i λifi(x, k′)]
, Λ = {λi}. (3)

Interestingly, it can also be shown that the stated optimization problem is convex
and has a unique global maximum. Furthermore, this unique solution is also the
solution to the following dual problem: Maximize the log probability (2) on the
training data using the model (3).

A second desirable property of the discussed model is that effective algorithms
are known that compute the global maximum of the log probability (2) given
a training set. These algorithms fall into two categories: On the one hand, we have
an algorithm known as generalized iterative scaling [3] and related algorithms
that can be proven to converge to the global maximum. On the other hand, due
to the convex nature of the criterion (2), we can also use general optimization
strategies as e.g. conjugate gradient methods.

The crucial problem in maximum entropy modeling is the choice of the ap-
propriate feature functions {fi}. In general, these functions depend on the clas-
sification task considered.

The straight forward way to define feature functions for classification pur-
poses is to directly use the features provided for the specific task. Consider
therefore the following first-order feature functions for log-linear classification:

fk,i(x, k′) = δ(k, k′) xi ,
fk(x, k′) = δ(k, k′) ,

where δ(k, k′) := 1 if k = k′, and 0 otherwise denotes the Kronecker delta func-
tion. The Kronecker delta is necessary here to distinguish between the different
classes. It can be shown that maximum entropy training using first-order features
is equivalent to the discriminative training of single Gaussian densities with glob-
ally pooled covariance matrices using the criterion (2) [4]. Furthermore, we may
also consider products of feature values for the feature functions (second-order
features) by including

fk,i,j(x, k′) = δ(k, k′) xixj , i ≥ j .
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In this case, the maximum entropy training is equivalent to the discriminative
training of single Gaussian densities with full, class-specific covariance matrices,
where the constraint on the covariance matrices to be positive (semi-) definite is
relaxed [4]. The correspondences can be derived by observing that the functional
form of the class posterior

p(k|x) =
p(k) N (x|μk, Σk)∑
k′ p(k′) N (x|μk′Σk′)

also leads to a log-linear expression like (3) for the appropriate choice of feature
functions. These correspondences to Gaussian models with one prototype justify
the classification of the log-linear approach to be a ‘one-prototype’ approach.

4 Class-Dependent Weighted Dissimilarity Measures

In [9], a class-dependent weighted dissimilarity measure for nearest neighbor
classifiers was introduced. The squared distance is defined as

d2(x, μ) =
∑
d

(
xd − μd
σkμd

)2

, Λ = {σkd, μd},

where d denotes the dimension index and kμ is the class the reference vector
μ belongs to. The parameters Λ are estimated with respect to a discriminative
training criterion that takes into account the out-of-class information and can
be derived from the minimum classification error criterion:

Λ̂ = argmin
Λ

∑
n

min
μ:kμ=kn

dΛ(xn, μ)

min
μ:kμ =kn

dΛ(xn, μ)
(6)

In other words, the parameters are chosen to minimize the average ratio of the
distance to the closest prototype of the same class with respect to the distance
to the closest prototype of the competing classes.

To minimize the criterion, a gradient descent approach is used and a leav-
ing one out estimation with the weighted measure is computed at each step of
the gradient procedure. The weights selected by the algorithm are those weights
with the best leaving one out estimation instead of the weights with the mini-
mum criterion value. In the experiments, only the weights {σkd} were estimated
according to the proposed criterion. The references {μk} were chosen as the
means for the one-prototype approach and in the multiple-prototype approach
the whole training set was used.

Also in this approach, we have a strong relation to Gaussian models. Consider
the use of one prototype per class. The distance measure then is a class-dependent
Mahalanobis distance with class-specific, diagonal covariance matrices

Σk = diag(σ2k1, . . . , σ
2
kD).
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Table 1. Corpus statistics for the three databases used in the experiments from
the UCI and STATLOG repositories, respectively.

corpus name MONK DNA LETTER

# classes 2 3 26

# features 17 180 16

# training samples 124 2 000 15 000

# test samples 432 1 186 5 000

The decision rule is then equivalent to the use of single Gaussian models in
combination with an additional factor to compensate for the missing normal-
ization factor of the Gaussian. In the case of multiple prototypes per class, the
equivalence is extensible to mixtures of Gaussian densities.

5 Connection between the Two Classifiers

As discussed in the two previous sections, the two approaches are equivalent to
the use of discriminative training for single Gaussian densities with some addi-
tional restrictions. This implies that the main difference between the classifiers
is the criterion that is used to choose the class boundaries:

Gaussian Densities: criterion: maximum likelihood (1); decision boundary:
linear (pooled covariance matrices) or quadratic (class-specific covariance
matrices)

Log-linear Model: criterion: maximum mutual information (maximum like-
lihood of the posterior) (2); decision boundary: linear (first-order feature
functions) or quadratic (second-order feature functions)

Weighted Dissimilarity Measures: criterion: intra-class distances versus
inter-class distances (6); decision boundary: quadratic (one prototype per
class) or piecewise quadratic (multiple prototypes per class)

6 Databases and Results

The experiments were performed on three corpora from the UCI and STATLOG
database, respectively [5, 6]. The corpora were chosen to cover different proper-
ties with respect to the number of classes and features and with respect to the
size. The statistics of the corpora are summarized in Table 1. MONK is an arti-
ficial decision task with categorical features also known as the monk’s problem.
For the experiments, the categorical features were transformed into binary fea-
tures. For the DNA task, the goal is to detect gene intron/exon and exon/intron
boundaries given part of a DNA sequence. Also for this task, the categorical
features were transformed into binary features. Finally, the LETTER corpus
consists of printed characters that were preprocessed and a variety of different
features was extracted.
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Table 2. Experimental results for the three databases used with different set-
tings of the algorithms given as error rate (er) in %. The number of parameters
(#param.) refers to the total number of parameters needed to completely define
the classifier.

MONK DNA LETTER
method er[%] #param. er[%] #param. er[%] #param.

single Gaussian 28.5 51 9.5 720 41.6 432

log-linear, first-order 28.9 36 5.6 543 22.5 442
second-order 0.2 308 5.1 48 873 13.5 3 562

weighted dissimil., one prot. 16.7 68 6,7 1 080 24.1 832
multiple prot. 0.0 2 142 4.7 360 540 3.3 240 416

best other [5, 6] 0.0 - 4.1 - 3.4 -

Table 2 shows a summary of the results obtained with the two methods. The
figures show the following tendencies:

– Considering the four approaches that can be labeled ‘one-prototype’ (single
Gaussian, both log-linear models and the one-prototype weighted dissimilar-
ity measure), the discriminative approaches generally perform better than
the maximum likelihood based approach (single Gaussian).

– For the two log-linear approaches, the second-order features perform better
than the first-order features.

– On two of the three corpora, the log-linear classifier with first-order features
performs better than the one-prototype weighted dissimilarity measure using
a smaller number of parameters.

– On all of the corpora, the log-linear classifier with second-order features
performs better than the one-prototype weighted dissimilarity measure, but
using a larger number of parameters.

– The weighted dissimilarity measures using multiple prototypes outperforms
the other regarded (‘one-prototype’) approaches on all tasks and is compet-
itive with respect to the best known results on each task.

Note that second-order features perform better here although estimation of full,
class-specific covariance matrices is problematic for many tasks. This indicates
a high robustness of the maximum entropy log-linear approach. Note further
that both the one-prototype weighted dissimilarity classifier and the log-linear
model with second-order features lead to quadratic decision boundaries, but the
former does not take into account bilinear terms of the features, which is the
case for the second-order features.

The high error rate of the log-linear model with first-order features on the
MONK corpus was analyzed in more detail. As this task only contains binary
features, also the one-prototype weighted dissimilarity classifier leads to linear
decision boundaries here (x2 = x⇔ x ∈ {0, 1}). Therefore it is possible to infer
the parameters for the log-linear model from the training result of the weighted
dissimilarity classifier. This showed that the log-likelihood of the posterior (2) on
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the training data is lower than that resulting from maximum entropy training,
which is not surprising as exactly this quantity is the training criterion for the
log-linear model. But interestingly the same result holds for the test data as well.
That is, the maximum entropy training result has higher prediction accuracy on
the average for the class posterior, but this does not result in better classifica-
tion accuracy. This may indicate that on this corpus with very few samples the
weighted dissimilarity technique is able to better adapt the decision boundary
as it uses a criterion derived from the minimum classification error criterion.

7 Conclusion

A detailed comparison of two discriminative algorithms on three corpora with
different characteristics has been presented. The discriminative approaches gen-
erally perform better than the maximum likelihood based approach.

A direct transfer of the maximum entropy framework to multiple prototypes
is difficult, as the use of multiple prototypes leads to nonlinearities and the
log-linear model cannot be directly applied any more.

The consistent improvements obtained with weighted dissimilarity measures
and multiple prototypes in combination with the improvements obtained by us-
ing second-order features suggest possible improvements that could be expected
from a combination of these two approaches.
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Abstract. The dimensionality of the input data often far exceeds their
intrinsic dimensionality. As a result, it may be difficult to recognize mul-
tidimensional data, especially if the number of samples in a dataset is
not large. In addition, the more dimensions the data have, the longer
the recognition time is. This leads to the necessity of performing dimen-
sionality reduction before pattern recognition. Locally linear embedding
(LLE) [5, 6] is one of the methods intended for this task. In this paper,
we investigate its extension, called supervised locally linear embedding
(SLLE), using class labels of data points in their mapping into a low-
dimensional space. An efficient eigendecomposition scheme for SLLE is
derived. Two variants of SLLE are analyzed coupled with a k nearest
neighbor classifier and tested on real-world images. Preliminary results
demonstrate that both variants yield identical best accuracy, despite of
being conceptually different.

1 Introduction

In pattern recognition, raw data acquired by a camera or scanner are often fed
as they are or after simple pre-processing to a recognition module. Though be-
ing straightforward, this approach suffers from several major drawbacks: a large
data dimensionality makes recognition difficult and time-consuming and in com-
bination with a small data set, the effect known as the curse of dimensionality
unavoidably lowers the accuracy rate.

To eliminate unfavorable consequences of using multidimensional data for
recognition, a kind of dimensionality reduction is wanted. One popular way to do
this is to perform a transformation of the original data, lowering their dimension.
PCA is undoubtly the most frequently used technique for this purpose. Despite of
its simplicity and good results obtained in solving many tasks, PCA is essentially
a linear technique, which can make it an inappropriate choice when the data
possess intrinsic nonlinearity.

To overcome this problem, a new technique, called locally linear embedding
(LLE) has been recently proposed [5, 6], which is able to do nonlinear dimension-
ality reduction in an unsupervised way. Among its advantages over many other
� Olga Kouropteva is grateful to the Infotech Oulu Graduate School.
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similar methods are 1) good preservation of local geometry of high-dimensional
data in a low-dimensional space, 2) only two parameters to be set, 3) a single
global coordinate system in the low-dimensional space, and 4) a non-iterative
solution scaling well to large data sets due to a sparse eigenvector problem and
thus avoiding local minima inherent to many iterative techniques.

For pattern recognition, however, a class membership of each sample in the
training set is usually known in advance and this paved the way for the concept
of a supervised LLE, where labels are employed [1, 3]. Thus, the dimensionality
reduction became both nonlinear and supervised.

In this paper, we apply two variants of the supervised LLE (SLLE), proposed
independently in [1] and [3], in combination with a k nearest neighbor classifier
to handwritten digit recognition. The purpose is to see what one can reach while
carrying out the recognition in a low-dimensional space generated by SLLE. In
addition, we derive an efficient eigendecomposition scheme for SLLE.

2 LLE

As an input, LLE takes a set of N D-dimensional vectors (each of which may
represent one image, for example) assembled in a matrix X of size DxN . Its
output is another set of N d-dimensional vectors (d� D) assembled in a matrix
Y of size dxN . As a result, the kth column vector of Y corresponds to the kth
column vector of X. Further we will treat vectors as points either in IRD or in
IRd, depending on the context.

The original, unsupervised LLE consists of three steps:

1. Find K nearest neighbors of each point Xi in IRD, i = 1, . . . , N . The Eu-
clidean distance is used as a similarity measure. Proximity information is
collected in a matrix A (of size KxN). The jth column of A stores indices
of K points closest to Xj (A1j and AKj correspond to the highest and lowest
proximity, respectively).

2. Assigning weights to pairs of neighboring points. Each weight Wij charac-
terizes a degree of closeness of Xi and Xj . The following optimization task
must be solved [5]:

ε(W ) =
N∑
i=1

‖Xi −
K∑
j=1

Wij∈AiXj∈Ai ‖2 , (1)

subject to constraints
∑K

j=1W j∈Ai = 1 and Wij = 0, if Xi and Xj are not
neighbors.

3. Computing the low-dimensional embedding. Since the goal of LLE is to pre-
serve a local linear structure of a high-dimensional space as accurately as
possible in a low-dimensional space, weights Wij are kept fixed and the fol-
lowing cost function is minimized [5]:

δ(Y ) =
N∑
i=1

‖ Y i −
K∑
j=1

Wij∈AiY j∈Ai ‖2 (2)



388 Olga Kouropteva et al.

under constraints 1
N

∑N
i=1 Y iY

T
i = I (normalized unit covariance) and∑N

i=1 Y i = 0 (translation-invariant embedding), which provide a unique
solution. To find the matrix Y under these constraints, a new matrix is
constructed based on the matrix W : M = (I −W )T (I −W ). LLE then
computes the bottom d + 1 eigenvectors of M , associated with the d + 1
smallest eigenvalues. The first eigenvector (composed of 1’s) whose eigen-
value is close to zero is excluded. The remaining d eigenvectors yield the
final embedding Y .

3 Supervised LLE

Being unsupervised, the original LLE does not make use of class membership
of each point to be projected. To complement the original LLE, a supervised
LLE was proposed. Its name implies that membership information influences on
which points are included in the neighborhood of each point. That is, the super-
vised LLE employes prior information about a task to perform dimensionality
reduction.

So far, two approaches to the supervised LLE have been proposed. The first
approach (abbreviated as SLLE1) forms the neighborhood ofXi only from points
belonging to the same class as that of Xi [3]. The second approach (abbrevi-
ated as SLLE2) expands the interpoint distance if the points belong to different
classes; otherwise, the distance remains unchanged [1]. Either approach modifies
Step 1 of the original LLE, while leaving other two steps unchanged.

3.1 SLLE1

Suppose that the first N1 columns of X are occupied by the data of the first
class, the next N2 columns are composed of the data of the second class, etc.,
i.e. data of a certain class are compactly stored in X. This does not affect the
algorithm logic, but simplifies explanation. As a result, we can assume that X is
composed of submatrices Ξi of size DxNi, i = 1, . . . , L, where L is the number
of different classes.

The nearest neighbors for each Xj ∈ Ξi are then sought in Ξi only. When
applied to all Xj ’s ∈ Ξ1, this procedure leads to a construction of the matrix
A1. By repeating the same for Ξ2, . . . ,ΞL, matrices A2, . . . ,AL are generated.
Because each Ai contains indices of points and it was constructed independently
of other matrices, it is obvious that several matrices can have identical elements,
however, referring to different points.

To distinguish points belonging to different classes, we add a shift to values of
all elements of the matrices starting from A2. The shift value for Ai is computed
as

∑i−1
j=1Nj. Such a procedure guarantees that no two matrices Ai and Aj will

make reference to the same point.
Having set elements of all matrices, we then concatenate Ai’s into a single

matrix A whose size is KxN , where now N =
∑L

i=1Ni. We also concatenate
Ξi’s into a single matrix X whose size is DxN .
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3.2 SLLE2

Another alternative consists of increasing the interpoint distance in IRD if points
belong to different classes. In doing this, different classes can become more spa-
tially separated. It implies that they will remain spatially separated in IRd after
their mapping, i.e. this will facilitate classification in IRd.

LetΩ be the initial matrix of interpoint distances in IRD. Then a modification
rule is

Ω =
{
Ω, if points belong to the same class
Ω + αmax(Ω), if points belong to different classes.

That is, the magnitude of a distance expansion is parameterized by α which
belongs to [0,1]. The smaller (larger) α, the less (more) class labels affect a choice
of the nearest neighbors for each point.

After adjusting distances, K nearest neighbors are sought as in case of the
original LLE.

4 Efficient Eigendecomposition for SLLE1

Because M is sparse, eigenvector computation is quite efficient, though for
large N ’s it anyway remains the most time-consuming step. However, it is still
possible to exploit the mathematical structure of M (at least in case of SLLE1)
to efficiently compute eigendecompositions when N is large.

For SLLE1, M always has a block diagonal form, where one block corre-
sponds to one class. That is, in general, if there are L classes, there are L blocks.
This is because the data of each class are compactly stored in X so that nonzero
entries in M are localized within a range of indices allocated for each class.

Let us consider M (of size NxN) as in (3) when the number of classes is
equal to 3 (N = l+m+ n):

M =

⎛⎝Al×l 0l×m 0l×n

0m×l Bm×m 0m×n

0n×l 0n×m Cn×n

⎞⎠ , (3)

where Al×l, Bm×m, Cn×n are l × l, m×m, n× n blocks, respectively.
We chose three classes only for simplicity of explanation and everything dis-

cussed below is equally valid for an arbitrary number of classes.
Let us assume that the eigenproblems for all blocks are written as follows:

Ax = λx, By = μy, Cz = νz , (4)

where pairs (x λ), (y μ) and (z ν) stand for the eigenvectors and eigenvalues for
A, B and C, respectively.

Now let us show that the following proposition is true.

Proposition 1. Given x, y and z as solutions of the respective eigenproblems
in (4),
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1. the vectors x̃ = (xl×10(m+n)×1), ỹ = (0l×1ym×10n×1), z̃ = (0(l+m)×1zn×1)
are the eigenvectors of M ,

2. the eigenvalues of M include those of A, B and C.

Proof. Multiply first M by x̃:

Mx̃ =

⎛⎝Al×l 0l×m 0l×n

0m×l Bm×m 0m×n

0n×l 0n×m Cn×n

⎞⎠⎛⎝ xl×1

0m×1

0n×1

⎞⎠ =

⎛⎝ (Ax)l×1

0m×1

0n×1

⎞⎠ =

⎛⎝λxl×1

0m×1

0n×1

⎞⎠ = λx̃ .

(5)
Since Mx̃ = λx̃, x̃ is the eigenvector of M and λ is the eigenvalue of M .
Next, multiply M by z̃:

Mz̃ =

⎛⎝Al×l 0l×m 0l×n

0m×l Bm×m 0m×n

0n×l 0n×m Cn×n

⎞⎠⎛⎝ 0l×1

0m×1

zn×1

⎞⎠ =

⎛⎝ 0l×1

0m×1

(Cz)n×1

⎞⎠ =

⎛⎝ 0l×1

0m×1

νzn×1

⎞⎠ = νz̃ .

(6)
Since Mz̃ = νz̃, z̃ is the eigenvector of M and ν is the eigenvalue of M .
Finally, multiply M by ỹ:

Mỹ=

⎛⎝Al×l 0l×m 0l×n

0m×l Bm×m 0m×n

0n×l 0n×m Cn×n

⎞⎠⎛⎝ 0l×1

ym×1

0n×1

⎞⎠=

⎛⎝ 0l×1

(By)m×1

0n×1

⎞⎠=

⎛⎝ 0l×1

μym×1

0n×1

⎞⎠=μỹ .

(7)
Since Mỹ = μỹ, ỹ is the eigenvector of M and μ is the eigenvalue of M . �
It means that M and block matrices composing it have common eigenvalues

and the eigenvectors of M can be easily derived from those of the individual
blocks by inserting zeroes in appropriate positions.

Remember that we need to compute the bottom d + 1 eigenvectors of M
corresponding to the d+ 1 smallest eigenvalues in order to find the embedding.
According to [3], the value for d should be less by one than the number of classes.
This condition leads to the minimal (zero) cost in (2), which we are interested
in. However, how to select appropriate eigenvectors if we would like to work with
blocks instead of the whole M?

It turned out that the smallest d + 1 eigenvalues of M are clustered near
zero. When very small eigenvalues are sought as in our case, this may lead to
ill-conditioned eigenvalues and eigenvectors, i.e. those sensitive to small pertur-
bations in M . However, even if each individual eigenvector may be sensitive to
such perturbations, the eigenspace spanned by all the eigenvectors associated
with the clustered eigenvalues is not! This fact is confirmed by a large difference
in magnitude for the smallest (d + 1)th and (d + 2)th (and next) eigenvalues
of M .

SLLE1, applied to M , yields the bottom d+1 piecewise constant eigenvectors
similar to pulse functions1. Each eigenvector has one “pulse” corresponding to
1 Similar shapes of the eigenvectors were also observed while performing the spectral
clustering [4] when the data were optimally partitioned into clusters according to
a certain criterion. The respective eigenvalues were clustered as well [7].
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the data of a certain class and different “pulses” do not intersect each other
since the eigenvectors are mutually orthogonal. It implies that different classes
are linearly separated in IRd.

Now let us turn attention to the eigenproblems of the individual blocks of
M . We figured out that each block has one distinct eigenvalue which is very
small compared to others. It came as no surprise that the eigenvector associated
with that eigenvalue belonged to the subspace found for M . As a result, we only
have to compute one eigenvector (corresponding to the smallest eigenvalue) per
block in M since the number of classes is equal to that of blocks.

By summarizing the abovementioned, an efficient decomposition for M in
case of SLLE1 can be found in block-by-block fashion. The eigenvectors of the
blocks are to be padded by zeroes. A precise location for padding is determined
by a block index as shown in Proposion 1. In particular, if L is the number of
blocks, then the eigenvector taken from the jth (1 < j < L) block should be
padded by

∑j−1
i=1 Ni zeroes from the front and

∑L
i=j+1Ni zeroes from the end,

where Ni is the size of the ith block.

5 Experiments

To compare LLE, SLLE1 and SLLE2, we took all samples of “1”, “3”, “7”, “8”,
and “9” from the MNIST database of handwritten digits [2]. Because of large
memory requirements for LLE and SLLE2, only these five classes were used and
the MNIST training/test sets were interchanged.

When picking classes, we aimed at selecting digits of similar shapes, such as 1
and 7 or 3, 8 and 9 in order to make the task of digit recognition more challenging.
The training set comprised 5,000 samples whereas the test set consisted of 30,000
samples. Entries to the matrix X were raw grayscale pixel values without pre-
processing.

We ran each algorithm in order to map the training set into IRd with K=10
and d=4 (because of 5 classes; see Sect. 4). Given such parameter values, all
samples belonging to the same class were projected to one point in IRd in case
of SLLE1 and SLLE2 (α = 0.3, . . . , 1). For LLE and SLLE2 (α = 0.1, . . . , 0.2),
projections formed “clouds”.

The samples from the test set were then mapped into IRd by using the non-
parametric generalization [6] with K set to 10. Knowing the coordinates of the
test samples in IRd, a k (k=15) nearest neighbor classification was carried out in
IRd to classify them (since d is small, such a large value for k almost did not affect
the search time, while better classification was achieved). Results of classification
are presented in Tables 1-4, where the last columns show the accuracy rates
attained in classifying a certain class of digits.

One can see that with given parameters, the original LLE lost to both su-
pervised algorithms when classifying data in the embedded space. The average
accuracy rate for SLLE2 varied depending on α and attained the highest value
at α=0.3, which afterwards did not change as α grew. This highest rate is inden-
tical to that achieved with the non-parametric SLLE1. Classification results for



392 Olga Kouropteva et al.

Table 1. Confusion matrix (LLE). Average accuracy rate - 93.83%

1 3 7 8 9

1 6,654 27 34 22 5 98.7%
3 19 5,577 37 460 38 91.0%
7 66 11 5,870 22 296 93.7%
8 94 236 36 5,396 89 92.2%
9 17 73 198 95 5,566 93.6%

Table 2. Confusion matrix (identical for SLLE1 and SLLE2 with α =
0.3, . . . , 1). Average accuracy rate - 95.86%

1 3 7 8 9

1 6,698 12 21 2 9 99.3%
3 149 5,847 49 61 25 95.4%
7 101 2 6,067 1 94 96.8%
8 265 95 16 5,410 65 92.5%
9 110 51 104 15 5,669 95.3%

Table 3. Confusion matrix (SLLE2 with α = 0.1). Average accuracy rate -
95.48%

1 3 7 8 9

1 6,630 18 69 2 23 98.3%
3 16 5,669 46 315 85 92.5%
7 41 13 5,865 7 339 93.6%
8 63 25 63 5,594 106 95.6%
9 6 46 60 44 5,793 97.4%

Table 4. Confusion matrix (SLLE2 with α = 0.2). Average accuracy rate -
94.66%

1 3 7 8 9

1 6,683 12 35 2 10 99.1%
3 27 5,675 378 35 16 92.6%
7 58 2 6,087 0 118 97.2%
8 111 35 452 5,218 35 89.2%
9 19 26 235 7 5,662 95.2%
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Table 5. Confusion matrix (k nearest neighbors in IRD). Average accuracy rate
- 94.02%

1 3 7 8 9

1 6,701 15 16 1 9 99.4%
3 99 5,783 89 82 78 94.3%
7 175 4 5,950 3 133 95.0%
8 278 203 45 5,121 204 87.5%
9 63 79 202 19 5,669 93.9%

all methods depend on k. The Euclidean metric, lacking the robustness to noise
and outliers, mainly attributed to the large k we used. As to K, only SLLE1 was
truly insensitive to its choice while LLE and SLLE2 were completely or partly
dependent on K.

Finally, in order to see to what extent the curse of dimensionality was reduced
when doing the classification in IRd, the k nearest neighbor classification was also
done in IRD with k = 15 (Table 5). It turned out that the average accuracy rate
when classifying in the LLE-reduced space was slightly worse than that in the
original space. It means that LLE should not be employed for classification (this
reasoning was also given in [1]). In contrast, the average accuracy achieved in
the SLLE-reduced space was superior to that in IRD, while the time spent was
approximately the same in both cases.

6 Conclusion

In this paper, we compared two algorithms (SLLE1 and SLLE2) for supervised
dimensionality reduction augmented with the capability to generalize to new
data. Since they employ class labels when performing a mapping IRD → IRd,
they were coupled with a k nearest neighbor classifier in order to test their
performance on handwritten digit images. Experiments demonstrated that SLLE
and k nearest neighbors outperforms k nearest neighbors operating alone in the
original space.

The efficient eigendecomposition scheme was also proposed in case of SLLE1.
Such a scheme dramatically reduces memory requirements, since only one block
at a time will be processed. It means that a large M is not a restriction for
SLLE1. In addition, for large N ’s such a strategy can lower the time spent on
the eigendecomposition.
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Abstract. The main computational cost in Fractal Image Analysis
(FIC) comes from the required range-domain full block comparisons.
In this work we propose a new algorithm for this comparison, in which
actual full block comparison is preceded by a very fast hash–like search of
those domains close to a given range block, resulting in a performance lin-
ear with respect to the number of pixels. Once the algorithm is detailed,
its results will be compared against other state–of–the–art methods in
FIC.

1 Introduction

In Fractal Image Compression (FIC) an N ×N gray level image S to be com-
pressed is partioned into a set R of blocks of K ×K pixels called ranges and for
any one R of them a same size image block D taken from a certain codebook
set D is chosen so that R � D in some sense. Typical K values are 16, 8 or 4,
while N usually is of the order of 512. To obtain the D set, baseline FIC first
decimates S by averaging every 2 × 2 block and then somehow selects a set of
possibly overlapping K × K blocks from the decimated image. Several proce-
dures can be used for this; a typical one (and the one used here) is to select all
the K × K blocks with even coordinates of their upper left corner. This basic
domain set is finally enlarged with their blocks’ isometric images, derived from
the 90, 180 and 270 degree rotations and their four symmetries, to arrive at the
final domain set D. Now, to compress a given range R0, a domain D0 is obtained
such that

D0 = argminD∈D{mins,o||R− (sD + o1)||2}. (1)

The component sD+ o1 above is the gray level transformation of D, with s the
contrast factor and the offset o the luminance shifting. To ensure convergence in
the decoding process, s is sometimes limited to the interval [−1, 1]. R0 is then
compressed essentially by the triplet (D0, s0, o0), with s0 and o0 the minimizing
contrast and luminance parameters. In (1) the optimal s0 and o0 can be com-
puted quite fast. The D minimum, however, is very time consuming, as a brute
force comparison would require to compare all |R| × |D| blocks, with an overall
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quadratic cost. All the FIC speed up methods try to minimize this block com-
parison phase. Two basic different approaches for this have been proposed. The
first one, classification techniques, first groups the blocks in R and D in subsets
with common characteristics, and only compares blocks within the same group.
On the other hand, in feature vector methods, a certain feature vector is first
computed for each block in such a way that full block closeness translates into
feature closeness. For a given range, full block comparisons are only perfomed
upon the domains in a neighborhood with close features, resulting in a loga-
rithmic time for full domain comparison. The Fisher [1] or Hurtgen [2] schemes
are typical classification methods, while Saupe’s [5] is the best known feature
method. In any case, both approaches are not exclusive and they can be used
together (see for instance [4]).

In this work we will present a feature–type approach to FIC acceleration. The
key idea is to look at the range–domain matching problem as one of approximate
key searching. More precisely, for a given range we have to search in the domain
set for one close enough. A naive approach would be to use an entire block as
a search key. This is not feasible however, first because an exact range–domain
match is highly unlikely, but also because of the very high dimensionality of
the key space, in which the domain key subset has a very low density. In this
setting, hashing becomes the natural approach to searching and it will be the
one followed here. In general terms, once hash keys have been computed for
all the domains and these are distributed in a linked hash table, for a given
range R to be compressed, an R–dependent ordered hash key subset HR will
be computed and R will be compared only with those domains D whose hash
keys h(D) lie in HR. Moreover, and in order to speed up the search, R will not
be compressed in terms of the best matching domain, but we shall use instead
one giving a “good enough” match. This domain will, in turn, be moved to the
beginning of the hash list, as it is likely to match future ranges. If such a match
cannot be obtained, the range R will be then passed to an escape procedure.
Here we shall use JPEG DCT on those 8× 8 blocks for which at least one 4× 4
subblock cannot be compressed. In any case, this clearly degrades compression
time, so the escape procedure calls should be quite few.

Besides the usual requirement of a fast computation of the hash function,
we also obviously need that closeness of range–domain hash keys translates in
relative closeness of actual subblocks. The first requirement can be met by using
just a few points of a block B to derive its hash value h(B). These points should
be uncorrelated for the hash value to convey a high information content. This is
naturally achieved taking the points in the h(B) computation as far as possible
within the block. Natural choices are thus the four corner points of the block,
to which the center point could be added for a 5–point hash function h(B).
In order to meet the second requirement, block closeness, first observe that
taking averages and standard errors in the approximation rij � sdij + o gives
< r >� s < d > +o and σ(r) � |s|σ(d). Therefore,

rij− < r >

σ(r)
� ±dij− < d >

σ(d)
,
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which relates approximation parameter estimation to block comparisons. As we
shall discuss in the next section, putting these two observations together leads
to the hash–like block function h(B) we shall use, namely

h(B) =
H∑
h=1

(⌊
bhij− < b >

λσ(b)
+B

⌋
%C

)
Ch−1 =

H∑
h=1

bhC
h−1, (2)

where B is a centering parameter and C is taken to cover the range of the
fractions in (2). The λ parameter is used to control the spread of the argument
of the floor function so that it approximately has a uniform behavior. In other
words, (2) should give the base C expansion of h(B) in such a way that the
expansion coefficients are approximately uniformly distributed. Concrete choices
of B, C and λ will be explained in more detail in the next section, that also
describes the algorithm proposed here and its governing parameters, while the
third section contains some numerical comparisons between our algorithm and
a recent one [4] that combines the well known algorithm of Saupe with mass
center features and gives state of the art speed fractal compression. The paper
finishes with some conclusions and pointers to further work.

2 Hash Based Block Comparison Algorithm

Assuming that the domain set D has been fixed, the block hash function (2) is
used to distribute the elements in D in a hash table T , where T [h] points to
a linked list containing those D ∈ D such that h(D) = h. The parameters B
and C in (2) are easily established. C is essentially the expected spread of the
fraction in (2) while B is chosen to put the modulus operation in the range from
0 to C − 1. For instance, if the expected spread is 16, then we take C = 16 and
B = 8. While B and C are not critical, a correct choice of λ is crucial for a good
time performance of the algorithm. Recalling the notation

bh =

⌊
bhij− < b >

λσ(b)
+B

⌋
%C,

notice that if λ is too big, most blocks would give bh � B values. The resulting
hash table would then have just a few, rather long, linked lists, resulting in
linear searching times. On the other hand, a too small λ would result in similar
domains giving highly different bh and h(D). Notice that although that should
be the desired behavior of an usual hash function, this is not the case here, for
we want similar blocks to have similar hash values. On the other hand, as the
number of lists is limited, the preceding behavior would result in quite different
blocks ending in the same lists. This would result in time consuming full block
comparisons between disimilar blocks and lead again to linear searching times.
Repeated experiments suggest that general purpose λ values could be 1.5 for
16× 16 and 8× 8 blocks, and 0.4 for 4× 4 blocks.

While a single hash value is computed for each domain, a hash value set HR

will be computed for any range R to be compressed. Notice that an exact match
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between two values h(D) and h(R) is not likely. The matching domain for R will
then be chosen among those D such that h(D) ∈ HR. The values in the set HR

are given by

hδ(R) =
H∑
h=1

(⌊
rhij + δh− < r >

λσ(r)
+B

⌋
%C

)
Ch−1 =

H∑
h=1

rδhC
h−1, (3)

where the displacement δ = (δ1, . . . , δH) verifies |δh| ≤ Δ. The bound Δ also
has an impact on the algorithm performance. For instance, it follows from the
algorithm below that taking Δ = 0 would result in too many escape calls.
On the other hand, a large Δ should obviously increase computation time,
while the eventual quality improvements derived from the distant blocks cor-
responding to large δ would likely be marginal. In any case, our experiments
show that Δ and λ are interrelated; in fact, a good choice of λ allows to take
Δ = 1. The hash values in HR are ordered in a spiral like manner. By this we
mean that, taking for instance H = 2 in (2) and (3), δ would take the values
(0, 0), (1, 0), (0, 1), (−1, 0), (0,−1), (1, 1), (1,−1) and so on.

We can give now the proposed FIC algorithm. We assume the domain set
D given and its hash table T constructed. We also assume that two other pa-
rameters dM and dC have been set. Let R be the range to be compressed and
let HR = {h1, . . . , hM} be its ordered hash set computed according to (3). We
define the distance between R and a domain D as

dist(R,D) = sup |rij − σ(r)
σ(d)

(dij− < d >)− < r > |

where the sup is taken over all the pixels. Since we are forcing a positive contrast
factor σ(r)/σ(d), we shall enlarge the domain set with the negatives of the initial
domain blocks. In order to ensure a good decompression, only domains for which
s ≤ 1.5 are considered. The compressing pseudocode is

d = infty ; D_R = NULL ;
for i = 1, ..., M :

for D in T[h_i] :
d’ = dist(R, D) ;
if d’ < d: D_R = D ; d = d’ ;
if d < d_M: move D_R to beginning of T[h_i] ;

goto end ;
end:

if d < d_C: compress R with D_R ;
else: escape (R) ;

The compression information for a range R consists of an entropy coding of an
index to the domain DR and the parameters s and o; notice that DR will give
a close approximation to R, but not neccessarily an optimal one. On the other
hand, R produces a escape call if a close enough domain has not been found.
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Fig. 1. Hash (left) and Saupe–MC (right) compressed Lenna images obtained
with 1 and 2 seconds execution time repectively. It is arguable that the hash
algorithm is “visually” better than MC–Saupe

Following the standard quadtree approach, we will then divide the range in 4
subranges and try to code the subblocks with new domains of suitable size. We
shall use this approach in our examples, with 16, 8 and 4 quadtree levels. Notice
that a further 2 × 2 subdivision does not make sense, as the compression code
requires by itself about 4 bytes. If a given 4× 4 block cannot be compressed, we
shall use JPEG DCT on its parent 8 × 8 block. In any case, these escapes are
rare, less than 1 per thousand ranges.

Notice that the preceding code uses two parameters, dM and dC , which clearly
verify dM < dC . Ranges are compressed only if the minimal distance d verifies
d < dC ; a good choice of dC is about 70% of the full image standard deviation,
with 40 being an adequate value. The parameter dM is critical for the time per-
fomance of the algorithm, as it stops the time consuming block comparisons as
soon as a good enough domain has been found (although, as mentioned before,
may be not optimal). Of course, if dM is too large, it is likely that block com-
parisons will stop when a not too good domain has been examined. The result
will be a fast algorithm but with low quality in the compressed image. On the
other hand, a too small dM will give a good quality for the compressed image
(or too many escape calls!) but it will also force possibly too many domains to
be examined. A practical estimate is to set dM to about 70% of the average
standard block deviation, with 8 being now an adequate value. We turn next to
illustrate the application of hash FIC, comparing its performance with that of
the Saupe–MC FIC.
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Fig. 2. Rate–distortion curves for the hash (black points) and Saupe–MC al-
gorithms. Both are similar up to 1 bpp, Saupe–MC being better afterwards,
because of the earlier saturation of hash FIC (for better comparison, no escape
calls have been used)

3 Experimental Results

We will use for our comparisons the well known 512× 512 Lenna image whose
pixels have a 8 bit gray level. We shall work with a three–level quadtree with
range sizes being 16× 16, 8× 8 and 4× 4. When working with, say, 4× 4 ranges,
we shall use as domains all the 4 × 4 blocks in the decimated image with even
coordinates of their upper left corner. This gives (128−4+1)2 �= 15.625 domains
that become 125.000 after isometries are taken into account and 250.000 after
adding the negative blocks. The number of hash points H is 5 and the maximum
hash key value is thus 165 = 220, resulting in a hash load factor of about 0.25.
As mentioned before, the λ values used are 1.5 for 16× 16 and 8× 8 blocks, and
0.4 for 4× 4 blocks. Other parameters of our hash FIC algorithm are dC = 40,
dM = 8, C = 16, B = 8 and Δ = 1.

There has been much work done to define the “visual quality” of an image
in terms of mathematical expressions [3]. We shall not use these measures here,
but figure (1), corresponding to 1 second hash and 2 second Saupe–MC execu-
tion times, shows that the hash algorithm gives a rather good image quality,
arguably better in this case than that of the Saupe–MC algorithm. Anyway,
a more quantitative approach to measure the quality of a compression algorithm
is to give the evolution with respect to execution time of either the compression
rate achieved or the quality of the compressed image. Compresion rate is simply
measured by the number of bits per pixel (bpp) in the new image. Image quality
is measured by the peak signal to noise ratio PSNR, defined as

PSNR = 10 log10
2552

ms error
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Fig. 3. PSNR and bpp evolutions against execution time for the hash (black
points) and Saupe–MC algorithms. Compressions are similar up to 4 seconds
with hash giving smaller files after that and Saupe–MC higher PSNR. However
the hash algorithm gives better results for small computing times, much better
in fact below 2 seconds.

and measured in decibels (dBs). Figure (2) compares the rate–distortion, that
is, the PSNR–bpp curves of the hash and Saupe–MC FIC. Clearly the algorithm
with a higher curve gives better results. As seen in the figure, both curves are
equivalent up to a PSNR of about 33.5. After this value, the Saupe–MC curve is
better. In fact, for high image quality compression (and therefore, large comput-
ing times), the Saupe–MC algorithm is bound to give somewhat better results.
This is due to the fact that Saupe–MC uses an optimal block, while the hash
algorithm stops domain searching once a close enough domain has been found.
In any case, the well known JPEG algorithm will require smaller compression
times than a FIC algorithm for high image quality, so the earlier PSNR satu-
ration of the hash algorithm does not have a great practical relevance. Figure
(3) gives PSNR and bpp time evolutions of the hash and Saupe–MC algorithms.
Execution times are measured in a 800MHz Pentium III machine with 256 MB
RAM. A higher PSNR curve is better and it is seen that here again Saupe-MC
FIC gives better results in a high quality PSNR range. Notice that, however, be-
low 3 seconds (or below a PSNR of 33), the hash PSNR curve is better, keeping
in fact the same 33 PSNR down to 1 second. Moreover, while hash PSNR stays
above 31 down to 0.5 seconds, Saupe-MC’s PSNR drops below 27 even with a 1.5
second execution time. The same figure shows similar compression rates up to
4 seconds. Above 4 seconds hash files are smaller but, as just seen, hash PSNR
is lower. It follows from these images that for practical execution times, that is,
below 3 seconds, the hash algorithm gives better results than Saupe–MC. Hash
results are in fact much better for small execution times and lower quality ranges
(as mentioned in [1] low quality image compression may be the most promising
image processing area for FIC methods).
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4 Conclusions and Further Work

To achieve linear execution time with respect to image size a FIC algorithm
should make an average of O(1) full domain comparisons per each range to
be compressed. In ordinary key search, hash algorithms can attain this perfor-
mance and, ideally, the hash FIC method presented here could do so. In our
experiments, typical average values for this are 3.9 domain comparisons per
range when PSNR � 33 and 3.1 comparisons when PSNR � 27. The results
shown here do support a linear execution time claim, at least in the low PSNR
range, where our algorithm can be about 5 times faster than other state of
the art acceleration schemes (excluding preparation and I/O times, it could be
up to 10 times faster). Recall that as the hash algorithm does not guarantee
using optimal domains, it is bound to give lower image quality for longer exe-
cution times. It is thus more appropriate to use it in the lower-quality range.
There, the time performance of hash FIC makes it feasible to use it in real time
compression. Interesting application areas for this could be the compression of
images transmitted over mobile phones and even moving image compression,
where foreground images would be used for domain codebooks. Another topic
being considered is to introduce different block comparisons to get better im-
age quality. In fact, a common problem of FIC algorithms is the presence of
visual artifacts in the reconstructed image because of gray level overflows due to
the linear nature of their range–domain approximation. This could be improved
using non linear, saturating block comparison methods, for which hash FIC is
well suited. The price to pay is, of course, longer execution times. With hash
FIC, however, a non linear approach could be pursued, given the efficiency of
the hash domain search. These and other application areas are currently being
researched.

References

[1] Y. Fisher, Fractal Image Compression–Theory and Application. New York:
Springer–Verlag 1994. 396, 401

[2] B. Hurtgen and C. Stiller, “Fast hierarchical codebook search for fractal cod-
ing of still images”, in Proc. EOS/SPIE Visual Communications PACS Medical
Applications ’93, Berlin, Germany, 1993. 396

[3] M. Miyahara, K. Kotani and V.R. Algazi, “Objective picture quality scale (PQS)
for image coding”, IEEE Trans. in Communications, vol. 46, pp. 1215–1226, 1998.
400

[4] M. Polvere and M. Nappi, “Speed up in fractal image coding: comparison of
methods”, IEEE Trans. Image Processing, vol. 9, pp. 1002–1009, June 2000. 396,
397

[5] D. Saupe, “Fractal image compression by multidimensional nearest neighbor
search”, in Proc. DCC’95 Data Compression Conf., Mar. 1995. 396



Learning of Stochastic Context-Free Grammars

by Means of Estimation Algorithms and Initial
Treebank Grammars�

Diego Linares1, Joan-Andreu Sánchez2,
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Abstract. In this paper we study the problem of learning of Stochastic
Context-Free Grammars by means of estimation algorithms. In these al-
gorithms, which are based on a gradient descendent technique, the initial
model play an important role. Here we explore the use of initial SCFG
obtained from a treebank corpus. Experiments on the UPenn Treebank
corpus are reported.

1 Introduction

Over the last few years, there has been increasing interest in Stochastic Context-
Free Grammars (SCFGs) for use in different tasks within the framework of Syn-
tactic Pattern Recognition [1, 6, 8] and Computational Linguistics [5]. The reason
for this can be found in the capability of SCFGs to model the long-term depen-
dencies established between the different linguistic units of a sentence, and the
possibility of incorporating the stochastic information that allows for an ade-
quate modeling of the variability phenomena that are always present in complex
problems. Thus, SCFGs have been successfully used on limited-domain tasks of
low perplexity. However, the general-purpose SCFGs work poorly on large vo-
cabulary tasks. One of the main obstacles to using these models is the learning
of SCFGs for complex real tasks.

Two aspects must be considered with regard to the learning of SCFGs: first,
the learning of the structural component, that is, the rules of the grammar, and
second, the estimation of the stochastic component, that is, the probabilities
of the rules. Although interesting Grammatical Inference techniques have been
proposed elsewhere for learning the rules of the grammar, computational restric-
tions limit their use in complex real tasks. Taking into account the existence of
robust techniques for the automatic estimation of the probabilities of the SCFGs
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from a sample [1, 6, 9, 12], other possible approaches for the learning of SCFGs
by means of a probabilistic estimation process have been explored [11].

All of these estimation algorithms are based on gradient descendent tech-
niques and it is well-known that their behavior depends on the appropriate
choice of the initial grammar. When the SCFG is in Chomsky Normal Form, the
usual method for obtaining this initial grammar is a heuristic initialization based
on an exhaustive ergodic model [6, 9, 11]. This solution is easy to implement but
it do not use any structural information of the sample.

When a treebank corpus is available, it is possible to obtain directly an initial
SCFG from the syntactic structures which are present in the treebank corpus [3].

In this paper, the underlying conjecture is that the structural component of
SCFGs is very important for the learning of stochastic models. In this work, we
explore this possibility and we compare the obtained grammar with reestimated
ergodic models.

Experiments with the UPenn Treebank Corpus were carried out in order to
test the feasibility of this conjecture.

2 Probabilistic Estimation
of Stochastic Context-Free Grammars

A Context-Free Grammar (CFG) G is a four-tuple (N,Σ, P, S), where N is
a finite set of non-terminal symbols, Σ is a finite set of terminal symbols, P is
a finite set of rules, and S is the initial symbol. A CFG is in Chomsky Normal
Form (CNF) if the rules are of the form A → BC or A → a (A,B,C ∈ N and
a ∈ Σ). We say that the CFG is in General Format (GF) if no restriction is
imposed on the format of the rules.

A Stochastic Context-Free Grammar (SCFG) Gs is defined as a pair (G, q),
where G is a CFG and q : P →]0, 1] is a probability function of rule application
such that ∀A ∈ N :

∑
α∈(N∪Σ)+ q(A→ α) = 1. We define the probability of the

derivation dx of the string x, Pr(x, dx | Gs) as the product of the probability
application function of all the rules used in the derivation dx. We define the prob-
ability of the string x as: Pr(x | Gs) =

∑
∀dx Pr(x, dx | Gs), and the probability

of the best derivation of the string x as: P̂r(x | Gs) = max∀dx Pr(x, dx | Gs).
Two important problems which are related to SCFG are the calculation of

the probability of a string and the estimation of the probabilities of the grammar
from a sample. Different algorithms exist for dealing with each problem, and the
election of the appropriate algorithm depends on the format of the SCFG. Now,
we describe the computation of the probability of a string since this computation
is used in the estimation problem.

2.1 Computation of the Probability of a String with a SCFG

When the SCFG is in CNF, the computation of the probability of a string can
be solved efficiently using the inside algorithm [6]. In addition, this algorithm



Learning of Stochastic Context-Free Grammars 405

can be easily modified in order to calculate the probability of the best derivation
of a string and the best derivation itself. We call this algorithm the Viterbi algo-
rithm. The time complexity of the inside and Viterbi algorithms are O(|P ||x|3),
where x is the string to be parsed.

When the grammar is in GF, we can use the Earley algorithm [4]. This
algorithm constructs a set of lists L0, . . . L|x|, where Li keeps track of all pos-
sible derivations that are consistent with the input string until xi. An item
is an element of a list and has the form j

k A→ λ · μ, where j is the current
position in the input and is thereby in the Lj list, k is the position in the
input when the item was selected for expanding A, the dot indicates that λ
accepts xk+1 . . . xj and that μ is pending for expansion. This item records the
history: S ∗⇒ x1x2 . . . xkAδ

∗⇒ x1x2 . . . xkλμδ
∗⇒ x1x2 . . . xkxk+1 . . . xjμδ.

The probabilistic version [12] attaches to each item a probability called inner
probability which is noted as γ( j

i A→ λ · μ). This value represents the sum of
probabilities of all partial derivations that begin with the item i

i A→ ·λμ and
end with the item j

i A→ λ · μ generating the substring xi+1 . . . xj .
An item is added to a list Lj by means of three operations: predictor, scanner

and completer. We propose the following definitions that permit each operation
to be applied only once for each list, except for the completer that is applied
once for each previous item:

predictor(Lj)={ j
j B → ·σ | B → σ ∈ P, j

k A → λ · Cμ ∈ Lj , C
∗⇒L B, 0 ≤ k ≤ j}

scanner(Lj)={ j
k A → λxj · μ | j−1

k A → λ · xjμ ∈ Lj−1, 0 ≤ k < j}
completer(Lj)={ j

k A → λB · μ | i
k A → λ · Bμ ∈ Li,

j
i C → σ· ∈ Lj , B

∗⇒U C, i < j}
where A ∗⇒L B is the reflexive, transitive closure relation of the left-corner rela-
tion A→L B and A

∗⇒U B is the reflexive, transitive closure relation of the unit
production relation A→U B [12].

To avoid an infinite partial derivation produced by unit productions, the al-
gorithm uses the reflexive transitive closure matrix RU (G) = Pr(A ∗⇒U B) which
is computed from the probabilistic unit production relation PU (G) = P(A→ B),
and in such case RU (G) = (I − PU )−1 when the grammar is consistent [5].

The inner probability for each item is calculated using the following recursive
definition:

γ( j
j A→ ·μ) = q(A→ μ), 0 ≤ i < n (predictor)

γ( j
k A→ λδ · μ) =

{
γ( j−1

k A→ λ · δμ) if δ = xj(scanner)∑ j−1
i=k

γ( i
k
A→ λ · δμ)∑C RU (δ, C)γ( j

i C → σ·) if δ ∈ N(completer)

This way, Pr(x|Gs) = γ( n
0$→ S·), where $→ S is a dummy rule which is not

in P . The expression q($ → S) is always one and it is used for initialization.
The time complexity of the algorithm is O(|P ||x|3) and its spatial complexity is
O(|P ||x|2) [12].

The best derivation and its probability (usually called Viterbi probability)
can be calculated in a way similar to the inner probability. The changes necessary
for computing this new value are the following: attach to each item a new value
in order to accumulate Viterbi probability, use maximization instead of sums in
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the completer operation and use R̂U matrix instead of RU matrix. R̂U calculates
the best partial derivation probability between any pair of non-terminals that
are in a unit-production relation and is defined as R̂U (A ∗⇒ B) = max(p(A =
B), p(A → B),max∀C(p(A → C)R̂U (C,B))). For tree extraction we need to
create a new matrix that stores the argument that maximizes R̂U .

2.2 Probabilistic Estimation of a SCFG

In order to estimate the probabilities of a SCFG, it is necessary to define both
a framework to carry out the optimization process and an objective function
to be optimized. In this work, we have considered the framework of Growth
Transformations [2] in order to optimize the objective function.

In reference to the function to be optimized, we will consider the likelihood of
a sample which is defined as: Pr(Ω | Gs) =

∏
x∈Ω Pr(x | Gs), and the likelihood

of the best derivation of a sample which is defined as: P̂r(Ω | Gs) =
∏

x∈Ω P̂r(x |
Gs), where Ω is a multiset of strings.

Given an initial SCFG Gs and a finite training sample Ω, the iterative appli-
cation of the following function can be used in order to modify the probabilities
(∀(A→ α) ∈ P ):

q′(A→ α) =

∑
x∈Ω

1
Pr(x|Gs)

∑
∀dx N(A→ α, dx)Pr(x, dx | Gs)∑

x∈Ω
1

Pr(x|Gs)

∑
∀dx N(A, dx) Pr(x, dx | Gs)

. (1)

The expression N(A → α, dx) represents the number of times that the rule
A→ α has been used in the derivation dx, and N(A, dx) is the number of times
that the non-terminal A has been derived in dx. This transformation optimizes
the function Pr(Ω | Gs). A similar transformation to (1) can be defined in order
to optimize the likelihood of the best derivation of the sample. In such case the
number of times that each rule has been used in the best parsing is used.

Algorithms which are based on transformation (1) are gradient descendent
algorithms and, therefore, the choice of the initial grammar is a fundamental
aspect since it affects both the maximum achieved and the convergence process.
Different methods have been proposed elsewhere in order to obtain the initial
grammar.

When the grammar is in CNF, transformation (1) can be adequately formu-
lated and it becomes the well-known IO algorithm [6]. When the likelihood of
the best parse of the sample is optimized, the scores obtained with the Viterbi
algorithm can be used (VS algorithm). If a bracketed corpus is available, these
algorithms can be adequately modified in order to take advantage of this in-
formation [9]. The initial grammar for these estimation algorithms is typically
constructed in a heuristic fashion from a set of terminals and a set of non-
terminals. The most common way is to construct a model with the maximum
number of rules which can be formed with a given number of non-terminals and
a given number of terminals [6]. Then, initial probabilities which are randomly
generated are attached to the rules. This heuristic has been successfully used for
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real tasks [11]. However, we think that the number of non-terminals is a critical
point which leaves room for improvements.

When the grammar is in GF, transformation (1) can be adequately computed
by using an Earley-based algorithm [12]. When the likelihood of the best parse
of the sample is being optimized, the Viterbi version of the Earley algorithm
(described above) can be used to obtain the scores. In these algorithms, the
initial grammar can be obtained from a treebank corpus. Each sentence in the
corpus is explored and each syntactic structure is considered as a grammar rule.
In addition, the frequency of appearance is adequately maintained and, at the
end, these values are conveniently normalized. These initial grammars have been
successfully used for real tasks [3], since they allow us to parse real test sets.
However, our hypothesis in this work is that these grammars can be conveniently
estimated in order to improve their performance

3 Experiments with the UPenn Treebank Corpus

The corpus used in the experiments was UPenn Treebank Corpus1 [7]. This cor-
pus consists of English texts collected from the Wall Street Journal from editions
of the late eighties. It contains approximately one million words distributed in
25 directories. This corpus was automatically labelled, analyzed and manually
checked as described in [7]. There are two kinds of labelling: a part of speech
(POStag) labelling and a syntactic labelling. The size of the vocabulary is greater
than 49,000 different words, the POStag vocabulary is composed of 45 labels2

and the syntactic vocabulary is composed of 14 labels.
Given the time complexity of the algorithms to be used, we decided to work

only with the POStag labelling, since the vocabulary of the original corpus was
too large for the experiments to be carried out. The corpus was divided into
sentences according to the bracketing. For the experiments, directories 00 to 20
were used for training but without considering sentences of more than 50 words
in the training set. This way, the number of sentences was 41,315 (98.2% over
complete training) and the number of words was 959,390 (95.6% over complete
training). Directories 23 to 24 were used for testing (3,762 sentences and 89,537
words). The test set perplexity3 with 3-grams and linear interpolation was 9.39.

In the following section, we experimentally study and compare the perfor-
mance of the VS estimation algorithm, both stochastically and structurally, for
SCFG in CNF and in GF.

3.1 Experiments with SCFG in CNF

The parameters of an initial SCFG in CNF were estimated using the VS algo-
rithm. The initial grammar had the maximum number of rules which can be
1 Release 2 of this data set can be obtained from the Linguistic Data Consortium with
Catalogue number LDC94T4B (http://www.ldc.upenn.edu/ldc/noframe.html).

2 There are 48 labels defined in [7]; however, some of them do not appear in the corpus.
3 The values were computed using the software tool described in [10] (Release 2.04 is
available in http://svr-www.eng.cam.ac.uk/∼ prc14/toolkit.html).



408 Diego Linares et al.

Table 1. Test set perplexity (tsp), precision (prec.), recall and size of the esti-
mated grammar obtained when the VS algorithm was used to estimate a SCFG
with a different number of non-terminals (|N |)

|N | tsp prec. recall size

14 20.08 27.51 22.70 195
20 20.37 20.61 17.02 255
25 17.62 29.89 24.66 407
30 17.54 27.93 23.05 367
35 16.91 27.51 22.76 600

created with a given number of non-terminal symbols and 45 terminal symbols
(the number of POStags).

In previous works [11], the number of non-terminals was chosen according to
the number of syntactic tags defined in [7]. However, we do not think that this
number of non-terminals is very realistic. Our hypothesis is that better models
can be obtained by increasing the number of non-terminals. In order to test this
hypothesis, we increased this value progressively and the results4 can be seen in
Table 1.

As we conjectured, the test set perplexity of the model, in general, tended
to decrease as the value of N increased for both estimation algorithms. It is
important to note that time complexity of the estimation algorithms increases
linearly with this value. We can see that the precision and recall were very
bad. This may be due to the fact that this algorithm is very sensitive to the
initialization, and lots of important rules disappeared in the estimation process.
Finally, it can be seen that the size of the final models increased with N .

It is important to remark that other estimation algorithms obtained better
results (the bracketed version of the IO algorithm obtained a test set perplexity of
10.22). This algorithms are more powerful since they consider more information
than the VS algorithm.

3.2 Experiments with Treebank Grammars

We now describe the experiments which were carried out with SCFG in GF.
Given that the UPenn Treebank corpus was used, a treebank grammar was
obtained from the syntactic information. The corpus was adequately filtered in
order to use only the POStags and the syntactic tags defined in [7]. However, 12
additional syntactic labels with high frequency of appearance were found, and
they were also considered. Probabilities were attached to the rules according to
the frequency of each one in the training corpus. This initial grammar was tested
on the test set corpus and the results can be seen in Table 2.

Note that good test set perplexity was obtained and that the precision was
also good. Also note that the number of rules was very large. However, lot of the
4 The precision and recall have been computed using the software developed by
S. Sekine and M. Collins (http://cs.nyu.edu/cs/projects/proteus/evalb).
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Table 2. Test set perplexity (tsp), precision (prec.), recall, size of the esti-
mated grammar and number of rejected sentences (rej.) obtained with treebank
grammars and estimated grammars.

Absolute Initial treebank grammar Reestimated treebank grammar
frequency tsp prec. recall size rej. tsp prec. recall size rej.

≥ 1 12.39 76.21 70.55 15,604 0 10.87 74.53 67.67 7,602 5
≥ 2 12.47 75.70 70.77 6,637 4 10.93 73.22 67.62 3,981 4

rules can be deleted without affecting the results [3]. Table 2 shows the results
when we deleted the rules with absolute frequency greater than one. We can see
that the results were good enough and that the number of rules decreased less
than half.

Then, these initial grammars were estimated using the Viterbi version of the
Earley algorithm (described above). The results can be seen in Table 2.

There was a significant improvement in the test set perplexity of about
12.3%, which confirms our hypothesis that the initial treebank grammar could
be stochastically improved. In addition, there was an important reduction in the
size of the model. An interesting aspect to be noted is that the precision and
recall decreased slightly. This may be due to the fact that, during the estima-
tion process, some rules disappeared, and the parsing tree of some strings also
changed.

Finally, when VS algorithm with SCFG in CNF and the VS algorithm with
treebank grammars in GF are compared, there was substantial improvement
shown by the latter. This reveals that the initialization step using the first algo-
rithm is not well solved, and more effort should be made in this direction.

4 Conclusions

In conclusion, we can see that in classical SCFG estimation algorithms, the
initial model plays a very important role. If the SCFG is in CNF, the results
obtained with ergodic models can be substantially improved by choosing an
appropriate number of non-terminals. If the SCFG is in GF, the initial grammar
can be obtained from treebank corpora. These initial models can be improved by
reestimating their probabilities with classical estimation algorithms. The results
obtained by these models are very good since they incorporate very rich syntactic
information.

For future work, we propose using an estimation algorithm which is similar
to the bracketed version of the IO algorithm for SCFG in GF. In addition, we
propose studying the use of this sort of models for language modeling in real
tasks.
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Abstract. Prostate cancer is one of the most frequent cancer in men
and a major cause of mortality in developed countries. Detection of the
prostate carcinoma at an early stage is crucial for a succesfull treatment.
In this paper, a method for analysis of transrectal ultrasonography im-
ages aimed at computer-aided diagnosis of prostate cancer is presented.
Althogh the task is extremely difficult due to a problem of imperfect su-
pervision, we have obtained promising results indicating that valid infor-
mation for the diagnostic is present in the images. Two classifiers based
on k-Nearest Neighbours and Hidden Markov Models are compared.

1 Introduction

Prostate cancer is one of the leading causes of cancer-related mortality in men
and a major health issue. Early detection of the prostate carcinoma is extremely
important as it is only curable at an early stage.

To distinguish benign prostate diseases from malignant tumors, three diag-
nostic tests are routinely used in the urology clinic: Digital Rectal Examination
(DRE), Prostate Specific Antigen level determination (PSA) and Transrectal Ul-
trasonography imaging (TRUS). However, the combination of these tests lacks
accuracy, especially when early detection of prostate carcinoma is pursued to
facilitate treatment. To compensate for this lack of accuracy, it is common prac-
tice to perform several TRUS-guided biopsies and histologic analysis of the sus-
picious tissues. Unfortunately, visual inspection alone of the ultrasonographic
image does not help much in the localization of malignant tissue and, in con-
sequence, many painful biopsies are often needed to get reliable results during
histologic analysis.

In some cases, even when these diagnostic tests have been carried out and
several biopsies have been performed, some incipient cancers are not detected
when none of the punctions reaches the precise place where the tumor is present.
� This work has been partially supported by the Valencian OCYT under grant
CTIDIA/2002/80 and by the Spanish CICYT under grant TIC2000-1703-CO3-01.
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A possible way to improve this TRUS-guided biopsying process is to use
computer-aided analysis of the ultrasonographic image. In fact, computer anal-
ysis of ultrasonographic images has a number of successful precedents in anal-
ysis and diagnosis of many pathologies, including liver [13], lung [5] and breast
anomalies [9, 14]. The basic idea is to develop a computer-aided tool capable of
highlighting the areas most likely to contain cancer cells. The physician would
then be able to perform less biopsies while keeping the same risk of a false nega-
tive, or carry out the same number of extractions with a lower risk of an actual
tumor remaining undetected. Following this idea, limited yet promising qualita-
tive results have been already reported by de la Rosette et. al. [4], using textural
features and decision trees in a supervised learning setting.

In this paper, a system for computer-aided, TRUS-based detection of prostate
cancer is presented. It was developed in collaboration with the Urology Depart-
ment of the Hospital “La Fe” in Valencia (Spain), where a corpus of 4944 images
was acquired from 1648 biopsy sessions (3 images per session) involving 301 pa-
tients (5 to 6 biopsies per patient). During its development, we realized that
our task is extremely difficult due to a problem of imperfect supervision. Urolo-
gists cannot label pixels as positive or negative by analyzing the images at the
micro-texture level, and histologic analysis of the extracted tissue can hardly
be transformed into a map of pixel labels. Thus we are forced to use a single,
imperfect label for all pixels in the biopsied area. Despite this problem, we have
obtained very promising results indicating that discrimination between cancer-
ous and non-cancerous tissue is possible to a certain non-negligible degree.

2 Corpus and Protocol

A TRUS-guided biopsy session is routinely carried out at the Hospital “La Fe”
for all patients suffering symptoms commonly associated to a prostatic lesion,
i.e. a high PSA value and/or anomalous DRE results. A transrectal ultrasono-
graphic probe is inserted to display cross-sectional echographic images of the
prostate. When a suspicious area is found, a biopsy needle attached to the probe
is triggered for tissue extraction and later histologic analysis. Often, no particu-
larly suspicious areas are found, and a number of biopsies (usually six: three for
each lobe) are performed by uniformly scanning the whole gland.

A total of 301 TRUS-guided biopsy sessions were digitally recorded between
February 2000 and February 2001, each session involving a different patient and
5 to 6 biopsies. From the set of 301 sessions, 12 with cancer at an advanced stage
of development were then discarded, as on the one hand this type of cancer can
be easily detected by an urologist by means of traditional tests and on the other
hand images with this type of cancer present a different texture than those with
incipient cancer (which actually is the one we are interested in) and consequently
could increase the uncertainty of the classifier. Finally, a total of 289 sessions
involving 1531 biopsies remained.

Five seconds of echographic images before and after each biopsy (puncture)
were acquired at a rate of 5 frames per second. Images were acquired at a reso-
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Fig. 1. Images of the same biopsy taken 400ms before puncturing (left) and at
the precise moment of puncture (right)

lution of 768× 576 pixels and a depth of 8 bits per pixel, using a conventional
frame grabber connected to an interlaced video output of a ultrasonograph de-
vice. Even-numbered rows and columns were discarded to avoid interlacing ar-
tifacts and maintain the original aspect ratio. Therefore, the images actually
recorded have a resolution of 384× 288 pixels. From the 50 images recorded for
each biopsy, 3 of them uniformly distributed in the 2 seconds period previous to
the puncture were selected. A total of 1531 individual biopsies were recorded in
the 289 sessions, which gives 1531 · 3 = 4593 images in the corpus.

The two extreme points of the cylinder from where tissue was extracted were
manually marked in each biopsy from the first image where the needle completely
appears, defining a rectangle. Because of no significant patient movement is pro-
duced during de biopsying process, the defined rectangle is employed to label
the pixels in the previous images according to the results of the histologic ex-
amination. In Figure 1, two images of a biopsy are shown. The image at the left
is one of the three stored into the database, along with the coordinates of the
polygon delimited by the marked points shown superimposed.

Unfortunately, although the histologic analysis reveals not only if there are
malignant cells in the cylinder, but also where they are, it was not possible in our
real-world long-term clinical setting to set up a practical and reliable method to
physically label the extracted tissue and then map physical labels into pixel la-
bels. Therefore, a large proportion of the pixels labeled as cancerous represent in
fact normal tissue that happens to be in the same cylinder as a tumor. However,
a pixel labeled as normal always corresponds to non-malignant tissue.

From the whole set of 289 patients, 202 were randomly selected to compose
the training set, and the other 87 formed the test set. The selection was per-
formed so that similar a priori probabilities were obtained for both sets (13.40%
of cancer results in the training set and 12.94% in the test set). This operation
was repeated 10 times, which gives 10 different training-test partitions. All the
experiments were carried out over the 10 pairs of sets. The average of the result-
ing values obtained in the different experiments over each set is done as a final
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result. The number of pixels inside the labelled rectangles of the training sets
was around 2, 500, 000. In the test sets, the rectangles contained a little more
than one million pixels.

3 Approach

3.1 Feature Extraction

Most approaches to tissue segmentation in medical images in the literature use
texture descriptors as Spatial Gray Level Dependence Matrices (SGLDM, also
known as Coocurrence Matrices) [10], Fractal features [3], and other kinds of
textural features [7]. In this work we have tested SGLDM descriptors and also
simple gray-map features.

Among the SGLDM descriptors defined in the original work by Haralick et
al. [6], we have used the following ones: Angular Second Moment, Contrast,
Correlation, Variance, Inverse Difference Moment, Sum Average, Sum Variance,
Sum Entropy, Entropy, Difference Variance and Difference Entropy.

A number of different experiments were performed varying the angle and
distance parameters, the window size and the number of gray levels on the
image (reduced from the original 256 levels by means of vector quantization). In
Section 4, the results of the best combinations of parameters are presented in
detail.

A more basic kind of features were also tested as a baseline: gray level maps.
Each pixel is simply represented by a vector with the gray level values of the
nearby pixels as components. Square windows of size w×w were used as neigh-
borhoods, so each pixel gave rise to a w2-dimensional vector.

3.2 k-NN Classification

The k-Nearest Neighbor (k-NN) rule is a powerful and robust classification
method with well-known theoretical properties and ample experimental success
in many pattern recognition tasks. The major drawback often cited for this
method is the computational cost. This could be a serious problem in this work
due to the huge ammount of pixels (each of them represented in a 30-dimensional
space) used in the training set (2.5 million).

In this work, approximate nearest neighbors search in kd-trees has been used
to reduce the temporal cost [1].

Instead of classifying each test point according to the most voted class, in
our case a confidence criterion function that depends on the distances to the
nearest neighbors is used:

fc =

∑
i∈sc

1
d(p, ni)

k∑
i=1

1
d(p, ni)

,
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where fc is the confidence of class c, d(p, ni) is the distance from the test point
to the neighbor i and sc is the set of sub-indices of the prototypes belonging to
class c among the k nearest neighbors found n1 . . . nk. Since ours is a two-class
problem, only the confidence of one class, cancer, is computed. When a thresh-
old T is set, a pixel is considered cancer if that confidence is larger than T . The
value of k used in the experiments was empirically set to 50.

3.3 Hidden Markov Model Classification

To avoid the labeling problem pointed out in Section 2, a Hidden Markov Model
(HMM) classifier has been used. HMMs and their related algorithms are a power-
ful tool with high capability of modeling complex (non stationary) phenomena.
Particularly, they have been widely used in the field of Pattern Recognition,
mainly in Speech Recognition [11] and lately in Handwriting Recognition as
well [2].

In order to use HMMs, it is necessary to compute a feature vector as a
function of some independent variable. For example, in speech the acoustic signal
is divided into a sequence of windows from each of which a feature vector is
computed; here the independent variable is clearly the “time”. In handwriting
recognition, however, the sequence of feature vectors are computed as a function
of the “horizontal position” along the line of handwritten text.

Based on this idea, and knowing beforehand the path of the biopsy needle
when enters each image, we compute a sequence of feature vectors as a function
of the pixels along this path.

Continuous density left-to-right HMMs have been used to model both cancer
and non-cancer classes, as shown in Figure 2. The HMM cancer class includes
three states: non-cancer, cancer and non-cancer. The HMM non-cancer class only
includes one non-cancer state. All the non-cancer states of both models are tied
(they share the same parameter values).

−

− −+

Tied States

HMM non-cancer class

HMM cancer class

Fig. 2. HMM topologies for non-cancer and cancer classes. Labeled states with
“−” model non-cancer tissue and labeled states with “+” model cancer tissue
(feature vectors)
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These topologies make the implicit assumption that only one cancerous tumor
exists in each biopsy image, and that it has a convex shape and a regular growth
in all directions.

It is assumed that each HMM state generates feature vectors following an
adequate parametric probabilistic law; typically, a mixture of Gaussian densities.
The required number of densities in the mixture depends, along with many other
factors, on the “variability” of feature vectors associated with each state. This
number needs to be empirically tuned in each task.

The training process of these models is carried out using the well known
instance of the EM algorithm called backward-forward or Baum-Welch re-
estimation [8].

Instead of using the common Viterbi algorithm to classify each test sequence
according to the most likely HMM class, it was employed to compute the a
posteriori probability of cancer class in order to use it as a confidence criterion
function fc in a similar way as the function defined for k-NN classification:

fc = Pp(c|x) =
pHMMc

(x|c)Pr(c)∑
∀c′

pHMMc′ (x|c′)Pr(c′)

where Pp(c|x) is the a posteriori probability of class c, x is a given sequence
of feature vectors, pHMMc(x|c) is the computed Viterbi score over HMMc paths
and Pr(c) is the a priori probability of class c. Given a computed confidence of
cancer class and a threshold T , a biopsy is considered cancerous if that confidence
is larger than T .

4 Experiments

A number of experiments were carried out to determine if the feature extraction
and the classification scheme proposed could predict the malignancy of a region
around a pixel in a TRUS image of a previously unknown patient. As mentioned
before, it is a task that trained urologists cannot perform reliably. Our hope
was that some local relations among pixels could be represented and recognized
better by the algorithms than by the human visual system.

4.1 k-NN Classification

In a first set of experiments, the gray maps of windows of 16×16 to 50×50 pixels
around each pixel of the images were extracted. Each resulting vector (of 64 to
625 dimensions) was projected into spaces ranging from 10 to 50 dimensions.
The projection basis was computed using Principal Component Analysis (PCA)
from a subset of 250, 000 vectors (10%) randomly drawn from the training set.
Then a confidence value for each pixel inside the rectangle corresponding to the
cylinder analysed was obtained using a k-NN scheme. The confidence value of
the biopsy was obtained as the mean of the confidences of each pixel inside the
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Fig. 3. Receiver Operating Curve (R.O.C.) of the best gray-map (left) and
SGLDM (right) settings for k-NN and HMM

rectangle. The best results were obtained with windows of size 30×30 projected
into a 30-dimensional space.

In the second set of experiments, SGLDM textural descriptors were com-
puted in windows of 8× 8 to 40× 40 pixels centered in each pixel of the images.
Previously, each image was subject to a standard vector quantization prepro-
cess so as its number of gray-levels was reduced from 256 to exactly 20. The 11
parameters cited in Section 3.1 were extracted from 12 matrices corresponding
to four angles (0, π

4 , π
2 and 3π

4 ) and 3 distances (1 to 3 pixels). The parameters
obtained were normalized using a basis computed from a subset of the training
set, to have a variance of approximately 1.0. Each resulting vector (of 132 dimen-
sions) was then projected into spaces ranging from 10 to 50 dimensions using
PCA. The best results were obtained with windows of size 15×15 projected into
a 30-dimensional space.

The results for both gray maps and SGLDM, are shown in Figure 3.

4.2 HMM Classification

Similar experiments to those described in Section 4.1 were carried out using
a HMM classifier considering different number of gaussians (1 to 1024).

For each number of Gaussian densities, a HMM was trained for each of two
classes using the corresponding sequences of feature vectors and six cycles of the
Baum-Welch algorithm parameter re-estimation.

Training and test was performed using the well known and widely avail-
able standard Hidden Markov Model ToolKit (HTK) [12] for Continuous Speech
Recognition.

HMM performed slightly better than k-NN when working with gray maps,
however, no significant difference is found between both classifiers when working
with SGLDM. In Table 1, the area under R.O.C. for the combination of both
classifiers (k-NN and HMM) with both feature extraction scheme (gray map and
SGLDM) is done.
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Table 1. Area under R.O.C. for the two feature extraction scheme employed
(SGLDM and gray maps) tested with the two classifiers (k-NN and HMM)

KNN HMM

SGLDM 60.1% 60.0%

Gray map 59.7% 61.6%

5 Conclusions

A system for computer-aided, transrectal ultrasonography-based detection of
prostate cancer has been presented. The aim of the system is to help an expert
decide where to perform a biopsy.

The results obtained at the biopsy level are very promising, but tests on
complete images comparing the decisions of an expert with and without the aid
of the system are needed to asses the real clinical value of the model. We hope
that the powerful postprocess of the human visual system can make use of the
micro-texture-oriented information provided by the system and integrate it with
the anatomical and geometrical knowledge of the experts.
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Abstract. This paper addresses the registration of ultrasound scans
and magnetic resonance (MR ) volume datasets of the same patient.
During a neurosurgery intervention, pre–operative MR images are often
employed as a guide despite the fact that they do not show the actual
state of the brain, which sometimes has sunk up to 1 cm. By means
of a standard ecographer and a tracker connected to a computer, it is
feasible to build on-line an updated picture of the brain. We propose an
algorithm which first composes the volume ecography of the brain and
registers it to the MR volume. Next, it aligns individual B-scans into the
MR volume, thus providing a measure of the suffered deformation.

1 Introduction

The shift of the brain during interventions represents a major source of inaccu-
racy for any system employing pre-operative images. Because the actual position
of the brain during the operation differs from the estimation provided by pre-
operative images, the information available to neuronavigators will present sys-
tematically misregistrations, and thus surgeons will have to deal manually with
possible inconsistencies. Several papers trying to quantify the magnitude and
direction of the shift have been reported. A simple approach is to monitor the
locations of a number of landmarks in the exposed surface of the brain through
the operation. Roberts et al. [3] employ for this purpose an operating microscope
on a ceiling-mounted robotic platform with tracking capabilities. The statisti-
cal analysis of the recorded positions shows displacement on the order of 1 cm,
mostly along the gravity axis.

Maurer et al. [4] employ an intraoperative magnetic resonance (MR ) device
to acquire a number of scannings during the intervention. This procedure is
applied to interventions of different type (biopsies, functional and resections),
and then images are analyzed to search for volume changes, and also registered
with a non-rigid algorithm based on mutual information.

Other papers aim at the registration of pre-operative to intra-operative im-
ages. Roche [5] defines for this purpose a new measure, the correlation ratio, and
presents results for several phantoms. It is also interesting Xiao’s method [6] for
imaging the breast accounting for deformations of the tissue.

F.J. Perales et al. (Eds.): IbPRIA 2003, LNCS 2652, pp. 420–428, 2003.
c© Springer-Verlag Berlin Heidelberg 2003



Ultrasound to Magnetic Resonance Volume Registration 421

However the proposals in literature are unlikely to be of general use in routine
surgery because of their requirements. For instance, those employing intraoper-
ative MR are unavailable to most hospitals due to the cost of a dedicated MR
device. Instead of MR , we propose to use ultrasound images for pre-operative
image updating. Ultrasound ecography is a popular imaging technique because:

– images are immediately available.
– it is a radiation-free modality.
– the acquisition device is relatively inexpensive and fairly transportable.
– intra-operative ecography devices.

The US acquisition procedure requires the ecography probe to be in physical
contact with the surface of the object to be imaged. While the radiologist manip-
ulates the probe along the surface (free-hand scanning), the image displayed in
a monitor changes dynamically and he is able to reconstruct mentally the struc-
ture underneath the skin. Hard copies of interesting images (individual video
frames are called B-scans, B from here on) are available for a further analysis
and measurements.

The free-hand paradigm proposes to track the position of the transducer
during the examination, so each B has a known position and orientation. With
this information, the image contents have known spatial location with respect to
some external reference system and can be combined to produce a single volume
image.

Transducer
with receiver
attached

Ecography
device

Minibird
central
unit

Transmitter
to be scanned

Laptop

Object

y
x

z

y
x

z

Ultrasound
[U]

xy

xy

M
T

R

M
C

T

M
R

U

Transmitter
[T]

z Receiver
[R]

Cuberille
[C]

a b

Fig. 1. (a) Picture of the system to acquire and register the US volumes; the lap-
top (left) would read both the video output of ecography device (top right) and
the position from the Minibird tracker (blue box). The transducer was attached
with the receiver, while the platform supporting the experiment was metal-free
to prevent magnetic interferences. (b) Coordinates systems involved in the free-
hand ultrasounding and corresponding transformation matrices : MR

U from image
to receiver, MT

R receiver to transmitter and MC
T transmitter to cuberille
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Accordingly, we have built a free–hand system, which is able to track the po-
sition of the transducer, grab the image acquired at that particular moment and
then combine all the information. It consists of the following elements (figure 1a):

– an ultrasound ecographer with video output: Siemens SONOLINE Versa
Pro, with three interchangeable probes: 10, 3.5 and 6.5 Mhz.

– a 3-D tracker to measure the position of the ultrasound transducer as accu-
rately as possible: Minibird 800, Ascension Technology, Vermont.

– a device to grab the video frames: Videoport Framegrabber, Transtech sys-
tems, Hants, U.K.

– a computer, with two inputs: the ultrasound signal and the tracker position.
It is able to store in real time all the incoming data. The computer was
a Pentium II working at 366 Mhz and running Microsoft Windows 98.

The data pairs (image, position) can be used to compound a volume image.
This volume US image could already be of interest in surgery, since it permits
a navigation easier than in the conventional way. But we want to go further: to
compare its contents to those of an MR volume, with the final goal of measuring
the distances between corresponding features and, eventually, to deform one
image according to the other. In this paper we will address only the first part of
this goal.

We performed our experiments with an in-vitro adult human brain. This
had the advantage to permit the full scan of the surface of the brain, which
usually is not feasible during an intervention. For this latter case, only the area
immediately below the craniotomy is suitable for scanning. Another advantage
was not to depend on the constrains of time of an on-going intervention.

Before proceed on the scanning, the first step was to calibrate the ecography
system. Calibration amounts to find out the transformation matrix relating the
image coordinate system to that of the receiver and, from there, to the transmit-
ter and the cuberille, an imaginary volume in space where the scanned specimen
is contained. For the sake of conciseness, we are not going to develop here this
issue. Refer to [7] for an overview of methods and a complete description of the
one selected.

Next, we compounded the whole US volume and register it to the MR image
(section 2) with an algorithm we already devised and applied to CT –MR volume
registration [2]. This first registration step globally aligns the scanned US volume
to the usually larger MR one through a rigid transformation. However, it still
suffers from the tracker errors, which affect the spatial compounding of the US
volume.

But the main cause of misalignment is due to the brain sinking, which is
of local nature, and that is precisely what we are interested in. In order to
quantify this misalignment, we have proceeded to a second registration step: we
have registered individual ecography frames to the MR volume taking as initial
position of each B-scan within the MR volume those coordinates given by the
global registration transform. As a result we have obtained a preliminary map
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of deformations similar to those obtained in a real case (section 3), in a form
of translation vector to apply to each frame in order to correct the global rigid
registration transform.

2 Volume Compounding

After the transducer has been calibrated, the spatial information accompanying
each image is used to compound the sequence of video images into a single
volume image. To achieve a proper setting of the data, the matrix MC

T must
be chosen carefully to include the area to be imaged. Also, the algorithm must
take into account non-scanned voxels and multiply-scanned voxels. For the later
case, we have taken the mean value of the pixels with the same final location.
Figure 2 shows three orthogonal views of the US volume. Despite the gaps, the
features appear fairly constant. We compounded three different volume images
of the same in-vitro brain, one for each transducer employed, but we are going
to show only images and results for the 10 Mhz transducer, which exhibits the
larger depth and field of view.

After building the volume image, the next step was to bring it into alignment
with other images. For this purpose, we had taken an MR volume image of the in-
vitro brain. The registration did not seem an easy task, as the visual inspection
revealed that landmarks were not easy to find in the US volume.

Fortunately, we already had previous experience in similar medical image
registration problem [2], and could apply the same algorithm we had employed
for CT –MR images. In short, the algorithm has the following characteristics:

– Feature Space, this is, the information in the images actually used to
compare them. In this case, we segment the contours of the brain, by means
of a creaseness-based operator. In effect, sulci (cortical folds) can be seen as
valleys in the surface of the brain, and thus can be automatically detected.
For a full description, refer to [2]. Achieving a proper segmentation of the
sulci is itself a recurrent subject in the literature.

– Alignment Function. We take the correlation of the creaseness of the two
volumes as the measure of alignment, and consider only rigid transforma-
tions.

– Scheme of Iterative Process. In order to deal with local maxima, we
build a hierarchical structure and iterate the transformations at each level.

We run the algorithm for three compounded US volumes, and successful
results did not require any modification of the original algorithm. One can check
in figure 2 that the original volumes are visually aligned. Despite the gaps in
the image, the shape of the two images is very similar. We have chosen views
at the extreme location in the brain to show the most unfavorable case, as
misalignments would appear here more clearly. Note that sulci appear much
less clearly in the US image than in the MR image. The reason is that small
sulci concavities appear as white areas instead of depicting black, empty areas,
because the signal is partly reflected back at these points.
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Fig. 2. Top: two corresponding views of US (left) and MR (right) after regis-
tering the two volumes. Bottom: B-scan with cutout from registered MR

There is another interesting visualization possibility, which makes use of the
whole system of transformations: with the transformation provided by the reg-
istration and the matrix MC

U , it is possible to locate each B-frame into the MR
volume, and thus to present its corresponding MR slice. We show corresponding
pairs in figure 2. Note that in this slices the alignment seems to be quite good,
considering the multiple sources of error and the small size of the image depicted.

3 2D US – 3D US Registration

The registration process performed in the previous section permitted us to re-
late the coordinates of each video 2–D frame to the MR volume. In a real neu-
rosurgery intervention, there would be some differences between the newly ac-
quired US and the pre–operative MR volume because the tissues would have
sunken in some degree. An algorithm could register both images, given the ini-
tial estimation of the position provided by volume registration. The resulting
transformation would bring locally into alignment the features from both im-
ages and would provide an estimation of the deformation needed at that point
in order to update the MR volume to the actual features of the brain.

Unfortunately the in-vitro brain could not be employed for this purpose be-
cause the tissues were very rigid, and could not be deformed without damage.
Yet it is interesting to run a 2D–3D registration with the acquired data, to
see whether it can cancel the small positioning errors of the tracking device and,
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Fig. 3. The iterative part of registration searches new transformations in order
to obtain a new cutout more similar to B

more importantly, to correct misalignments due to brain shift. At the same time,
the correction vector is a measure of the brain sinking at each frame.

We decided to adapt the creaseness-based algorithm to perform the 2D–3D
registration. We modeled the position error as a rigid transformation given by
the matrix:

MERR = Trans(Tx, Ty, Tz) ·Rot(φx, φy, φz) (1)

And we modified the calibration equation (see figure 1b) to include this adjust-
ment:

Cx = Px ·MERR ·MR
U ·MT

R ·MC
T ·MM

U (2)

Recall that MM
U is the global alignment transform computed in the previous

section. We will refer as C the 2D image in the cuberille, with the coordinates
given by the previous equation. MM

U is the registration matrix computed in the
previous section.

The new matrix MERR measures the error in the position of the slice. We
decided to include it in the product before MR

U because then the units of the
transformation would be related to B , i.e., pixels, and not mm as it would be
the case had we included it after MC

T .
The next step was to modify our registration algorithm [7] to run with a 2D–

3D scheme. The iterative step could be very similar, the only additional step
being the computation of C , i.e. the slice to be compared in the volume. The
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optimization will modify the values of MERR , which in turn will change the
contents of C , until the desired convergence has been achieved.

But the initial step (exhaustive search in the Fourier domain) had to be
redesigned, as the dimensionality of the images was different. This initial step
could not be suppressed because otherwise the iteration could get trapped in
some local maximum. We took the approach to run the 2D–2D registration with
the two initial images, the video frame and the corresponding cutout, and then
use the result as the first estimation for the 2D–3D algorithm. This approach is
schemed in figure

Figure 4 shows the successful convergence for a few frames. Sometimes, the al-
gorithm fails because the compared creases are too dissimilar. Other times, large
artifacts appearing in C mislead the search. Actually, these are the proper results
of the creaseness step, only that now the slice is extracted containing the whole
surface, instead of a single line as previously. Since the optimization searches
the highest correlation value, the search is lead to areas with higher creaseness
content. This effect occurs when the initial transformation is poorly estimated
because of the lack of reliable landmarks, as it is the case for B depicting border
areas of the brain.

Fig. 4. 2-D to ecography volume registration with the 10 Mhz transducer. First
two columns: original B and C . Third column: superimposed creases, drawn in
white when they match, before registration. Forth column: same as third, after
registration. Note the difficulty to compare images from different modalities and
resolutions, which makes the registration process more difficult
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4 Conclusions

We have presented an automatic method for the registration of a compounded US
volume to an MR image, already employed for other modalities. The algorithm
takes the convolutions of the brain as the landmark to align the volumes. This
registration is accurate so as to permit the comparison of the B image to the
corresponding cutout in the MR volume. Furthermore, the 2D–3D registration
improves accuracy to one or two pixels in the tested volumes, though more
quantitative results are needed to support this conclusion.

An immediate application of this registration is measurement of the sinking
of the brain during an intervention in neurosurgery. In effect, the features of
each B scan would be matched against the MR volume, and the obtained trans-
formation would be an estimation of the changes for this particular landmark.
Since we have applied the algorithm to an undeformable phantom, we have not
been able to fully experiment its trade-offs. In our tests, however, the algorithm
could correct well the miss-alignment produced by the errors in the position of
the transducer provided by the tracking device. Thus, it would presumably be
of relevance in original surgery scenario.
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Abstract. We apply a fast segmenter to planar range images. By seg-
menting normal vectors of estimated planes in a quadtree, we can analyze
very noisy data at high tree levels and guarantee interactivity in visual-
izing underlying 3D scenes. Techniques to enhance data at the original
spatial resolution are given. Results on the ABW range dataset are bet-
ter than those of several other segmenters.

Keywords:Maximum homogeneity - Edge enhancement - 3D clustering

1 Introduction

Range image data are being obtained by an increasing number of sensors. Their
segmentation enables the coding and visualization of structures and objects in
scenes. In previous work different segmenters were compared [1, 2]. We have
developed an unsupervised, fast and robust segmenter which can be applied
to images and 3D data volumes [3] with one-dimensional data, i.e. greyvalue
pixels or voxels. By using a quad/octree, this segmenter allows for an interactive
processing and visualization of huge datasets. Here we apply this segmenter to
range images, using a quadtree with 3D normal vectors at pixel positions.

The paper is organized as follows. First we describe the quadtree framework
(Section 2) and the herein performed processing (Section 3). Then we assess its
performance on a ground truth set of images (Section 4).

2 Quadtree Representation

Let the original range image of size dx×dy be tree level 0. Starting at level 0, we
add higher levels and compute all pixel values at the higher level L by averaging
pixel values in non-overlapping blocks of size 2×2 at level L− 1:

Z(x, y;L) =
1
n4

1∑
i,j=0

Z(2x+ i, 2y + j;L− 1) (1)

where Z(x, y;L) is the pixel value (depth) at position (x, y) of tree level L,
0 ≤ x < dx etc at level L and n4 is normally 4 (see below). The tree construction
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Fig. 1. Processing steps in the quadtree

stops if the highest level consists of one pixel only. The value of this pixel is the
mean of all pixels at level 0. Then the tree has height H and counts H+1 levels.

We note that there are no constraints on the size of the image: In the case
that the image is dyadic (dx = dy being a power of 2), the size of each higher
level is 1/4th the size at the previous, lower level, and all parent pixels have
exactly four children (n4 = 4). If the image has an arbitrary size, parent pixels
do not necessarily have four children (n4 ∈ [1, 4]). However, the spatial resolution
in each dimension always reduces with a factor 2. For instance, the size at level
1 is equal to (dx/2 + dx%2)×(dy/2 + dy%2), where / is the integer division
operator and % the modulus operator.

The quadtree construction can be adapted to the processing of incomplete
images, i.e. images with undefined pixel values (gaps). Although for such im-
ages n4 is not always equal to 4, the resulting data in the tree is about equally
smoothed at all positions, with small deviations only at the edges of the image
and around gaps at the lowest tree level. In this case, Z in Eq. (1) only denotes
available, defined pixel values and n4 ∈ [0, 4] is the total number of available
children at level L− 1 for a parent pixel at level L. If n4 = 0 for a parent pixel,
the undefined pixel value is propagated to the higher level. However, since gaps
become smaller, this propagation will stop.

3 Quadtree Processing

Figure 1 shows the processing in the quadtree. First, at a high tree level L, the
smoothed range image ZL is segmented by: (1) Determining a normal vector at
each pixel by estimating a plane in the pixel neighborhood. This results in an
image of normal vectorsNL. Each normal vector has an x, a y and a z component.
(2) Filtering NL. This results in an image N ′L with an improved homogeneity
when compared to NL. (3) Clustering and classifying N ′L. This results in an
image of regions RL. Each region is characterized by a unique normal vector.
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Fig. 2. Plane estimation in one of four pixel triplets

Then, for each lower level M , starting at tree level L−1 and ending at level 0,
the segmentation is refined by: (A) Again, determining normal vectors, but now
using the range data available at the lower level M . (B) Filtering the resulting
image of normal vectors NM . (C) Correcting NM , using the normal vectors at
the higher level M + 1. (D) Refining the boundaries of RM+1, using the image
of normal vectors NM . This results in the final segmentation RM .

We now describe the - totally five - processing steps. All steps are performed
locally, in small neighborhoods, except for the clustering. Only in the adjustment
and refinement higher level data are used to improve lower level processing.

Plane Estimation The normal vector of a pixel at position (x, y) is determined
by first selecting the pixel triplet with the smallest depth difference from the
following four pixel triplets: (1) Z(x, y), Z(x + 1, y), Z(x, y + 1), (2) Z(x, y),
Z(x + 1, y), Z(x, y − 1), (3) Z(x, y), Z(x − 1, y), Z(x, y + 1), and (4) Z(x, y),
Z(x− 1, y), Z(x, y − 1). If the plane estimation is performed at level 0, the two
depth values in the direction of each adjacent pixel are averaged; see Fig. 2 (the
thick black triangle and the dashed one). This improves the robustness with
respect to noise. Then, the normal vector is defined by the plane through the
selected triplet. We note that the segmenter is not restricted to this normal
vector definition. Other techniques such as least-squares fitting or techniques for
estimating curved planes can also be used. However, the estimation must be fast,
because, apart from the gaps, it must be done for each pixel in the tree.

Maximum-Homogeneity Filtering Similarly, the filtered normal vector of
a pixel at position (x, y) is determined by first selecting the configuration with
the smallest variance from nine configurations [4]. The used configurations are
shown in Fig. 3. In each configuration, the variance is defined as the sum of the
variances of the x, y and z components of N . Then, the filtered normal vector
is computed by averaging the x, y and z components of the normal vectors at
the pixels indicated by the selected configuration.

Multi-dimensional Local-Centroid Clustering At a certain level Lc (0 <
Lc ≤ H) we cluster the pixels’ normal vectors in order to classify the data. Pa-
rameter Lc depends on the noise in the data, the number and size of gaps, as well
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Fig. 3. Maximum-homogeneity filtering. The other six configurations are ob-
tained by projection. Grey denotes filter elements; dark grey the pixel being
filtered

as the size of the smallest region targetted at tree level 0. We use unsupervised
local-centroid clustering [5] because this algorithm is fast and does not require
the number of classes to be known a priori. However, any algorithm without
spatial connectivity constraints can be used, e.g. fuzzy c-means clustering.

Since we need to classify three-dimensional data, i.e. the x, y and z compo-
nents of the filtered normal vectors, we had to extend the local-centroid clustering
algorithm from one to three dimensions. Therefore, instead of a 1D histogram,
which represents greyvalues, we use a 3D one, in order to represent normal
vectors. Then, similar to 1D local-centroid clustering, the histogram of the nor-
mal vectors is iteratively changed by computing, for each normal vector (i, j, k)
with a positive value in the histogram, the centroid, i.e. the weighted sum of
all histogram values in a local neighborhood of size s×s×s symmetric about
(i, j, k). The sum is weighted depending on the distance of the normal vectors to
(i, j, k). The sum represents another normal vector to which the histogram value
at (i, j, k) is added. The algorithm stops when there are no more changes in the
histogram. Then all “voxels” (instead of bins, as in a 1D histogram) with his-
togram values greater than zero are the clusters. After assigning a unique label
to each cluster, we segment level Lc by labeling each normal vector with that of
its nearest cluster (minimum-distance classification in which the distances be-
tween the x, y and z components of the normal vector and the cluster are added
together). The labels can correspond to the actual normal vectors, or can divide
the dynamic range [0, 255] into equal intervals.

Data Adjustment The data at the lower levels in the tree need to be adjusted
in order to: (A) Maintain, for each normal vector component, the spatial rela-
tionship in the quadtree, i.e. every parent pixel is the mean of its child pixels.
(B) Enhance the edges. Each component of the new normal vector of a pixel at
a lower level is calculated using one of the following four equations:

c = f + c− cμ, (2)
c = fμ + c− cμ, (3)

c = f +
c− cμ
cd

fmax − fmin

2
, (4)

c = fμ +
c− cμ
cd

fmax − fmin

2
, (5)
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Table 1. Total number of correct regions (%)

set tree level norm
2 1 0

training 115 ( 57) 121 ( 60) 120 ( 60) 201 (100)
test 236 ( 52) 243 ( 53) 251 ( 55) 457 (100)

with c being the original value of the normal vector’s (x, y or z) component of the
pixel, f the value of the (x, y or z) component of the parent of the pixel, cμ the
mean value of the values of the components in an sc×sc neighborhood around
the pixel, cd the maximum deviation about cμ in this sc×sc neighborhood, fμ
the mean value of the components in an sf×sf neighborhood around the parent
of the pixel and fmax (fmin) the maximum (minimum) value of the components
in this sf×sf neighborhood. The equations add the local “contrast” of the child
pixel in its neighborhood (c − cμ) to the (robust) estimation of its “father” at
the higher level (f or fμ). In the latter two equations, the contrast is scaled to
the parent values.

Boundary Refinement The boundaries at each lower level are refined using
a line filter [3]. Such a filter topology improves the butterfly filter described in [6].

4 Results and Discussion

The range image segmenter was implemented in ANSI C on an SGI Origin 200QC
server. CPU time is about 60s per image, using all 4 available processors for the
most expensive computation tasks. We note that the Origin has MIPS R10000
processors at 180MHz, and that, apart from any parallellization, a normal Pen-
tium III computer at 733 MHz is faster by a factor of 2.2. Using the latest GHz
processors, the total time per image can be reduced to less than 9s.

We applied the segmenter to the ABW range dataset which is divided in a
training and test set of 10 and 30 images, all sized 512×512 [1]. All results from
the test set which are shown below have been obtained by tuning the above
described parameters of the segmenter on the training set. Then the tuned seg-
menter was applied to the test images. Thus, we assume that with the same
parameters good results can be obtained for several images. We note that this is
not necessarily true. However, we prefer to follow a robust approach (see also [7]
for adaptive segmenter tuning). Table 1 shows the number of correct regions ob-
tained at each level of the quadtree for both the training and test set. Note that
the number of correct regions is higher at the lower levels, except for level 0 of
the training set. This indicates that the data adjustment improves the spatial re-
lationships in the quadtree and that the boundary refinement improves the final
segmentation. The percentage of correct regions per image (55) is higher than
the ones (39% and 53%) obtained by the 1D implementation of our algorithm
and the PPU algorithm presented in [2]. The other algorithm presented there
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Fig. 4. From left to right: x, y and z components of normal vectors, at tree
level 2 (top) and 0 (bottom)

and the four algorithms in [1] are better (percentage ranges from 69 to 89). How-
ever, most of these algorithms (except the UB one) are also much slower than
our algorithm (one even takes more than one hour per image). We note that
although not all regions have been correctly detected according to the method-
ology in [1], a big part of these regions is still correct, i.e. their surfaces are planar
(see Fig. 7: only two regions correspond to non-planar surfaces). Consequently,
it will still be possible to improve the analysis and understanding of the under-
lying scenes, especially if this can be done in an interactive way, by visualizing
efficiently-coded surface triangulations at the different tree levels.

Figure 4 shows x, y and z components of normal vectors for one range im-
age. Note that, at the highest tree level, the different components enable the
segmentation of different regions and that, at the lowest one, the data are very
noisy. Figure 5 shows processed normal vector components, obtained for another
range image. The filtering was iterated 4x at tree level 2, 2x at level 1 and 0x
at level 0, the adjustment was performed using Eq. (2), and the size of the line
filter was 11. Note that: (A) The filtering reduces the noise and improves the
region homogeneity. (B) The adjustment improves the coherency in the tree, but
causes a blocky effect at tree level 0. Below we will see that by using another
adjustment equation this effect can be decreased. However, in the parameter
tuning, Eq. (2) was preferred. (C) The refinement improves the quality of the
boundaries at tree level 0.

Figure 6 shows components of filtered and adjusted normal vectors at tree
level 1 in the case of another range image. Note that the adjustment performs
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Fig. 5. From left to right: components of estimated, filtered/adjusted and seg-
mented normal vectors, at tree level 2 (top) and 0 (bottom)

well in that it projects higher level regions to the lower level. For example,
the regions in the “tower” at the left of the image are only separated after the
adjustment. Also note that the boundaries obtained with Eq. (2) are blocky, and
that those obtained with Eq. (4) are visually more appealing. However, in the
quantization of the segmentation results during the parameter tuning, Eq. (2)
was preferred.

Figure 7 shows three segmentations after a connected-component labeling
and using the scoring software described in [1]. Note that: (A) Even small and
elongated regions were detected. (B) Despite the use of adjustment Eq. (2) the
boundaries are not blocky at all. This is due to the refinement. (C) Some regions
were over-segmented. This may be due to the high level of noise in the original
images. (D) Some regions were under-segmented. This is partly due to the fact
that these are adjacent parallel regions, and such regions have equal normal
vectors.

In the future we will further emphasize the use of a simple and fast, but
effective, processing embedded in a quadtree, e.g. for estimating curved surfaces.
We also plan to use this fast segmenter for the interactive visualization of range
images, reconstructing efficiently-coded 3D triangulations of underlying scenes
at the different tree levels, with texture mapped and shaded surfaces for an
improved analysis and interpretation.
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Fig. 6. Normal vector components after filtering, and adjustment with Eqs (2)
and (4)

Fig. 7. Final segmentations. Black denotes gaps; grey correct and white
over/under-segmented regions
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Abstract. We present a new associative neural network design espe-
cially indicated for the early detection of malignant lesions in breast
cancer screening. It is a BAM in which we have made some changes to the
functioning of its neurons, and for which we have developed an automatic
selection algorithm for the prototypes used to calculate the thresholds of
the neurons conforming the input layer. The result is a structure that,
while considerably reduced, is highly effective in identifying the images
that indicate the presence of malignant tumours in screening for breast
cancer. We endowed the network with a special pre-processing stage for
the treatment of this kind of radiographic image. This pre-processing
yields a more detailed analysis of possible signs of tumours.

1 Introduction

Almost from the beginning of their general acceptance by the scientific world,
neural networks have been used as a powerful Pattern Recognition tool. Today
they form an area of study which has its own identity. This is reflected in numer-
ous examples in the literature, such as those described in [1]. One application
of Pattern Recognition that has been receiving a great deal of attention because
of its clear interest is the detection of breast cancer. As of now, this task is
exclusively one of the human specialist. In the last decade, however, because
of the success in other fields of technology, there have been many attempts to
incorporate neural networks into the process as an aid to diagnosis.

There is a wide range of possibilities in using neural networks in screening
for breast cancer, whether generic [2, 3] or specialized such as in the detection
of masses [4, 5] microcalcifications [6, 7] or spiculated lesions [8].

An added problem arises in the real practical application of neural networks
to the detection of malignant tumours in that it is necessary, before performing
the classification itself, to locate the zones of the mammogram in which there
might appear signs of tumours. The recognition of these zones, known as ROI
(regions of interest), requires the development of a specific algorithm [9, 10].

We here present an overall solution to these goals using a mixed algorith-
mic and neural network system based on associative bidirectional memories

F.J. Perales et al. (Eds.): IbPRIA 2003, LNCS 2652, pp. 437–444, 2003.
c© Springer-Verlag Berlin Heidelberg 2003
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(BAM) [11] and a custom-designed pre-processing unit. We maintain Kosko’s
classical initial structure, but introduce various changes in the constitutive neu-
rons, in the definition of the weight matrix, and, above all, in the automatic
selection of the prototypes used in defining the classes.

With respect to the pre-processing, we set up a division by task, using
a generic topological pre-processor (elimination of noise, deformation, scaling,
etc.) and another responsible for transforming the (analogical or digital) mam-
mograms into groups of images suitable for treatment by the BAM. The appli-
cation that we present here formalizes and enlarges on our earlier work on the
topic [12].

2 General Structure of the System

Figure 1 shows the general structure of the system with the two aforementioned
blocks corresponding to the pre-processor and the associative memory. The for-
mer receives the original analogical or digital mammogram and then splits this
image (which is usually between 30 MBytes and 50 MBytes in size) up into a set
of grid cells which are sent to the topological pre-processor that follows it. As we
shall see below, this pre-processor performs certain conventional transformations
on the image. Since the result is a certain number of images, this is really a set
of BAMs implemented on a multiprocessor network so that they will be able to
process the images very quickly. The figure therefore shows them as a network
of BAMs.

They are, of course, all constructed and trained identically, and hence form
a multiple copy of a single starting associative memory which is executed in the
different processors that make up the network, which in our case was developed
as a further aspect of the application [13]. In the following sections, we shall
analyse separately the functioning of each of these units.

PREPROCESSOR

Mammographic
&

Topological

Array of Associative
Memories (BAM)

Mammogram

Fig. 1. General block diagram of the mammogram classifier
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3 The Pre-processor

As we mentioned above, the pre-processor is responsible for generating from the
original mammogram one or more images suitable for submission to the BAM
for recognition. Nevertheless, the pre-processor has two clearly differentiated
tasks to perform: (i) to generate a medically meaningful image, enhancing and
extracting the multiple images that are superposed and mask each other in
the original image, and (ii) to eliminate the distortions that are common to all
types of image (noise, scaling, etc.). We therefore split the pre-processor into two
functionally differentiated units which, by connecting the output of one to the
input of the other, provide the overall functioning of the pre-processor system.

3.1 The Mammogram Pre-processor

The mammogram pre-processor consists of two phases. In one, the original image
is split into squares of a suitable size for the subsequent processing. A typical
initial image has 6 000 x 4 500 pixels and a size of 24 cm x 18 cm, which means
27 Mpixels, i.e., 54 MBytes. From this, we pass to a grid of 432 cells of 1 cm
x 1 cm, each of which has 62 500 pixels, i.e., 125 kBytes. Firstly, we eliminate
those cells with a null histogram, i.e., those outside the breast, and those of the
interior of the breast but lacking contrast. On average, this reduces the number
of images by between 20% and 40%, leaving around 300 images to process.

These are grey-scale images, so that there is a strong possibility of overlooking
a cancerous lesion because of the masking effect of a background whose intensity
is similar to the lesion itself. To avoid this possibility, we generate a set of
black and white images from each of these cells using a threshold “window”. In
particular, we choose a threshold value τi and apply the threshold function of
Eq. 1

f(j) =
{

1 if τi ≤ I(j) ≤ τi +Δ
0 if I(j) < τi, or I(j) > τi +Δ

(1)

where I(j) is the luminosity of the j-th pixel and Δ the “breadth” of the window
whose value can be selected arbitrarily.

This means that all those pixels with luminosity greater or less than the
specified window will be “darkened”, while those whose intensity falls within
the window will be “lit”. The resulting image will this contain only those pixels
with a certain amplitude, eliminating those of greater and lesser luminosity. The
new squares allow the visualization of the images whose profile might have been
masked by other figures or figure backgrounds.

In sum, we have gone from a grey-scale image of large dimensions and un-
predictable mix of outlines, above all difficult for the human eye to distinguish,
to a reduced set of binary images much smaller in size, avoiding the difficulty in
the detection of the ROI zones that has always been a serious drawback because
of the processing speed penalty that its processing involves.
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3.2 The Topological Pre-processor

This unit is configured to be an element that modifies the inputs through the
following series of topological operations:

� Dispersion
� Calculation of the centre of inertia
� Rotation
� Scaling
� Displacement
� Elimination of noise

Its purpose is to restructure the input image by eliminating all the algorith-
mically detectable geometric deformations. Its usefulness lies in that the images
obtained from the previous subsystem are treated as if they were simply al-
phanumeric characters, such as handwritten characters, since the problem in
this phase is the classification of given images independently of any meaning
they might have. Execution begins by calculating the dispersion of the image
over the background (pixels that stand out as being part of the body of the
“character”). This gives a measure of the area occupied by the character on
the total background. Next this character’s centre of inertia is found, and the
character is rotated around it until reaching a position of minimum moment of
rotation. Once appropriately centered, its size is modified to preset appropriate
limits (scaling), and is finally displaced until it occupies the centre of the square
of the image. At this point, the character already has a suitable form to be taken
as a possible input to the BAM.

Lastly, a noise elimination routine is used to eliminate markedly isolated
pixels and add others needed to form a coherent image, avoiding gaps inside the
character. While the effect is not particularly definitive, it is enough to make the
image (that is now ready to send) perfectly classifiable by the BAM.

4 The BAM

In this section we analyse how the associative memory that we have designed
functions. As was indicated in Fig.1, there is really a set of memories involved.
By means of a suitable mechanism that will depend on each particular applica-
tion, the different squares will be distributed amongst the various BAMs avail-
able in our multiprocessor network. Indeed, the case is simply one of available
resources which will condition the relationship between the number of CPUs
versus execution time. We shall therefore focus on the design and functioning of
the associative memory as a single entity.

One of the most important aspects of the system resides in the design speci-
fications that we introduced into the definition of the BAM. Basically then, this
is a two-layer, BAM-type associative memory, in which the inputs of each layer’s
neurons are totally connected to the outputs of the previous layer’s neurons, but
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there exist no sideways connections within any given layer. The neurons of the
first layer (the “input” layer in conventional BAM nomenclature) are defined by
the expression

yj = F (Ij) = F (
N∑
i=1

mjixki − θj) (2)

where Ij represents the excitation coming from the second layer’s neurons. With
respect to the latter, the main difference is that the threshold term “θj”, does
not appear in their function. The significance of this will be seen below. Neither
is the function F(.) the same. Whereas for the second layer, the usual sigmoid
function or the step function are used, for the first we chose a multi-step function
for the reasons that we will present below in discussing the “dead zone”.

In order to put forward a reliable classifying system, firstly we use a sin-
gle prototype to define each of the possible classes of tumour-indicating lesions
which the human expert finds meaningful. Following the construction rules of
the weight matrix of the BAM, we associate to each of these prototypes a vector
that we shall call the class vector Vi that belongs to a canonical structured
set with equidistance 2 as in [14], so that one and only one of its compo-
nents – that which indicates the numeral of the class – is 1 and the rest are
0: V1 = (1, 0, . . . , 0), V2 = (0, 1, 0, . . . , 0); . . . We thus have the weight matrix
constructed according to its original definition,

M =
N∑
i=1

XT
i · Yi = (mT

1 , . . . ,m
T
N ), (3)

where N is the class space dimension and P the image vector space dimension,
with

mT
i = XT

i +
N∑
j=1
j =i

XcT
j , (4)

where XcT
j is the conjugate vector of XT

j .
Since the class vector consists of components of value “-1” except that of its

own class which is “1”, the product will be the sum of the prototypes of the
other classes by -1 plus that of its own class multiplied by 1, as is indicated in
(3). At this point, suppose that a prototype Ak, is presented at the first layer,
and Ak belongs to class “j”. The bipolarizer converts Ak into Xk. As one derives
from the general formulation of the BAM, if the input images are of dimension
P and the number of classes is N, the first layer has N neurons with P inputs
each, and each neuron receives an excitation

Ij = Xk · mj = Xk(XT
j +

Q∑
l=1
l =j

XcT
l ). (5)

If all these prototypes were completely different from each other, their equiv-
alent bipolar vectors could be identified as a set of orthogonal vectors. There-
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fore, the excitation of all neurons in the first layer would have all the compo-
nents negative except the one whose position coincides with that of the class.
Consequently, the output from the first layer would be Y = (y1, y2, ..., yN ) =
(−1,−1, ...,−1, 1,−1, ...,−1) where yj corresponds to the usual neural function,
that is

yj = f(Ij , θj) = f(
P∑
i=1

wij · xi − θj), (6)

where “θj” is the threshold and with “1” being the output from the position-k
neuron in this layer and “-1” the rest. Then, we say that the neural network
correctly classifies the input vector Ak. In the general situation of application to
real cases, the input vectors are not orthogonal: they present a deal of common,
non-representative information.

The consequence is that the neural network is subject to an overlap effect
which irrecoverably dilutes the information in the weight matrix. After following
the above steps for the vector Xk, one easily sees that if the interference term
has an appropriate value, it may cause the neuron to fire in the opposite sense
to what was expected generating an output vector that could contain more
outputs yh = 1, h �= j. This vector, following the usual BAM mechanism, is sent
to the second layer, whose outputs will later substitute the initial input, thus
constituting the new input to the first layer. It is possible, however, that (as
occurs in the conventional BAM) the process does not generate after a certain
number of repetitions an output vector with a single component of “1” and,
therefore, the classification of the input will not have been attained.

As a solution to situations of this type, which are very common in the use
of BAMs, we propose a method which consists in making use of the threshold
θj of (6) that is modulated by this overlap noise, so that the neuron becomes
insensitive to the interference and is not triggered by the input produced by
characters to which it has not been associated. The thresholds are calculated in
the “learning phase”, when with all the prototypes not belonging to class “j”,
we have the maximum excitation at the j-neuron as calculated in (5)

Max Ik = Max(
N∑
i=1

wij · xki), (7)

with Xk ∈ Ak �= Prototype Aj which means that the maximum of the
excitation coming from the prototypes of the class differs from the excitation
for the prototypes of the remaining classes by at least a quantity that can be
calculated as

εj = Ij − Max Ik . (8)

We define now the function of the first layer’s neurons as

yj = f(
N∑
i=1

wij · xi − (Max Ik + χ)) . (9)
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The term “χ” allows the threshold to be adjusted so that an image not belonging
to the class j does not activate the j-th neuron, while all the images that do belong
to this class produce sufficient excitation Ij to guarantee the activation of that
neuron. Given that this is applied to all the classes, the end result is that the
image will be correctly classified.

5 Prototype Selection

One of the most important points in programming the BAM is the correct selec-
tion of the prototypes employed to generate the weight matrix defined in (3). One
can, however, make a “good enough” selection, given that the optimal choice is
often impossible or excessively costly in terms of efficacy. This consists of apply-
ing (8) iteratively to the training set that we have chosen. For this purpose, one
initially employs for each class any prototype whatever taken from the training
set by an absolutely free process (at random, with some fixed criterion, etc.).
With this initial set of prototypes, the matrix (3) is calculated with all of them
as was indicated above. With this matrix, one determines the value of εj for each
prototype of the training set. Now, the prototype of each class that generates
the greatest value of εj will substitute that chosen previously, thereby modifying
the weight matrix used before. This process is repeated until either a stable set
of prototypes has been generated (the more frequent case) or a pre-set number
of iterations has been reached.

6 Results

The system is currently running with a network of 40 Pentium III (1 GHz)
processors implementing an associative memory of 400 BAMs with its own op-
erating system developed on Linux. The unit has a mammogram digitalizer so
as to accept both digital and analogue images. It also has a complete copy (more
than 250 GBytes) of the DDSM (Digital Database for Screening Mammography
from the University of South Florida)[15] database with the 4 views of each of
the 2620 cases. With respect to the cell images, 100 grey-scale levels are distin-
guished, and the grey threshold value τi and the window Δ can be specified.
Away from the context of breast cancer detection, the system has already been
tested on the NIST #19 [16] database and on the Display 1 database from the
well-known UCI [17] set, with a success rate of 100% and a greater than 40%
immunity with respect to noise contamination in all the cases.
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Abstract. In this work we propose a new method to estimate the scale
hyperparameter for convex priors with scalable energy functions in Single
Photon Emission Computed Tomography (SPECT) image reconstruc-
tion problems. Within the Bayesian paradigm, Evidence Analysis and
circulant preconditioners are used to obtain the scale hyperparameter.
The proposed method is tested on synthetic SPECT images using Ge-
neralized Gaussian Markov Random Fields (GGMRF) as scalable prior
distributions.

1 Introduction

SPECT is a technique used in Nuclear Medicine to take projection data by
a gamma-camera following an orbit around the patient’s body, at regularly
spaced angles. A reconstructed SPECT image is the discrete representation of
a cross section of the isotope distribution within the patient.

When Bayesian methods are applied to the reconstruction of SPECT images,
the parameters of the prior model incorporating the expected structure in the
image need to be selected. These parameters are known as hyperparameters and
their selection has been a serious limitation to the use of statistical methods in
medical reconstruction problems. Therefore, reliable automatic methods for the
selection of the hyperparameters are essential to obtain correct reconstructions.

Several works have been published on the hyperparameter estimation prob-
lem in SPECT image reconstruction, see [7, 11] and references therein. In [8, 9]
we used diagonal preconditioning methods to estimate the unknown hyperpa-
rameters. Circulant and shift-variant preconditioners were applied to GGMRF
priors in [10], where the best reconstructions and execution times were obtained
� This work has been partially supported by CICYT project TIC2000-1275.
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with a circulant preconditioner. In this paper we propose a new circulant ap-
proximation to provide an estimation method of the scale hyperparameter that
can be used on any prior with scalable energy function (see [3] for a justification
on the use of scalable priors).

The rest of the paper is organized as follows. In section 2 we describe the
degradation and image models and the Evidence Analysis within the Bayesian
paradigm. Section 3 describes the proposed estimation method, as well as, the
preconditioning method used. Experimental results are presented in section 4.
Section 5 concludes the paper.

2 Hierarchical Bayesian Paradigm and Evidence Analysis

Within the Bayesian paradigm, the reconstruction of the original images X ,
denoted by X̂(θ), is selected as:

X̂(θ) = argmax
X

P (Y |X)P (X |θ) , (1)

where θ is a hyperparameter vector, P (X |θ) is the prior distribution and P (Y |X)
models the process to obtain the data Y from the real underlying image X .

The Hierarchical Bayesian paradigm first defines the distributions P (Y |X)
and P (X |θ). Next, a distribution P (θ) for the hyperparameters is defined and
the joint distribution P (θ,X, Y ) is formed. The Evidence Analysis performs then
the following steps to estimate the hyperparameter vector and reconstruct the
image:
1. P (θ,X, Y ) is integrated over the whole image space X to obtain P (θ, Y ) and

θ̂ = argmax
θ

P (θ, Y ) = argmax
θ

P (θ|Y ) , (2)

is selected as the hyperparameter vector.
2. The original image X is then obtained as:

X̂(θ̂) = argmax
X

P (Y |X)P (X |θ̂) . (3)

The degradation model for emission tomography is specified as a product of
independent Poisson distributions:

P (Y |X) =
M∏
i=1

(
∑N

j=1 Ai,jxj)yi exp{−∑N
j=1 Ai,jxj}

yi!
, (4)

where M is the number of detectors, N is the number of pixels and A is the
system matrix.Ai,j is the probability that an emitted photon from pixel j reaches
detector i.

The prior models we use are convex Markov Random Fields (MRF ) with
scalable energy function. Their density functions have the following form:

P (X)=
1

Z(σ, p)
exp

{−∑
i,j∈N

V (xi, xj , σ, p)
}
=

1
Z(σ, p)

exp
{− 1

σ

∑
i,j∈N

U(xi, xj , p)
}
,

(5)
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where V is the potential function which depends on two hyperparameters σ
and p, that is, θ = (σ, p), U is the energy function and Z is the partition func-
tion. The elements xi and xj are neighbouring pixels and N is the set of all
neighbouring pixel pairs. The scale hyperparameter σ determines the overall
smoothness of the reconstruction, and p is called the shape parameter. The en-
ergy function is scalable if for all X ∈ RN and α > 0 we have:

U(αX, p) = αpU(X, p). (6)

From above it follows that the partition function can be expressed as:

Z(σ, p) = σN/pZ(1, p). (7)

Equation (7) implies that the partition function, for any scalable prior model,
is tractable with respect to the scale hyperparamenter σ. Hence, a general
method for the estimation of σ can be obtained.

3 Scale Hyperparameter Estimation

We now proceed to estimate the scale hyperparameter for scalable priors in
image reconstruction problems. We assume here that P (θ) ∝ const.

In order to solve Eq. (3), we define the following function M(X,Y |θ):

M(X,Y |θ) = logP (X |θ) + logP (Y |X) =

−logZ(σ, p)− 1
σ

∑
i,j∈N

U(xi, xj , p) +
M∑
i=1

⎛⎝ N∑
j=1

(−Ai,jxj)+yi log

⎡⎣ N∑
j=1

Ai,jxj

⎤⎦⎞⎠, (8)
and then calculate P (θ, Y ) using

P (θ, Y ) ∝ P (θ)
∫
X

exp{M(X,Y |θ)}dX . (9)

This integral cannot be evaluated analytically and therefore we resort to
Gaussian quadrature approximation. Using Taylor series expansion, we expand
M(X,Y |θ) around the MAP estimate, X̂(θ), up to second order terms. Hence,
we have the following approximation of P (θ, Y ):

P (θ, Y ) ∝ exp
[
M(X̂(θ), Y |θ)

] ∣∣∣∣G(X̂(θ)) +
1
σ
F (X̂(θ))

∣∣∣∣−1/2 , (10)

where the (i, j)th elements of the matrices G(X̂(θ)) and F (X̂(θ)) are given by:

Gi,j(X̂(θ)) =
M∑
k=1

yk
Ak,iAk,j(∑N

l=1Ak,lx̂l(θ)
)2 , (11)
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Fi,j(X̂(θ)) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑

k∈Ni

∂2U(x̂i(θ),x̂k(θ),p)
∂x2

i

i = j

−∂2U(x̂i(θ),x̂j(θ),p)
∂xi∂xj

i �= j, j ∈ Ni

0 otherwise .

(12)

Using Eq. (10) in Eq. (2) we obtain:

σ =
p

N

∑
i,j∈N

U(x̂i(θ), x̂j(θ), p)

+
p

2N
trace

[(
G(X̂(θ)) +

1
σ
F (X̂(θ))

)−1
F (X̂(θ))

]
. (13)

We can now use the following iterative procedure to estimate the reconstruc-
tion and the scale hyperparameter. At each step k, we proceed as follows:
1. Given a previously obtained image X̂k−1 and a previous estimate of the scale

hyperparameter σ̂k−1, a new value σ̂k is calculated using Eq. (13).
2. A newly estimated image X̂k, is obtained by iterating once aMAP algorithm

for σ̂k and X̂k−1.

We note that the estimation of σ involves the calculation of (G(X̂(θ)) +
1
σF (X̂(θ)))−1. This inversion is a computationally intensive problem. We use
preconditioning to approximate Hessian matrices in order to simplify their in-
version.

In this work circulant preconditioning methods are used to approximate the
matrix (G(X̂(θ))+ 1

σF (X̂(θ))). The circulant preconditioner requires the poten-
tial function to be convex, symmetric, twice-differentiable with respect to X and
have bounded second derivatives (see [10]). This kind of preconditioner improves
the approximation of the matrix (G(X̂(θ)) + 1

σF (X̂(θ))) with diagonal precon-
ditioners and it is of interest since the Discrete Fourier Transform (DFT ) can
be applied to solve the matrix inversion.

We start by observing that G(X̂(θ)) can be expressed as:

G(X̂(θ)) = AtW (X̂(θ))A , (14)

where W (X̂(θ)) is a diagonal matrix with diagonal entries

Wi,i(X̂(θ)) =
yi(∑N

l=1 Ai,lx̂l(θ)
)2 . (15)

We then apply the approximation introduced in [5] to the Fisher information
term, which produces:

AtW (X̂(θ))A ≈ D(g)(X̂(θ))AtAD(g)(X̂(θ)) , (16)

where D(g)(X̂(θ)) is a diagonal matrix with diagonal entries

D(g)j,j(X̂(θ)) =

√√√√∑M
i=1A

2
i,jWi,i(X̂(θ))∑M
i=1 A

2
i,j

. (17)
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Following [4], the product AtA is now approximated by a block-circulant
matrix Gc. The kernel of Gc is obtained as follows:
1. First we calculate AtA εj , where εj represents a unit vector centered with

respect to the image.
2. Then, the kernel obtained in the previous step, is approximated by a shift

invariant symmetrical blurring function.

We also apply the approximation proposed in [5] to the matrix F (X̂(θ)):

F (X̂(θ)) ≈ D(f)(X̂(θ))(I − φC)D(f)(X̂(θ)) , (18)

where the diagonal elements of D(f)(X̂(θ)) have the form:

D(f)j,j(X̂(θ)) =

√√√√ ∑
k∈Nj

∂2U(x̂j(θ), x̂k(θ), p)
∂x2j

, (19)

and (I−φC)−1 is a covariance matrix, with Ci,j = 1 for two neighbouring pixels
and for the 8-point neighborhood system we are using, φ is just less than 1/8).

The matrices D(g)(X̂(θ)) and D(f)(X̂(θ)) are approximated by constant dia-

gonal matrices
√
α(X̂(θ))I and

√
β(X̂(θ))I respectively, where:

√
α(X̂(θ)) =

1
N

N∑
j=1

D(g)j,j(X̂(θ)) and
√
β(X̂(θ)) =

1
N

N∑
j=1

D(f)j,j(X̂(θ)) .

(20)
Using the above approximations we now have,

trace

[(
G+

1
σ
F

)−1
F

]

≈ trace

[(
D(g)GcD(g) +

1
σ
D(f)(I − φC)D(f)

)−1
D(f)(I − φC)D(f)

]

≈ trace

[(
αGc +

1
σ
β(I − φC)

)−1
β(I − φC)

]
. (21)

where we have removed the dependency of the matrices on X̂(θ) for simplicity.
Finally, using the DFT we obtain the following expression:

trace

[(
G+

1
σ
F

)−1
F

]
≈

N∑
i=1

Λi
α
βΓi +

1
σΛi

, (22)

where Γi and Λi are the (i)th elements of the DFT of Gc and (I − φC), respec-
tively.

Now, we use the described estimation method with GGMRF priors [2]. They
are scalable and have the form:
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P (X) =
1

Z(σ, p)
exp

{− 1
pσp

∑
i,j∈N

bi−j |xi − xj |p
}
. (23)

The potential function is convex when p ≥ 1. For p = 2 we have the Gaussian
distribution. We note that work has been devoted to the estimation of shape
parameter p when this class of priors are used on SPECT images ([11, 8]).
In these papers it was found that the simultaneous estimation of σ and p was
not feasible, resulting in values of p < 1 for which the potential function is not
convex. Based on the literature on GGMRF prior distributions, we fixed p = 1.1
in our experiments to estimate the scale hyperparameter.

When p < 2 the potential function has non bounded second derivative with
differences xi − xj = 0. This is a problem for the circulant approach, since,
as we have already mentioned, circulant preconditioner requires the potential
function to be convex, symmetric, twice-differentiable with respect to X and
have bounded second derivatives [10]. In order to overcome the problem, we
have used the approximation suggested in [1] when dealing with wavelet image
reconstructions using GGMRF prior models:∑

i,j∈N
bi−j |xi − xj |p ≈

∑
i,j∈N

bi−j
((|xi − xj |2 + δ

)p/2 − δp/2
)
, (24)

where δ > 0 is a stabilization constant.
Using Eqs. (24) and (22) in Eq. (13), we obtain the following scale hyperpa-

rameter estimation:

σ̂p =
1
N

∑
i,j∈N

bi−j |x̂i − x̂j |p +
p

2N

N∑
i=1

Λi

α̂

β̂
Γi + 1

σ̂pΛi

, (25)

where α and β are obtained from Eq. (20) with:

D(f)j,j =
√∑
k∈Ni

bj−k
(
(p/2− 1) (|x̂j−x̂k|2+δ)

p
2−2 |x̂j−x̂k|2+(|x̂j−x̂k|2+δ)

p
2−1

)

4 Experimental Results

We denote by C2 the described estimation method using circulant approxima-
tion and GGMRF, the previously proposed estimation methods using diagonal
approximation by D1 [8] and C1 the circulant approximation used in [10]. The
image update was obtained using the MAP algorithm proposed in [6].

The synthetic image used in the simulations is shown in Fig. 1 (a), with size
128× 128 pixels and 128 angles with 128 bins simulated. We have used 8 inde-
pendent sets of projections. The average estimations provided by the methods
are σ̂1.1 = 32.4 (D1), σ̂1.1 = 34.3 (C1) and σ̂1.1 = 34.5 (C2). The reconstructions
obtained with these values are visually indistinguishable (Fig. 1 (b) shows the
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Fig. 1. (a) Original image. (b) Reconstruction. (c) Mean square error as function
of σ1.1. Marked the estimated values of σ1.1 corresponding to the methods used
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Fig. 2. Regions of Interest

Table 1. Bias2 + V ariance

ROI 1 ROI 2 ROI 3 ROI 4

D1 0.03951 0.03616 0.08670 0.01987

C1 0.03923 0.02959 0.08392 0.01959

C2 0.03917 0.02957 0.08380 0.01958

obtained image with the diagonal approach). The mean squared error of the re-
constructed images for different values of σ1.1 was also calculated. The estimated
values of the scale hyperparameter lie within the zone of the minimum of the
curve (see Fig. 1 (c)).

Using as stopping criterion
∣∣(σ̂1.1)k − (σ̂1.1)k−1

∣∣ /(σ̂1.1)k ≤ 0.0001 the ave-
rage number of iterations needed was: 149 (D1), 122 (C1) and 113 (C2).

We have computed Bias2 + V ariance on Regions of Interest (ROI) to test
the quality of the reconstruction. The ROIs are shown in Fig. 2 (the first ROI
is uniform and the others include edges). These quantities are defined as:

Bias2 ≡ 1
ML

M∑
i=1

(
L∑
l=1

x̂li − xi(true)
xi(true)

)2

, (26)

V ariance ≡ 1
ML

M∑
i=1

L∑
l=1

(
x̂li − x̄i
x̄i

)2

, (27)
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where M is the number of pixels in each ROI, L is de number of samples of y,
x̂li is the estimated activity in pixel i for the lth sample, xi(true) is the original
pixel value and x̄i is the estimated mean activity at pixel i from the L samples.
The ROIs are shown in Fig. 2 in white. The obtained Bias2 + V ariance values
of with our approximations are shows in Table 1. We observe that C2 is slightly
better than D1 and C1 since it provides the smaller values of Bias2+V ariance.

5 Conclusions

In this paper we have concentrated on the estimation of the scale hyperparameter
σ for prior models with scalable energy function in SPECT image reconstruction
problems. The application of circulant preconditioner to estimate this unknown
hyperparameter has been described. Using prior models such as GGMRF, we
have found that the estimation method produces satisfactory reconstruction and
the circulant preconditioners exhibit a better convergence rate.
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Abstract. In this paper, a new approach to training set size reduction
is presented. This scheme basically consists of defining a small num-
ber of prototypes that represent all the original instances. Although the
ultimate aim of the algorithm proposed here is to obtain a strongly re-
duced training set, the performance is empirically evaluated over nine
real datasets by comparing not only the reduction rate but also the clas-
sification accuracy with those of other condensing techniques.

1 Introduction

Currently, in many domains (e.g., in text categorisation, biometrics, and retrieval
of multimedia databases) the size of the datasets is so extremely large that real-
time systems cannot afford the time and storage requirements to process them.
Under these conditions, classifying, understanding or compressing the available
information can become a very problematic task. This problem is specially dra-
matic in the case of using some distance-based learning algorithm, such as the
Nearest Neighbour (NN) rule [7]. The basic NN scheme must search through all
the available training instances (large memory requirements) to classify a new
input sample (slow during classification). On the other hand, since the NN rule
stores every prototype in the training set (TS), noisy instances are stored as
well, which can considerably degrade classification accuracy.

Among the many proposals to tackle this problem, a traditional method con-
sists of removing some of the training prototypes, so the storage requirements
and time necessary for classification are correspondingly reduced. In the Pattern
Recognition literature, those methods leading to reduce the TS size are gen-
erally referred as to prototype selection [9]. Two different families of prototype
selection methods can be defined. First, the condensing algorithms aim at select-
ing a sufficiently small subset of prototypes without a significant degradation of
classification accuracy. Second, the editing approaches eliminate erroneous pro-
totypes from the original TS and ”clean” possible overlapping among regions
from different classes.
� This work has been supported by grants TIC2000-1703-C03-03 and CPI2001-2956-
C02-02 from CICYT Ministerio de Ciencia y Tecnoloǵıa and project IST-2001-37306
from European Union.
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Wilson introduced the first editing method [13]. Briefly, this consists of using
the k-NN rule to estimate the class of each prototype in the TS, and removing
those whose class label does not agree with that of the majority of its k-NN. This
algorithm tries to eliminate mislabelled prototypes from the TS as well as those
close to the decision boundaries. Subsequently, many researchers have addressed
the problem of editing by proposing alternative schemes [1, 7, 9, 14].

Within the condensing perspective, the many existing proposals can be cate-
gorised into two main groups. First, those schemes that merely select a subset of
the original prototypes [1, 8, 10] and second, those that modify the prototypes
using a new representation [2, 4, 6]. It has been proven that the former family
is partially inferior to the latter [3]. One problem related with using the origi-
nal instances is that there may not be any vector located at the precise points
that would make the most accurate learning algorithm. Thus, prototypes can be
artificially generated to exist exactly where they are needed.

This paper focuses on the problem of appropriately reducing the TS size
by selecting a subset of prototypes, in such a way that these represent all the
instances in the original TS. The primary aim of the proposal presented in this
paper is to obtain a considerable size reduction rate, but without an important
decrease in classification accuracy.

The structure of the rest of this paper is as follows. Section 2 briefly reviews
a set of TS size reduction techniques. The condensing algorithm proposed here
is introduced in Section 3. The databases used and the experiments carried out
are described in Section 4. Results are shown and discussed in Section 5. Finally,
the main conclusions along with further extensions are depicted in Section 6.

2 Training Set Size Reduction Techniques

The problem of prototype selection is primarily related to prototype deletion as
irrelevant and harmful prototypes are removed from a TS. This is the case, e.g.,
of Hart’s condensing [10] and MCS scheme of Dasarathy [8], in which only critical
prototypes are retained in the TS. On the other hand, some other algorithms
artificially generate prototypes in locations accurately determined in order to
reduce the TS size, instead of deciding which ones to retain. Within this category,
we can find the algorithm presented by Chang [4] and by Chen and Józwik [6].

Hart’s [10] algorithm is based on reducing the set size by eliminating pro-
totypes. It is the earliest attempt at minimising the number of prototypes by
retaining only a consistent subset of the original TS. A consistent subset, S, of
a TS, T , is a subset that correctly classifies every prototype in T using the 1-NN
rule. The minimal consistent subset is the most interesting, to minimise the cost
of storage and the computing time. Hart’s condensing does not guarantee finding
the minimal subset as different subsets are given when the TS order is changed.

Chang’s algorithm [4] consists of repeatedly attempting to merge the nearest
two existing prototypes into a new single one. Two prototypes p and q are merged
only if they are from the same class and, after replacing them with prototype z,
the consistency property can be guaranteed.
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Chen and Józwik [6] proposed an algorithm which consists of dividing the
TS into some subsets using the concept of diameter of a set (i.e., the distance
between the two farthest points). The algorithm starts by partitioning the TS
into two subsets by the middle point between the two farthest cases. The next
division is performed for the subset that contains a mixture of prototypes from
different classes. If more than one subset satisfies this condition, then that with
the largest diameter is divided. The number of partitions will be equal to the
number of instances initially defined. Finally, each resulting subset is replaced by
its centroid, which will assume the same class label as the majority of instances
in the corresponding subset.

Recently, Ainslie and Sánchez introduced the family of IRSP algorithms [2],
which are based on the idea of Chen’s algorithm. The main difference between
Chen and IRSP4 is that in the former, any subset containing a mixture of pro-
totypes from different classes could be chosen to be divided. On the contrary,
by IRSP4, the subset with the biggest overlapping degree (ratio of the average
distance between prototypes belonging to different classes, and the average dis-
tance between instances being from the same class) is the one picked to be split.
Furthermore, with IRSP4 the splitting process continues until every subset is
homogeneous (i.e., all prototypes from a given subset are from a same class).

3 A New Approach to Training Set Size Reduction

The geometrical distribution among prototypes in a TS can become even more
important than just the distance between them. In this sense, the so-called sur-
rounding neighbourhood-based rules [12] try to obtain more suitable informa-
tion about prototypes in the TS and specially, for those being close to decision
boundaries. This can be achieved by taking into account not only the proximity
of prototypes to a given input sample but also their symmetrical distribution
around it.

Chaudhuri [5] proposed a neighbourhood definition, the Nearest Centroid
Neighbourhood (NCN) concept, that can be viewed as a particular realization
of the surrounding neighbourhood. Let p be a given point whose k NCN should
be found in a TS, X = {x1, . . . , xn}. These k neighbours can be searched for
through an iterative procedure in the following way:

1. The first NCN of p is also its NN, q1.
2. The i-th NCN, qi, i ≥ 2, is such that the centroid of this and previously

selected NCN, q1, . . . , qi is the closest to p.

Neighbourhood obtained by this algorithm satisfies some interesting proper-
ties that can be further used to reduce the TS size by generating new prototypes.
In particular, it is worth mentioning that the NCN search method is incremental
and that the prototypes around a given sample have a geometrical distribution
that tends to surround the sample, thus compensating the distribution of proto-
types around the sample. It is also important to note that the region of influence
of the NCN results bigger than that of the NN, as can be seen in Fig. 1.
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Fig. 1. Example of the NCN concept

3.1 Algorithm Outline

The TS size reduction technique here proposed rests upon the NCN search algo-
rithm. NCN search is used as an exploratory tool to bring out how prototypes
in the data set are geometrically distributed. The use of the NCN of a given
sample can provide local information about what is the shape of the probability
class distribution depending on the nature and class of its NCN, that is, of the
nature of the prototypes in its surrounding area.

The rationale behind it is that prototypes belonging to the same class are
located in a neighbouring area and can be replaced by a single representative
without significantly affecting the original boundaries. The main reason to em-
ploy the NCN, instead of the NN, is to benefit from the aforementioned properties
that the NCN covers a bigger region than that of the NN and that they locate
an area of influence around a given sample which is compensated in terms of
their geometrical distribution.

The algorithm attempts to replace a group of neighbouring prototypes that
belong to the same class by a representative. In order to decide which group of
prototypes are to be replaced, we compute the NCN of each prototype p in the
TS until reaching a neighbour with a class label different from that of p.

The prototype with the largest number of neighbours is defined as a represen-
tative of its corresponding group, which lie in the area of influence defined by the
NCN distribution and consequently, all its members can be now removed from
the TS. Another possibility is to replace the group by its centroid. In this case,
the reduction of the data set is done by introducing new samples that replace
groups of existing ones.

After this, for each prototype remaining in the set, we update the number
of its neighbours if some was previously eliminated as belonging to the group
of an already existing representative. This is repeated until there is no group of
prototypes to be replaced by a representative. The basic scheme has been here
named MaxNCN.
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In order to obtain a more important size reduction, a further extension to
the idea just described consists of iterating the general process until no more
prototypes are removed from the TS. Algorithmically, the iterative version can
be written as follows:

Algorithm 1 Iterative MaxNCN

while eliminated prototypes > 0 do
for i = eachprototype do

neighbours number[i] = 0
neighbour = next neighbour(i)
while neighbour.class == i.class do

neighbours vector[i] = Id(neighbour)
neighbours number[i] + +
neighbour = next neighbour(i)

end while
end for
while Max neighbours() > 0 do

EliminateNeighbours(id Max neighbours)
end while

end while

4 Databases and Experiments

Nine real data sets (see Table 1) have been taken from the UCI Repository [11]
to assess the behaviour of the algorithms introduced in the previous section. The
experiments have been conducted to compare MaxNCN and iterative MaxNCN
with IRSP4, Chen’s scheme and Hart’s condensing, in terms of both TS size
reduction and accuracy rate of the condensed 1-NN classification rule.

Table 1. Data sets used in the experiments

No. No. TS Test set
Data set classes features size size

Cancer 2 9 546 137
Pima 2 6 615 153
Glass 6 9 174 40
Heart 2 13 216 54
Liver 2 6 276 69
Vehicle 4 18 678 168
Vowel 11 10 429 99
Wine 3 13 144 34
Phoneme 2 5 4324 1080
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Table 2. Experimental results: 1-NN classification accuracy

Chen’s IRSP4 Hart’s Iterative MaxNCN

Cancer 96.78 (1.25) 93,55 (3,70) 94,61 (2,94) 68,60 (3,42) 89,92 (4,61)
Pima 73.64 (2.85) 72,01 (4,52) 73,31 (3,69) 53,26 (5,80) 67,71 (5,45)
Glass 67.18 (3.90) 71,46 (3,13) 67,91 (4,60) 57,19 (9,69) 66,65 (6,28)
Heart 61.93 (5.22) 63,01 (5,11) 62,87 (4,27) 58,16 (7,26) 59,92 (5,53)
Liver 59.58 (5.15) 63,89 (7,73) 62,40 (5,76) 53,31 (8,55) 60,65 (6,74)
Vehicle 58.56 (2.46) 63,47 (1,96) 62,17 (2,16) 55,20 (4,42) 59,33 (2,17)
Vowel 60.16 (9.27) 96,02 (1,77) 90,74 (2,30) 78,63 (5,18) 90,73 (1,78)
Wine 69.31 (7.31) 69,66 (3,47) 71,71 (6,72) 62,50 (6,65) 60,77 (6,19)
Phoneme 70.03 (9.14) 71,60 (8,74) 71,04 (7,90) 65,06 (7,57) 70,00 (8,05)

Average 68.57 (5.17) 73,85 (4,46) 72,97 (4,48) 61,32 (9,95) 69,52 (5,20)

The algorithms proposed in this paper, like in the case of Chen’s and IRSP4,
need to be applied in practice to overlap-free data sets (that is, there is no
overlapping among regions from different classes). Thus, as a general rule and
according to previously published results [2, 14], the Wilson’s editing has been
considered to properly remove possible overlapping between classes. The param-
eter involved (k) has been obtained in our experiments by performing a five-fold
cross-validation experiment using only the TS and computing the average clas-
sification accuracies for different values of k and comparing them with the “no
editing” option. The best edited set (including the non-edited TS) is thus se-
lected as input for the different condensing schemes.

5 Experimental Results

Table 2 reports the 1-NN accuracy results obtained by using the different con-
densed sets. Values in brackets correspond to the standard deviation. Analo-
gously, the reduction rates with respect to the edited TS are provided in Table 3.
The average values for each method on the nine data sets are also included.

Several comments can be made from the results in these tables. As expected,
classification accuracy strongly depends on the number of prototypes in the
condensed set. Correspondingly, IRSP4 and Hart’s algorithm obtain the high-
est classification accuracy almost without exception for all the data sets, but
they also retain more prototypes than Chen’s scheme and the procedures pro-
posed here.

It is important to note that, in terms of reduction rate, the iterative MaxNCN
eliminates much more prototypes than any other scheme. Nevertheless, it also
obtains the worst classification accuracy. On the contrary, IRSP4 shows the high-
est accuracy but the lowest reduction percentage. Thus, looking for balancing
between accuracy with storage reduction, one can observe that the best options
are Hart’s, Chen’s and the plain MaxNCN approach.
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Table 3. Experimental results: set size reduction rate

Chen’s IRSP4 Hart’s Iterative MaxNCN

Cancer 98.79 93,72 93,09 99,11 96,10
Pima 90.61 70,03 79,04 95,99 85,35
Glass 67.58 32,71 51,33 73,13 62,15
Heart 85.18 55,80 67,22 92,53 78,35
Liver 82.97 45,41 63,20 91,21 74,83
Vehicle 65.79 35,60 45,98 74,85 56,59
Vowel 79.64 39,54 75,97 84,23 75,09
Wine 86.75 73,13 78,79 89,03 84,83
Phoneme 94.51 69,90 87,91 98,16 90,88

Average 83.54 57,32 71,39 88,69 78,24

In particular, MaxNCN provides an average accuracy of 69.52% (only 4%
less than IRSP4, which is the best option in accuracy) with an average reduction
rate of 78.24% (approximately 20% higher than that of IRSP4). Results given
by Chen’s algorithm are similar to those of the MaxNCN procedure, both in
accuracy and reduction percentage.

In order to assess the performance relative to these two competing goals
simultaneously, Fig. 2 represents the normalised Euclidean distance between
each (accuracy, reduction) pair and the origin (0% accuracy, 0% reduction), in
such a way that the “best” technique can be deemed as the one that is farthest
from the origin. Thus, it is possible to see that the proposed MaxNCN approach
along with Hart’s and Chen’s algorithms represent a good trade-off between
accuracy and reduction rate.
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Finally, it is to be noted that several alternatives to the algorithms here
introduced have also been analysed, although all them had a behaviour similar
to that of MaxNCN. For example, we defined a simple modification in which,
instead of using an original prototype as representative of a neighbouring group,
it computes the respective centroid of the NCN. Another alternative consisted
of using the NN instead of the NCN, but the corresponding performance was
systematically worst than that of MaxNCN.

6 Conclusions

In this paper, a new approach to TS size reduction has been introduced. This
algorithm primarily consists of replacing a group of neighbouring prototypes that
belong to a same class by a single representative. This group of prototypes is
built by using the NCN, instead of the NN, of a given point because in general,
those cover a bigger region than the one defined by the NN.

From the experiments carried out, it is apparent that the plain MaxNCN
provides a well balanced trade-off between accuracy and TS size reduction rate,
in clear contrast to the behaviour of the iterative version, which results in max-
imum reduction percentage and very poor accuracy performance.

An extension to the algorithms here proposed would consist of including
a consistency test before removing a prototype from the TS. By this condition,
we would try to keep the discriminating power and consequently, to increase the
classification accuracy of the resulting condensed set.
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Abstract. In this paper, we present two new observation models based
on optical flow information to track objects using particle filter algo-
rithms. Although optical flow information enables us to know the dis-
placement of objects present in a scene, it cannot be used directly to
displace an object model since flow calculation techniques lack the nec-
essary precision. In view of the fact that probabilistic tracking algorithms
enable imprecise or incomplete information to be handled naturally, these
models have been used as a natural means of incorporating flow infor-
mation into the tracking.

1 Introduction

The probabilistic models applied to tracking [10, 9, 4, 14] enable us to estimate
the a posteriori probability distribution of the set of valid configurations for the
object to be tracked, represented by a vector X, from the set of measurements
Z taken from the images of the sequence, p(X|Z). The likelihood in the previous
instant is combined with a dynamical model giving rise to the a priori distri-
bution in the current instant, p(X). The relation between these distributions is
given by Bayes’ Theorem:

p(X|Z) ∝ p(X) · p(Z|X)

The distribution p(Z|X), known as the observation model, represents the
probability of the measurements Z appearing in the images, assuming that a spe-
cific configuration of the model in the current instant is known.

In this paper, two observation models are defined based on the optical flow
of the sequence, checking its validity within a scheme of particle filter tracking.
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2 Optical Flow

The most well-known hypothesis for calculating the optical flow [7] assumes that
the local intensity structures found in the image remain approximately constant
over time, at least during small intervals of time. This is to say,

Ixu+ Iyv + It = 0 (1)

where Ix, Iy , It are partial derivatives of the image, and v = (u, v) represents the
flow vector at each point. The problem is ill-posed, since it only has one equation
for the calculation of two unknowns, which makes it necessary to use various
additional restrictions, in the majority of cases based on smoothness [1, 12].

3 Dynamical Model

The tracking task involves localizing, in each frame of a sequence, the object
associated to a state vector that characterizes evidence of the presence of a spe-
cific configuration of the model in question. Other authors have successfully
used characteristics such as the gradient [2] or intensity distributions [14]. The
model which represents the dynamical model of the object will provide an a pri-
ori distribution on all the possible configurations at the instant tk, p(X(tk)),
from the estimated distributions in the previous instants of time. In this paper,
a second-order dynamical model has been used in which the two previous states
of the object model are considered, and this is equivalent to taking a first-order
dynamical model with a state vector for the instant tk of the form [2]

Xtk = [Xtk−1 , Xtk ]
T

The integration of the a priori distribution p(X) with the set Z of the ev-
idences present in each image, in order to obtain the a posteriori distribution
p(X|Z), is obtained with Bayes’ Theorem. This fusion of information can be
performed, if the distributions are Gaussian, by using Kalman’s Filter [10].
However, in general, the distributions involved in the process are normally not
Gaussian and multimodal [4]. Sampling methods for modelling this type of dis-
tribution [6] have shown themselves to be extremely useful, and particle filter
algorithms [8, 9, 5, 14] based on sets of weighted random samples, enable their
propagation to be performed effectively.

4 Observation Models

4.1 Observation Model Based on Intensity Restrictions

In order to build this model, we will use a technique derived from the Lucas-
Kanade algorithm[11] taking advantage of knowledge of the position of the flow
discontinuities predicted by the object model. Our hypothesis is based on the
fact that the point x of the model outline is situated on the real outline of the
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object, and therefore we assume that the flow in a neighborhood of x shall only
take two values: one on the inner part of the model, and the other on the outer
part.

Let x = f(Xtk ;m) (where Xtk defines the specific configuration of the ob-
ject model, and m is the parameter vector which associates each point within
the model with a point on the image plane), a point belonging to the model
outline at the instant tk. Let S be a neighborhood of x subdivided in Si and Se
(corresponding respectively to the parts of the neighborhood which remain to-
wards the interior and exterior of the outline of the object), and d(Xtk ,m) be
calculated using the expression:

d(Xtk ,m) = f(Xtk ;m)− f(Xtk−1 ;m) (2)

The system of equations [11] is therefore solved

[ ∑
Sx

(I(k−1)x )2
∑

Sx
I
(k−1)
x I

(k−1)
y∑

Sx
I
(k−1)
x I

(k−1)
y

∑
Sx

(I(k−1)y )2

][
fx
fy

]
=

[
−∑

Sx
I
(k−1)
x It

−∑
Sx

I
(k−1)
y It

]
(3)

with I(k−1) and I(k) being the images corresponding to the instants of time tk−1
and tk. In order to obtain the flow vector fSx = (fx, fy), where Sx shall be Si
or Se, respectively, Ix and Iy are the spatial derivatives of the image and

It(x) = I(k)(x+ d(Xtk ,m))− I(k−1)(x)

In this way, two different flow estimations are obtained, fSi(Xtk ,m) and
fSe(Xtk ,m), corresponding to the inner and outer area of the neighborhood of
x, respectively.

The squared norm of the estimated flow vectors are then calculated, which is
equivalent to obtaining the quadratic differences with the expected flow, which
in this case equals zero:

ZSi(Xtk ,m) = ‖fSi(Xtk ,m)‖2, ZSe(Xtk ,m) = ‖fSe(Xtk ,m)‖2 (4)

It should be noted that if the point x is really situated on a flow discontinuity,
and the flow in Si coincides with d(Xtk ,m), the value of ZSi must be close to
zero and the value of ZSe must be considerably greater. Using the following
expression, these values may be combined and a value of Z(Xtk ,m) may therefore
be obtained:

Z(Xtk ,m) =

⎧⎪⎨⎪⎩
ZSe(Xtk ,m)

ZSe(Xtk ,m) + ZSi(Xtk ,m) if ZSe(Xtk ,m) �= ZSi(Xtk ,m)

1/2 if ZSe(Xtk ,m) = ZSi(Xtk ,m)

(5)

The value of Z(Xtk ,m) satisfies the following properties:
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– 0 ≤ Z(Xtk ,m) ≤ 1
– If ZSe(Xtk ,m) � ZSi(Xtk ,m), then Z(Xtk ,m) → 1, which indicates that

the adjustment is much better in Si than it is in Se, and therefore the point
must be situated exactly in a flow discontinuity, in which the inner area
coincides with the displacement predicted by the model.

– If ZSe(Xtk ,m)� ZSi(Xtk ,m), then Z(Xtk ,m)→ 0. The adjustment is worse
in the inner area than it is in the outer area, and therefore the estimated
flow does not match the model’s prediction.

– If ZSe(Xtk ,m) = ZSi(Xtk ,m), then the adjustment is the same in the inner
area as it is in the outer area, and therefore the flow adequately matches the
displacement predicted by the model, but it is impossible to guarantee that
it is situated on a flow discontinuity. In this case, Z(Xtk ,m) = 1/2.

It is possible that some of the areas Si or Se lack enough structure to give
a good flow estimate. In this paper, we have used the inverse condition num-
ber [13] of the coefficient matrix in the expression (3), R = λmin/λmax, in order
to check the stability of the equation system, so that if it is too small (< 10−10),
it is necessary to discard the flow values obtained, and therefore Z(Xtk ,m)=1/2.

We shall consider that the presence probability of the measurements ob-
tained for the image, since they have been caused by the point of the outline
corresponding to the vector m of the sample in question, defined by the vector
Xtk , must be proportional to the function Z(Xtk ,m) obtained previously,

p(Z|Xtk ,mi) ∝ Z(Xtk ,mi) (6)

and that, given the independence between the different points of the outline,

p(Z|Xtk ) ∝
∏
i

Z(Xtk ,mi) (7)

4.2 Observation Model Based on Similarity Measures

If the prediction which the model makes is good and the intensity maps corre-
sponding to the neighborhood of each point are superimposed, the inner part
of the model must fit better than the outer part. In the model defined in this
section, in order to estimate the observation probability of each point of the
outline, similarity measurements shall be used to quantify the degree to which
the inner part fits better than the outer part.

Let x = f(Xtk ;m) be a point belonging to the model outline at the instant tk,
let S be a neighborhood of x subdivided in turn into Si and Se, let d(Xtk ,m) be
calculated from expression (2), and let I(k−1) and I(k) be images corresponding
to the instants of time tk−1 and tk. The quadratic errors are therefore calculated
in the following way:

ZSi(Xtk ,m) =
∑

Si
W (x)

(
I(k−1)(x) − I(k)(x− d(Xtk ,m))

)2
ZSe(Xtk ,m) =

∑
Se
W (x)

(
I(k−1)(x) − I(k)(x− d(Xtk ,m))

)2 (8)
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where W (x) is a weighting function. Two non negative magnitudes are ob-
tained, that may be combined using expression (5), in order to obtain a value of
Z(Xtk ,m). Since the magnitudes ZSi and ZSe are restricted, Z(Xtk ,m) may be
considered to be proportional to the observation density p(Z|X ), and therefore
we again have:

p(Z|Xtk ,mi) ∝ Z(Xtk ,mi) (9)

Supposing the measurements on each point are statistically independent, the
following observation model is finally arrived at:

p(Z|Xtk ) ∝
∏
i

Z(Xtk ,mi) (10)

5 Experiments

In order to check the validity of the observation models proposed, they were
incorporated into the Condensation algorithm [9], and their performance was
compared with that of the observation model based on normals as proposed
in [2].

For the experiments, two image sequences were used, lasting 10 seconds, with
25 frames per second, 320×240 pixels, 8 bits per band and pixel, corresponding
to the movement of a hand over a background with and without noise. Results
can be downloaded from http://wwwdi.ujaen.es/∼mlucena/invest.html

5.1 Tracking an Object over a Background without Noise

In order to model the hand, an outline model based on a closed spline with 10
control points and a Euclidean similarity deformation space were used. A second-
order dynamical model was used in which the object tended to maintain velocity,
and a preliminary tracking was carried out of the hand by using the gradient
observation model along the contour normals. With the data obtained, the mul-
tidimensional learning method proposed in [3, 2] was used to determine the
dynamic parameters.

For the observation model based on contour normals, 20 normals were sket-
ched for each sample. The observation model was applied with parameters α =
0.025 and σ = 3, incorporated into the Condensation algorithm with 200
samples. The initialization was carried out manually, indicating the position
of the object in the first frame. Figure 1.a shows the weighted average of the
distribution obtained.

The observation model based on intensity restrictions was used on the same
20 points along the outline, defining a neighborhood for each point of 7×7 pixels.
In order to calculate the spatial derivatives, each frame was convolved with two
Gaussian derivative masks, with vertical and horizontal orientations respectively,
with σ = 1.0. The number of samples was also 200, and the results obtained are
shown in Figure 1.b.
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In order to apply the observation model based on similarity measures, the
same conditions were used as in previous experiments (200 samples and 20 points
along the outline, considering a neighborhood of 5×5 pixels for each point). The
result obtained is illustrated in Figure 1.c.

5.2 Tracking an Object over a Background with Noise

In this case, the parameters of the dynamic model were adjusted manually for the
first 50 frames, and these were used to learn dynamics and to perform an initial
tracking of the sequence, using Condensation with the observation model for
the contour normals. From the results obtained, and using the same learning
method as in the previous experiment, the dynamic parameters were determined.

In order to use the observation model based on contour normals, 18 normals
were sketched to each outline. The number of samples was still 200, and the
parameters for the observation model in this case were σ = 3 and α = 0.055.
The results are shown in Figure 2.a.

The same parameters were used in the observation model based on intensity
restrictions as in the previous sequence, that is to say, spatial derivatives from
Gaussian derivative masks with σ = 1.0, and neighborhoods of 7×7 pixels for
each point. The results obtained with 200 samples are shown in Figure 2.b.

For the observation model based on similarity measures, neighborhoods of
5×5 pixels and 200 samples for the Condensation algorithm were also used.
The results obtained are shown in Figure 2.c.

6 Discussion and Conclusions

The observation model based on contour normals behaves appropriately in the
two sequences (Figures 1.a and 2.a). At no time does the tracker lose the object,
although it does have problems with noise in the sequence due to the presence
of clutter.

For the first sequence, the model based on intensity restrictions, although
never completely losing the object, does have problems focusing exactly on its
outline. This is due to the absence of texture on the outer part of the object.
However, for the second sequence, the presence of a background with a lot of
noise is not only irrelevant but also favors the good behavior operation of the
observation model.

Due to the fact that there is hardly any texture on the outer part of the
object in the first sequence, the observation model based on similarity measures
tends to minimize the inner measurement. Nevertheless, a slight deviation occurs
at times towards the hand’s shadow, since there is actually an ambiguity in the
sequence, as the shadow moves jointly with the hand, and by only considering
the optical flow, it is impossible to separate them. In the second sequence, there
are no significant deviations from the real outline of the object.

The results obtained suggest that the observation models based on optical
flow are, in a way, complementary to those based on gradient along normals. The
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a)

b)

c)
Frame 50 Frame 100 Frame 150 Frame 200

Fig. 1. a) Results obtained with the observation model for the contour normals.
b) Results obtained with the observation model based on intensity restrictions.
c) Results obtained with the observation model based on similarity measures.
The distribution average appears in continuous line in the current frame, and
the averages in some previous frames appear in dotted line

a)

b)

c)
Frame 50 Frame 100 Frame 150 Frame 200

Fig. 2. a) Results obtained with the observation model for the contour normals.
b) Results obtained with the observation model based on intensity restrictions.
c) Results obtained with the observation model based on similarity measures.
The distribution average appears in continuous line in the current frame, and
the averages in some previous frames appear in dotted line
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presence of clutter constitutes a source of noise for the first models, while favoring
the good behavior operation of models based on flow. In addition, the model
based on similarity is more stable numerically than the model based on intensity
restrictions, because the former doesn’t need to compute image derivatives.
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Abstract. In this work we propose a new descriptor of the local tex-
ture in gray-level images, named Simplified Texture Unit (STU). This
descriptor is a version, with a smaller computational cost as much in its
obtaining as in its later use, of the well-known Texture Unit descriptor
(TU) [6]. We have carried out a comparative study of the capacity to
describe the texture of a region with the capacity provided by the TU
descriptor and two other versions of the same one, known as Local Binary
Pattern (LBP) and Local Binary Pattern with Contrast (LBP/C) [11].
The results of the experiment allow to affirm that the new descriptor has
a greater performance with small region sizes, what makes it suitable for
unsupervised texture segmentation since it could allow a greater accu-
racy in the localization of the frontiers between textured regions.

Keywords: Local texture descriptor, feature distribution, unsupervised
texture segmentation.

1 Introduction

The stage of image segmentation is recognized as one of the most complicated
in a Computer Vision system [4]. Also, if the characteristic used to segment the
regions is the texture, the problem is even more complicated. Many approaches
have been used to achieve the segmentation of images using textures [5, 14, 12].
The segmentation can be supervised or not. When the segmentation is super-
vised, the number of different textures is known. It is often had a model of each
one of these textures too, becoming the process of segmenting to a classification
process.

When the segmentation is unsupervised, it doesn’t have any a priori know-
ledge on the number and form of the textures that the computer vision system
can find. Different methods to carry out unsupervised segmentation of textures
have been proposed [3, 13, 8, 15, 17, 10, 7]. A specially effective method has been
proposed recently [19, 11]. This method combines the use of a descriptor of the
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local texture, generally in a 3 × 3 neighborhood, together with the distribution
of the values of this local descriptor in a region of the image to characterize
its texture. Analysis of dissimilarity between two distributions can be used to
decide whether two regions of the image are drawn from the same texture class.

The segmentation process will be some version of the split–merge method [16,
9]. First, the non homogeneous regions are split. Next, adjacent region pairs that
meet an homogeneity criteria are merged in an iterative way. The merging is
repeated until a total merging criterion exceeds a given threshold. At the end
of the merging stage, the located regions provide a roughly segmented image.
The distributions in these regions will be used as models in the final refinement
stage, where the border pixels are relabeled using those models providing the
final segmented image. In all these stages, the minimum region size to obtain
a distribution that allows to take reliable decisions is a key parameter, since the
accuracy in the localization of the frontiers between regions will depend on it.

The texture unit (TU) is a descriptor of the local texture. It was proposed
initially by He and Wang [6]. The TU has been shown to be a powerful measure
of the local texture by different studies [18, 19].

A major inconvenient of this descriptor is the large range of its possible
values (TU ∈ [0, 6560]) at the same time that these values are not correlated,
therefore, they can not be grouped. As a consequence, the regions must have
a relatively large size to get distributions that allow to compute reliable and
stable dissimilarity measures.

Ojala et al. [11] have proposed a simplified version of the TU descriptor
named Local Binary Pattern (LBP). The LBP reduces the range of its possible
values significantly (LBP ∈ [0, 255]). However, this simplification carries with
loss of discriminatory power. For this reason, in a later work [16], where they
propose a method to carry out unsupervised texture segmentation, the LBP is
used in combination with another local feature called Contrast. The joint distri-
bution of both is used as a new descriptor named LBP/C. The range of its values
varies in function of how many bins the Contrast has been grouped. Although
the number of bins is decreased considerably regarding the TU descriptor, it
follows being too large.

In this work we propose a new descriptor of the local texture that consists on
a simplification of the TU descriptor. This descriptor, called Simplified Texture
Unit (STU), has a more reduced range of values (STU ∈ [0, 80]) without a signi-
ficant loss of the characterization power. The distributions of this new descriptor
will allow to take reliable decisions with smaller region sizes than the above des-
criptors. This will improve the accuracy of the located frontiers. Other added
qualities are the reduction of the requirements memory and computational time.

The paper is organized as follows: The derivation of the studied local texture
descriptors is described in Sect.2. The experimental setup is shown in Sect. 3. In
Sect. 4 a summary of the experimental results are presented and in Sect.5 the
results are discussed concluding the paper.
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Fig. 1. An example of local neighborhood (a) and the corresponding des-
criptors: TU with Δ = 2 (b) and LBP (c). The weights for obtaining
the NTU, NSTU1 , NSTU2 , and NLBP are shown in (d)

2 Local Texture Descriptors

The Texture Unit (TU), due originally to He and Wang [6], is a powerful des-
criptor of the local texture and is defined in a 3 × 3 neighborhood of a pixel p.
Let V : {v0, v1, . . . , v7} the grey-levels of the eight neighbors of the pixel p with
gray-level vp. The Texture Unit, assigned to the position of the pixel p, is defined
as the tuple of values TU : {e0, e1, . . . , e7} with

ei =

⎧⎨⎩0, if vi < (vp −Δ),
1, if (vp −Δ) ≤ vi ≤ (vp +Δ),
2, if vi > (vp +Δ),

(1)

where vi is the gray-level of neighbor i and Δ is a tolerance parameter.
The TU descriptor can be represented in a compact way using the Texture

Unit Number defined as NTU =
∑i=7

i=0 ei3
i. The range of possible values of NTU

is [0, 6560] and, from its definition, it does not make sense to group these values.
Figure 1a shows an example of neighborhood. The TU assigned to this neighbor-
hood using (1) with Δ = 2 is shown in Fig. 1b. The corresponding NTU, using
the TU weights shown in Fig. 1d, is NTU = 1+3+18+81+243+2187 = 2533.

Ojala et al. [11] have proposed a simplification in the definition of the TU des-
criptor, named Local Binary Pattern (LBP). This simplification involves thres-
holding with only one threshold applying the rule:

ei =
{

0, if vi ≤ vp,
1, if vi > vp.

(2)
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The LBP also can be represented in a compact way through the definition of
the corresponding NLBP =

∑i=7
i=0 ei2

i. Although the LBP describes the spatial
structure of the local texture, it doesn’t make the same thing with the contrast.
For this reason, Ojala et al. use, to carry out unsupervised texture segmenta-
tion [16], the LBP combined with a measure of the local contrast C. The local
contrast C descriptor is defined as the difference between the averaged gray-level
of the pixels with ei = 1 and those that have ei = 0. Figure 1c shows how to
obtain the LBP descriptor assigned to a example of neighborhood. The NLBP is
4 where the LBP weights shown in Fig. 1d have been used. The local contrast
is C = 131− (128 + 127 + 125 + 126 + 128 + 124 + 127)/7 = 5.

To characterize the texture of a region, the joint grouped distribution of the
LBP and C descriptors is used. The joint LBP/C descriptor will have as range
of possible values [0, 256 × b], where b represents the number of bins used to
group the contrast. Ojala et al. have determined experimentally that a suitable
number of bins can be b = 8 and, therefore, the minimum region size needed for
obtaining a significant histogram of values NLBP/C can be reduced, regarding
the TU descriptor.

The minimum region size can be decreased even more if a new descriptor of
the local texture, that is proposed in this work, is used. This new descriptor is
defined from the TU descriptor and called Simplified Texture Unit (STU). Only
four values of the TU, that is assigned to the studied neighborhood, are involved
in. Two versions can be obtained: when using the crosswise neighbors (up, right,
down and left neighbors), the version will be named STU1 and, when using the
diagonal neighbors (up–left, up–right, down–right and down–left neighbors), the
version will be named STU2. Again, the STU descriptor will be used in a compact
way by using the respective NSTU =

∑i=3
i=0 ei3

i. If the STU1 and STU2 weights,
that are shown in Fig. 1d, are applied to the example of TU shown in Fig. 1b,
we get NSTU1 = 1 + 9 + 27 = 37 and NSTU2 = 1 + 6 + 9 = 16.

3 Experimental Setup

We have carried out a comparative study with the intention of checking whether
the new STU descriptor improves or not the characterization power of the tex-
tures in an image, regarding the power provided by TU, LBP and LBP/C des-
criptors. Our experiment is a version (several region sizes are used) of the one
carried out by Ojala et al. [11] and their results will be used to validate our
results.

To carry out the comparative study, a set of fifteen natural textures has been
extracted from the Brodatz’s album [1]. These textures are easily accessible from
Internet. The textures used are: D4, D9, D16, D19, D21, D24, D29, D32, D53,
D57, D68, D77, D84, D92 and D93. The images are 640× 640 size. Every image
has been pre–processed in the following way: a version of the image, processed
with a 25× 25 median filter, has been subtracted from the original one in order
to eliminate the background variations. Finally, a Gaussian match, with mean
127.5 and variance 40.0, has been applied to every image.
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We are interested in measuring the performance of the descriptors when the
region size has been reduced. The experiment has been carried out using l × l
region sizes with l ∈ {4, 8, 16, 32, 64}. For every side l and every image, it has
been extracted 100 non overlapping regions.

The TU and STU descriptors have a parameter that is the tolerance Δ.
The values used for Δ are: 0, 2, 4, 8, 16 and 32. The LBP/C descriptor has
a parameter that is the number of bins b used to group the local contrast. The
values used for the parameter b are: 2, 4, 8, 16 and 32. The LBP descriptor has
not parameters.

For each descriptor, several sets of grouped distributions have been obtained
from the distribution of their values in every region, using the different region
sizes and parameter values. Each set has 100 × 15 = 1500 distributions. The
TU, STU1 and STU2 descriptors have 5 × 6 = 30 sets each one. The LBP/C
descriptor has 5× 5 = 25 sets. The LBP descriptor has 5 sets.

The performance of each descriptor has been evaluated through the miss–
classification rate (MCR) of a k nearest neighbors classifier (KNN). The MCR
has been obtained using cross–validation for each data set. The KNN classifier
has two parameters: the number k of nearest neighbors to be considered and
a distance function on the feature space. We have used values for k ∈ {3, 9}.
Several measures have been proposed to measure the distance, or dissimilarity,
between two grouped distributions, standing out the measures [2, 11]: the sum
of absolute differences (L1), the Pearson’s statistic (λ) and the logarithmic of
the likelihood rate (log–lh).

4 Results

Table 1 shows a ranking of the descriptors using the averaged MCR. To calculate
the averaged MCR, the value MCR has been weighted considering the region
size, since larger region size more penalized should be a mistake. The weights,
for the region sizes with sides 4, 8, 16, 32 and 64, are 1/31, 2/31, 4/31, 8/31 and
16/31 respectively.

Figure 2 shows the performance of each descriptor versus the different region
sizes. The parameters in Tab 1 are used for achieving the plotted performances.

The results obtained in the comparative study carried out by Ojala [11] have
been used to validate our results. Ojala used in his study a 50×50 region size and

Table 1. Ranking of the evaluated descriptors using their averaged MCR

Descriptor k Measure Parameter Av. MCR

LBP/C 9 L1 b = 4 0.0698
STU1 9 λ Δ = 8 0.0705
STU2 9 log–lh Δ = 32 0.0726
TU 9 L1 Δ = 16 0.0848
LBP 9 λ n.a. 0.0994
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Fig. 2. MCR versus the region size. For each studied descriptor, the shown
parameters in Tab. 1 are used

a KNN with k = 9. The MCR obtained by the LBP descriptor was 1.98% while
we get 2.0%. Using the LBP/C descriptor with b = 4, Ojala obtained a MCR
of 0.8% and we get the same value. Ojala did not use the TU descriptor in his
comparative study.

5 Conclusions

From the averaged MCR shown in the table 1, it can be concluded that the
new proposed STU descriptor has a similar performance to the supplied one by
the LBP/C descriptor. The version STU1, that uses the crosswise neighbors,
has shown a performance lightly greater than the version STU2 that uses the
diagonal neighbors. Both versions improve the averaged performance provided
by the TU descriptor. This demonstrates that the TU descriptor introduces
redundancy. The LBP descriptor has shown the worse performance between the
studied descriptors.

When large size regions (larger than 32 × 32) are used, all the descriptors
have a low MCR with small differences between them. When small size regions
(less than 16 × 16) are used, the new proposed STU descriptor has a greater
performance. It is worth noting the LBP/C descriptor with b = 4 has 256× 4 =
1024 bins while the STU descriptor has 81 bins only.

We are in agreement with Ojala et al. [11] since a significant difference be-
tween the used distance measures is not found. Therefore, if we keep in mind
the computational time, the measure to be used should be the L1 metric. How-
ever, the λ statistic can be accompanied together with the value of the achieved
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significance level (ASL) of a χ2 statistical homogeneity test. The ASL provides
an index of the reliability when a decision is taken in function of the calculated
statistic. We should be careful when using the ASL since the distributions of the
values of the descriptor are not selected in a random and independent way.

It is justified, in our opinion, the use of the new STU descriptor in spite of
being simpler than the original TU. The carried out simplification does not imply
any significant loss of its characterization power of texture when a large region
size is used. When a small region size is used, it improves the characterization
power of TU, LBP/C and LBP descriptors. This greater performance, when
small region sizes are used, could mean a greater accuracy in the localization of
frontiers between textured regions. Also, the carried out simplification reduces,
in a significant way, the requirements in memory and computational time.
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[4] R.C. González and R.E. Woods. Digital Image Procesing. Addison-Wesley Pub-
lishing Company Inc., 1992. 470

[5] R.M. Haralick and L.G. Shapiro. Image segmentation techniques. Computer Vi-
sion, Graphics and Image Processing, 29:100-132, 1985. 470

[6] D-C. He and L. Wang. Texture unit, texture spectrum and texture analysis. IEEE
Trans. Geoscience Remote Sensing, 28(4):509-512, 1990. 470, 471, 472

[7] A.K. Jain and F. Farrokhnia. Unsupervised texture segmentation using gabor
filters. Pattern Recognition, 24(12):1167-1186, 1991. 470

[8] A. Mitiche L. S. Davis and Mites. A model driven, iterative texture segmentation
algorithm. CVGIP, 19:95-110, 1982. 470

[9] F. J. Madrid-Cuevas, R. Medina, M. Prieto, and A. Carmona. Coarse-to-fine un-
supervised texture segmentation using texture unit distributions. In Asociación
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Abstract. In this paper we propose a supervised method for the seg-
mentation of masses in mammographic images. The algorithm starts with
a selected pixel inside the mass, which has been manually selected by an
expert radiologist. Based on the active region approach, an energy func-
tion is defined which integrates texture, contour and shape information.
Then, pixels are aggregated or eliminated to the region by optimizing
this function allowing to obtain an accurate segmentation. Moreover,
a texture feature selection process, performed before the segmentation,
ensures a reliable subset of features. Experimental results prove the va-
lidity of the proposed method.

1 Introduction

Breast cancer is considered a major health problem in western countries, and
indeed it constitutes the most common cancer among women. Recent studies [1]
show that in the European Community, for example, breast cancer represents
19% of cancer deaths and fully 24% of all cancer cases. In absolute terms, this
data means that approximately 10% of women will develop breast cancer during
the course of their lives. Mammographic screening is the main method to identify
early breast cancer, because it allow identification of tumour when it is not yet
palpable. However, of all lesions previously diagnosed as suspicion and sent to
biopsy, approximately 25% were confirmed malignant lesions, and approximately
75% were diagnosed benign lesions. This high false-positive rate is related with
the difficulty in obtaining an accurate diagnosis [2]. In this sense, computer-
ized image analysis are going to play an important role in improving the issued
diagnosis. The effort in such computerized schemes have been carried out for
detection of two major signs of malignancy, named clustered microcalcifications
and masses.

In this sense, in a previous work we proposed the use of selected shape-based
features in order to classify clustered microcalcifications between benign and
malignant [3]. The computerized analysis of microcalcifications was divided into
four steps: 1) digitization of mammograms and enhancement of images; 2) de-
tection and localization of suspicious areas using a region growing segmentation

F.J. Perales et al. (Eds.): IbPRIA 2003, LNCS 2652, pp. 478–485, 2003.
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algorithm based on Shen proposal [4]; 3) extraction of shape-based features for
every segmented microcalcification; and 4) analysis of the features using Case-
Based Reasoning techniques. More recently, we have studied how to characterise
clusters of microcalcifications, due to its demonstrated relevance for issuing a
diagnosis [5]. It has been observed, in a great number of malignant diagnosed
mammograms, that the only indicator used to issue a diagnosis was the number
of microcalcifications and their distribution inside every cluster.

On the other hand, masses also contain important signs of breast cancer and
are hard to detect as they often occur in dense glandular tissue. In this sense,
a number of researchers consider the computer analysis of masses to be more
challenging as compared to that microcalcifications because masses are normally
indistinguishable from the surrounding tissues [6].

Sahiner et al. [7] analysed and summarized a whole set of mass segmentation
methods. Several works are focused on the use of texture and shape features. For
instance, Kilday et al. [8] applied seven morphological features, while Petrosian
et al. [9] investigated the usefulness of texture features based on spatial gray-level
dependence matrices. Rangayyan et al. [10] used an adaptative method of edge
profile acutance, and shape measures of compactness, Fourier descriptor, and
moment based measure. On the other hand, Wu et al. [11] selected 14 features
from a total of 43 for classification of malignant and benign masses and applied
artificial neural network.

In this paper we propose a novel method for masses segmentation based on
the principle of active region that takes into account texture, contours, and shape
features. A set of 80 texture features are extracted and then selected according
its homogeneity behaviour in order to choose an appropriated subset for the
segmentation. Furthermore, an energy function is then defined which integrates
all these sources of information. Then, the active region starts to grow optimizing
this function in order to segment the mass region. The remainder of this paper
is structured as follows: Section 2 describes the proposed segmentation approach
detailing the selection of the texture features as well as the segmentation process
based on the active region model. Experimental results proving the validity of
our proposal appear in Section 3. Finally, conclusions are given in Section 4.

2 Proposed Segmentation Method

The method is grounded on the observations: 1) that masses in mammographic
images have approximately uniform textures across their interiors, 2) the mass
edges coincide with maxima in the magnitude of the gray level gradient, and
3) that changes in masse profile shape are small.

Taking these observations into account our proposal is based on the definition
of an energy function, which integrates all these sources of information. Roughly
speaking, the method starts from a connected set of pixels known to occupy the
mass interior, which have been provided by the user (expert radiologist). Then,
the algorithm is composed by two basic stages. Firstly, best texture features to
segment the mass are selected; and secondly, the region grows by optimizing the
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energy function, which ensures the homogeneity inside the region, the presence
of edges at its boundary, and the similarity of the region shape with those of
previously-determined regions.

Furthermore, our proposal is based on the active region model, which has
been recently introduced as a way to combine region and boundary information.
This model is a considerable extension on the active contour model since it
incorporates region-based information with the aim of finding a partition where
the interior and the exterior of the region preserve the desired image properties.
The underlying idea is that the region moves through the image (shrinking or
expanding) in order to contain a single, whole region. The works of Chakraborty
et al. [12], Hibbard [13] and Sahiner et al. [7] are good examples of active regions
applied to the segmentation in medical images.

2.1 Texture Features Selection

One of major problems of texture segmentation is the selection of adequate tex-
ture features to model the homogeneity of regions, which are able to provide us
the information required to perform the segmentation. In order to solve this dif-
ficulty, we use the knowledge provided by the user selecting an area of the image
which is known of belonging to the region, and features which are homogeneous
in this neighbourhood are selected.

Co-occurrence matrices proposed by Haralick et al. [14] are used in this work.
Some of the most typical features, contrast, energy, entropy and homogeneity,
are computed for distances from one to five and for 0◦,45◦,90◦ and 135◦ orien-
tations, providing a set of 80 features. Then, the homogeneity of each feature
inside the initial region is tested by measuring its match with a normal distri-
bution using a skewness and kurtosis test, which many authors recommend by
its simplicity [15]. Hence, a small subset of k texture features which present an
homogeneous behaviour inside the region are selected for the next step of the
segmentation process.

2.2 Active Region Segmentation

The combination of region, edge and shape information represents more accu-
rately boundaries in medical images than either region growing or edge detection
alone was compellingly argued by Chakraborty et al. [12]. With the aim of in-
tegrating all these kinds of information in an optimal segmentation, the global
energy is defined with three basic terms. Region terms measures the homogene-
ity in the interior of the region by the probability that these pixels belong to the
region. Boundary term measures the probability that boundary pixels are really
edge pixels. And finally, shape term measures the similarity of the contour shape
with those of previously determined cases.

Some complementary definitions are required: let ρ(R) be a partition of the
image into two non-overlapping regions, where R0 is the region corresponding
to the background region and R1 corresponds to the mass region. Let ∂R1 be
the current region boundaries of the growing region R1. The energy function is
then defined as
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E(ρ(R)) = α
∑1

i=0− logPRegion(j : jεRi|Ri) + β(− logPBoundary(j : jε∂R1))
+(1− α− β)(− logPShape(Ri))

(1)
where α is a model parameter weighting the region term and β weights the

boundary term. The influence of these parameters on the segmentation results
will be analised in Section 3.

Region Information

The region term measures the homogeneity of the pixels into a texture region
which is modelled by a multivariate Gaussian distribution. Hence, the probability
of a pixel j characterized by the selected texture features −→xj of belonging to the
region R1 is

PRegion(−→xj |R1) =
1√

(2π)k|Σ1|
exp{−1

2
(−→xj −−→μ1)TΣ−11 (−→xj −−→μ1)} (2)

where −→μ1 is the mean vector of the region and Σ1 its covariance matrix. The
background is treated as a single region having uniform probability distribu-
tion P0.

Boundary Information

The second term in equation 1 depends on the coincidence of the region boundary
with the image edges appearing as coherent features in the scalar gradient of the
gray levels. Hence, we can consider PBoundary(j) as directly proportional to the
value of the magnitude gradient of the pixel j.

Shape Information

Region shape is specified from Fourier descriptors, which use the Fourier trans-
form over the points that define the contour of the region, where each point
(x, y) is defined as a complex number (x + jy). Thus, we have a sequence of
complex numbers that represent the region contour. Nevertheless, the Fourier
transform algorithm requires an input array whose length is an integral power
of 2. So, if the number of points of the contour does not satisfy this condition, we
need to follow the contour until the condition is true. Due to the periodic rate
of the Fourier transform, this will have no effect on the result. There are other
changes that must be applied to the Fourier descriptors to eliminate their depen-
dence on position, size, orientation and starting point of the contour. A change
in the position of the contour alters only the first descriptor, so we initialize
this descriptor to null. A change of size only requires multiplying by a constant.
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Fig. 1. Sequence of the region growth. The region starts to grow from the
interior area selected by the user, competing for the image pixels in order the
segment the whole mass

A rotation on the region requires multiplying each coordinate by exp(jφ) where
φ is the rotation angle.

NFD(k) =

⎧⎪⎨⎪⎩
0 k = 0
A(k)
A(1) k = 1, 2, ..., N/2
A(k+N)
A(1) k = −1,−2, ...,−N/2 + 1

(3)

With these Fourier descriptors we achieve a set of points that characterizes
the region. However, a solely value would be advisable. In this sense, we use the
measure defined by Shen [4] that gives a single descriptor for each region.

FF =

∑N/2

k=−N
2 +1

‖NFD(k)‖
|k|∑N/2

k=−N
2 +1

‖ NFD(k) ‖
(4)

Hence, the match of the region shape and the model shape, which is re-
lated to previously determined cases, is given by the difference between their
corresponding FF descriptors.

Optimization

The energy function is then optimized by a region competition algorithm [16]
which takes the neighbouring pixels to the current region boundary ∂R1 into
account to determine the next movement. Specifically, the region aggregates
a neighbouring pixel when this new classification decreases the energy of the
segmentation. Intuitively, the region begin to move and grow, competing for the
pixels of the image until an energy minimum is reached. A sequence of the region
growth is shown in Figure 1.

3 Experimental Results

Twenty mammographic images including sixteen circumscribed-benign and four
circumscribed-malignant were selected from the Mammographic Image Analysis
Society (MIAS, UK) database. The spatial resolution of the image is 50μm x
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(a) (b) (c)

(d) (e) (f)

Fig. 2. Segmentations results using different weights (α) and (β) on the terms of
the energy function. (a) Original mass, and segmentations obtained considering
(b) texture, (c) contour, (d) texture and shape, (e) contour and shape, and (f)
all three terms

50μm. The optical density is linear in the range 0− 3.2 and quantized to 8 bits.
The boundary of each mass was traced by an expert radiologist specialized on
mammography and were used as the basis for visual evaluation of the segmented
results obtained by the proposed mass detection algorithm.

The influence of the three terms which are considered in the energy function
(region, boundary and shape) was analised. Figure 2 shows segmentation results
obtained with different weights of these terms. As is stated, all sources provide
us useful information to perform the segmentation. However, best results have
been achieved considering all three terms together.

An expert radiologist was the responsible to provide an initial placement
inside the mass to segment. Some segmentation results obtained then by our
proposal are shown in Figure 3. As is stated, the technique allows to correctly
segment the masses and results have been considered very positive for radiolo-
gists.

4 Conclusions and Further Work

This paper has presented a segmentation method for the identification of masses
in mammographic images. The technique is based on the integration of texture,
contour and shape information in the segmentation process. Hence, an energy
function which considers all these sources together has been defined. Then, the
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Fig. 3. Mass segmentation results

growing of the region by optimizing this function allows to obtain an accurate
segmentation. Furthermore, the a-priori selection of the most adequate texture
features to segment the mass has been described.

Experimental results over 20 images from the Mammographic Image Analysis
Society database demonstrate the effectiveness of the proposed algorithm in
estimating mass regions and their boundaries with high accuracy.

Further work is focused on two different directions. First, the inclusion of an
automatic module of mass detection and seed placement in order to perform an
unsupervised segmentation. And second, the extension of our proposal to deal
with spicular masses.
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Abstract. Up-to-date results on the application of Markov models to
chromosome analysis are presented. On the one hand, this means using
continuous Hidden Markov Models (HMMs) instead of discrete models.
On the other hand, this also means to conduct empirical tests on the same
large chromosome datasets that are currently used to evaluate state-of-
the-art classifiers. It is shown that the use of continuous HMMs allows
to obtain error rates that are very close to those provided by the most
accurate classifiers.

1 Introduction

A common task in cytogenetics is the karyotye analysis of a cell. It consists of
labelling each chromosome of the cell with its class label, in order to have the
genetic constitution of individuals. This analysis provides important information
about number and shape of the chromosomes, which serves as a basis to study
the possible abnormalities the individual could have.

In a normal, nucleated human cell there are 46 chromosomes. The karyogram
is a standard format which shows the complete set organized into 22 classes (each
one consisting of a matching pair of two homologous chromosomes), ordered by
decreasing length, and two sex chromosomes, XX in females or XY in males.

The first attempts to automate this task were made in the early 1960s, moti-
vated by the fact that manual analysis is very tedious and labour-intensive. Since
then, many classification techniques have been tried, including both statistical
and structural approaches. Most of them, however, are conventional, statistical
� Work supported by the Valencian “Oficina de Ciència i Tecnologia” under grant
CTIDIA/2002/80, the Spanish “Ministerio de Ciencia y Tecnoloǵıa” under grant
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classification techniques in the sense that they reduce each chromosome image
to a point in some multi-dimensional feature space [6]. Instead, the use of struc-
turally richer approaches has been rare and focused mainly on discrete Markov
models [3, 7].

The aim of this paper is to provide up-to-date results on the application
of Markov models to chromosome analysis. On the one hand, this means us-
ing continuous Hidden Markov Models (HMMs) instead of discrete models. On
the other hand, this also means to conduct empirical tests on the same large
chromosome datasets that are currently used to evaluate state-of-the-art clas-
sifiers [6]. It is worth noting that this is a new application of standard Speech
Recognition technology and, in particular, a new application of the well-known
and widely available standard HMM Tool Kit (HTK) [8]. However, this is not
a straightforward application of HTK since we also have to take care of prepro-
cessing, feature extraction and HMM topology design. These aspects are covered
in the next section. Empirical results and the main conclusions drawn are given
in sections 3 and 4, respectively.

2 The Approach

The basic steps of our HTK-based approach are illustrated in Figure 1. They
are described in what follows.

Fig. 1. Basic steps of our HTK-based approach. From left to right: computation
of the longitudinal axis, unfolding, feature extraction and HMM modelling
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Computation of the Longitudinal Axis and Unfolding

The computation of the longitudinal axis of a chromosome is a standard pre-
processing step in chromosome analysis. However, no precise definition has been
widely accepted and, in fact, it is a matter of current research [6]. In our case,
we have used a rather standard procedure that includes the classical Hilditch’s
thinning algorithm for medial axis computation and some refinements [2].

Once the longitudinal axis has been computed, it is traversed at unit speed
and a perpendicular slice is cut at each sampled axis point to obtain an unfolded,
straight version of the chromosome. After this chromosome unfolding, feature
extraction reduces to compute an appropriate set of features from each image
row.

Feature Extraction

Feature extraction for local characterization of chromosomes is an interesting,
open problem. Based on our previous experience [5] and some informal tests, we
have considered the following four types of features:

– 9p: grey densities
– D: horizontal derivative
– A: horizontal acceleration
– V: vertical derivative

The set of features referred to as 9p corresponds to 9 equidistant Gaussian-
filtered points. Concretely, each point was filtered by convolution with a 5 × 5
filter mask with weights: 16 in the center, 2 at a 1-pixel distance and 1 at a 2-
pixel distance. Derivatives and acceleration were computed from successive 9p
vectors. As an example, the sequence of feature vectors shown Fig. 1 comprises
grey densities plus horizontal and vertical derivatives (9p+D+V).

It must be noted that these types of features come from previous work on
HTK-based handwriting recognition. Please see [1, 4] for more details on the
computation of these types of features.

HMM Chromosome Modeling

As illustrated in Fig. 1, chromosomes are modelled by continuous left-to-right
HMMs. Basically, an HMM for a chromosome class is a stochastic finite-state
device aimed at modelling the succession, along the longitudinal axis, of feature
vectors extracted from instances of the chromosome class. Each HMM state
generates feature vectors following an adequate parametric probabilistic law;
typically a mixture of Gaussian densities. The number of states and number of
densities per state that are appropriate to model each chromosome class depend
on the class variability and the amount of training data available. So, these
numbers need some empirical tuning. The training process is carried out with
the HTK toolkit, using conventional re-estimation formulas [8].



Chromosome Classification Using Continuous Hidden Markov Models 497

3 Experiments

The data set used in the experiments was the Cpa, a corrected version of the
Cpr corpus (the complete Copenhagen data set) [6]. The corpus contains the
segmented chromosome images of 2804 human cells, 1344 of which are female
and 1460 are male.

3.1 Context-Free Classification

The usual method for classifying a test chromosome is to find the HMM with
the highest probability in the Viterbi decoding. This is the so-called context-
free classification, because each chromosome is classified with independence of
each other. The experiments reported in this subsection were done under this
context-free framework.

As discussed before, one of the two basic parameters characterising continu-
ous left-to-right HMMs is the number of states chosen for each class-conditional
HMM Mi. This number has been computed as si = fi

k , where fi is the average
length of the sequence of vectors used to train Mi, and k is a design parame-
ter measuring the average number of feature vectors modelled per state. This
rule of setting up si attempts to balance modelling effort across states and also
captures important discriminative information about the typical length of each
chromosome class. Following this rule, a first series of experiments was carried
out on a partition involving 2400 + 400 training and testing cells. We used the
9p feature set and the values of k: 1.5, 2, 2.5, 3 and 4. For each value of k, the
number of Gaussian densities per state was varied as 1, 2, 4, ldots until reaching
a minimum classification error rate. The results obtained, which are omitted here
for brevity, showed a degradation of the error rate as the value of k increases. So,
in accordance with these results, a value of k = 1.5 was fixed for the remaining
experiments.

After deciding on the value of k, a second series of experiments was conducted
on the same data partition to study the classifier performance as a function of
the number of Gaussian densities per state, and for several feature sets. The
results are shown in Fig. 2. From these results, it is clear that an appropriate
feature set consist of using grey densities plus horizontal and vertical derivatives
(9p+D+V). Also, 64 seems to be an adequate number of Gaussian densities
per state.

Although the results obtained up to this point were satisfactory, we decided
to do further experiments using windows of feature vectors instead of single
vectors. This was done as as an attempt to reproduce the behaviour of the input
layer of Recurrent Neural Networks, in which a small moving-window of feature
frames is processed at each time and this seems to be very effective in improving
classification results [5]. Fig. 3 shows the classification error rate (estimated as
before) for varying Gaussian densities per state and several window sizes. As
expected, the use of windows of feature vectors helps in improving classification
error and, in fact, the best result (5.6%) was obtained with a window of 3 feature
vectors (and 64 Gaussian densities per state).
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Fig. 2. Classification error rate as a function of the number of Gaussian densities
per state, and for several feature sets

All the experiments reported so far were carried out using a single partition
of the complete corpus. In order to obtain more precise results, the classification
error rate was also estimated using a 7-fold cross-validation procedure in which
the blocks were chosen to have 400 cells each. It is given in Table 3.1 as a function
of the number of Gaussian densities per state (the remaining parameters were
set to the values that provided a 5.6% of error). The best result for the cross-
validation method, again obtained with 64 Gaussian densities, is 7.5%.

3.2 Context-Dependent Classification

The classification error rate can be reduced by taking into account the fact that
the normal karyotype consists of 22 pairs of autosomes and a pair of sex chromo-
somes. This knowledge imposes a constraint that penalizes, e.g., the allocation
of more than two chromosomes to one class and less than two chromosomes to
other class. This is the called context-dependent classification.

An iterative algorithm was formulated to restrict the isolated chromosome
classification by including the contextual cell information. The algorithm receives
as input, for each chromosome of a cell, the output probabilities of each HMM.
Then, in successive iterations, the algorithm classifies pairs of chromosomes for
each class using solved classes; i.e., classes with only two chromosomes having
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Fig. 3. Classification error rate as a function of the number of Gaussian densities
per state, and for window widths

the highest probability for that class, and both probabilities greater than a lower
bound. After that, the probabilities of solved classes are crossed-out for the
remaining chromosomes, whose probabilities are renormalized and the process
is repeated until the complete cell is classified.

In order to complete the experiments reported in the preceding subsection,
the context-dependent classification algorithm discussed above was applied to
the best classifier found under the context-free framework. The classification
error rate was again estimated using the 7-fold cross-validation procedure and,
as expected, it was reduced from 7.5% up to 4.6%. This figure is close to those
provided by the most accurate classifiers [6].

4 Conclusions

We have provided up-to-date results on the application of Markov models to
chromosome analysis. It has been shown that the use of continuous Hidden
Markov Models (HMMs) allows to obtain error rates that are very close to those
provided by the most accurate classifiers. As in the case of handwriting recog-
nition, the main advantage of using HMMs is that they can be easily integrated
into systems based on finite-state technology [4].
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Table 1. Classification error rate estimated using a 7-fold cross-validation pro-
cedure

N◦ of G.D. error rate

1 15.7
2 12.5
4 10.4
8 9.3
16 8.4
32 7.9
64 7.5
128 7.7

A number of improvements can be applied to the entire system. The skeleton
technique used to obtain the longitudinal axis has the disadvantage of being non-
parametric, so approximations using eigenvectors have to be used to calculate
the slices. A parametric axis could help to reduce some errors introduced by the
current method due to morphological filtering and the skeletonization algorithm
(especially in short chromosomes). In this line, other methods are being studied:
polynomial curve-fitting, implicit polynomials, etc. The iterative algorithm that
implements the context-dependent classification could be improved by dynamic
programming, allowing a more detailed analysis for finding the solved classes.
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de clasificadores de cromosomas humanos. Master’s thesis, Faculty of Computer
Science, Polytechnic University of Valencia, 1999. 496

[3] J. Gregor and M. G. Thomason. A Disagreement Count Scheme for Inference
of Constrained Markov Networks. In L. Miclet and C. de la Higuera, editors,
Grammatical Inference: Learning Syntax from Sentences, volume 1147 of Lecture
Notes in Computer Science, pages 168-178. Springer, 1996. 495

[4] A. Juan et al. Integrated Handwriting Recognition and Interpretation via FiniteS-
tate Models. Technical Report ITI-ITE-01/1, Institut Tecnològic d’Informàtica,
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Abstract. Clustering methods are used in pattern recognition to obtain
natural groups from a data set in the framework of unsupervised learning
as well as for obtaining clusters of data from a known class. In sets of
strings, the concept of set median string can be extended to the (set) k-
medians problem. The solution of the k-medians problem can be viewed
as a clustering method, where each cluster is generated by each of the k
strings of that solution. A concept which is related to set median string is
the (generalized) median string, which is an NP-Hard problem. However,
different algorithms have been proposed to find approximations to the
(generalized) median string. We propose extending the (generalized) me-
dian string problem to k strings, resulting in the generalized k-medians
problem, which can also be viewed as a clustering technique. This new
technique is applied to a corpus of chromosomes represented by strings
and compared to the conventional k-medians technique.

1 Introduction

One of the classical problems in pattern recognition is the clustering problem.
Clustering attempts to obtain natural groups of data (named clusters) from
a whole data set, based on the similarities among the data. This similarity is
usually based on the definition of distance between the patterns which represent
the data. When data is represented by vectors in a metric space, a natural
dissimilarity measure is the Euclidean distance. When data is represented by
strings [1], several dissimilarity measures can be defined. The most popular one
is the edit distance [2], but other distances are also used, such as the normalized
edit distance [3].

From a set of points in a metric space, the median is defined as the point in the
set which minimizes the sum of distances to each point of the set. The problem
of finding the median can be generalized to finding a subset of k points (known
as representatives) from a data set. This subset minimizes the sum of distances
from the rest of the points to their closest representative. This problem is known
as the k-medians problem. Solving the k-medians problem defines a partition in
the data set: each point in the data set pertains to the cluster represented by its
closest representative.
� Work partially supported by the Spanish CICYT under grant TIC2000-1703-C03-01
and by the Valencian OCYT under grant CTIDIA/2002/80.

F.J. Perales et al. (Eds.): IbPRIA 2003, LNCS 2652, pp. 502–509, 2003.
c© Springer-Verlag Berlin Heidelberg 2003



Generalized k-Medians Clustering for Strings 503

For string-coded data, the search for the median is equivalent to computing
the set median string [4]. This problem is easily extended, as in the case of
a metric space, to the (set) k-medians problem. The solution of the (set) k-
medians problem also defines a partition in the string data set, and it has been
the most widely used clustering technique for data represented by strings.

A concept which is related to the set median string is the (generalized) me-
dian string. This is the string of all the possible strings which minimizes the sum
of distances to all the strings of the set. This problem is an NP-Hard problem [5]
and only approximations can be obtained in reasonable time. The concept of
(generalized) median string can also be extended to finding the k string repre-
sentatives which minimize the sum of distances to the set of strings. We call this
problem the generalized k-medians problem, and its solution also defines a set of
clusters in the data set.

In this work, both (set) k-medians clustering and the new generalized k-
medians clustering are applied to a corpus of chromosomes represented by
strings. The results will demonstrate that this new proposal outperforms the k-
medians clustering under certain conditions (and is equivalent in the other cases).
In Section 2, the median string is defined and its approximation algorithm is
described. In Section 3, the new generalized k-medians clustering procedure is
formulated by means of a modification of the k-medians process. In Section 4, the
data used is described and results are presented. In Section 5, some conclusions
and final remarks are provided.

2 Median String

Given an alphabet Σ, Σ∗ represents the free monoid over Σ (the set of all the
strings of finite length over Σ). Given a set of strings T ⊆ Σ∗, the (generalized)
median string [4] of T is given by the string s ∈ Σ∗ which minimizes the following
expression:

z(s) =
∑
t∈T

d(s, t) (1)

where d represents the distance used to compare two strings (edit distance [2],
normalized edit distance [3]. . . ).

The problem of finding the median string is known to be an NP-Hard prob-
lem [5]. Therefore, only approximations can be achieved in reasonable time. The
most popular approximation is the set median string of T [4], where the string
is constrained to pertain to the set T . This string can be obtained in polyno-
mial time with a time complexity of O(l2 · |T |2) when the distance computation
presents a time complexity of O(l2), where l is the maximum length of the strings
in T .

It is clear that the set median string is a rough approximation to the median
string of T . Other heuristic methods for obtaining more approximated strings
have been proposed in the literature. In [6], a greedy method was proposed to
build an approximation to median string based on adding a symbol in each
iteration until a stop criterion ocurrs. The main drawback of this algorithm is
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that it can only be applied when using the edit distance (it cannot be employed
when using the normalized edit distance).

A more general algorithm was proposed in [7]. This algorithm consists of
making successive perturbations to the current string. Over each position of the
current string, all possible substitutions, insertions and deletions are performed,
and the best among the altered strings and the current string (i.e., the string
which presents less accumulated distance to the set of strings) is taken for the
next position. The process is applied until there is no change in any position
of the current string. Clearly, an initial string is necessary at the beginning of
the process. This initial string is usually the set median string of the set, but it
could be any other string of Σ∗.

The results presented in [7] demonstrate that the approximation produced by
this algorithm provides better results in classification tasks than the set median.
This algorithm can be applied to any distance function defined and presents
a time complexity of O(l3 · |T | · |Σ|) per main iteration when the time complexity
of the distance computation is also O(l2).

3 The Generalized k-Medians Algorithm

Clearly, the concept of (generalized) median string can be extended to, say,
k strings just like the concept of mean and set median have been extended
to k-means and (set) k-medians, respectively [8, 9]. We call such an extension
generalized k-medians1. Formally, a generalized k-medians of a given training set
T ⊆ Σ∗ is simply a set S of k strings in Σ∗ with minimum:

z(S) =
∑
t∈T

min
s∈S

d(s, t) (2)

Compare Eq. (2) with Eq. (1). In Eq. (1), a single string is forced to be the
only representative for every training string. In contrast, in Eq. (2) the task of
representing T is divided among k string representatives and each training string
is assigned to (the group or cluster of) its most similar representative.

As in the particular case of k = 1, we are interested in devising heuristics
to obtain good approximate solutions in reasonable time. To this end, a direct
approach is to use heuristics for the (set) k-medians problem, i.e., that of min-
imizing Eq.(2) over all sets of k representatives drawn only from the training
set T . Note that the only difference with respect to the generalized problem
is that representatives cannot be drawn from the entire string space Σ∗, only
from T . Although this constraint entails a huge reduction of the set of feasible
solutions, the (set) k-medians problem is still a difficult, NP-Hard problem [10].
In contrast to its generalized version, however, it has been extensively studied
as a model for facility location and pattern clustering [9, 11].

1 We use this denomination following Kohonen’s nomenclature (generalized median)
and to avoid confusion with k-means technique.
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Algorithm generalized k-medians
Input: T , d, k, S0 /* Strings, distance, num. clusters, initial representatives */
Output: S = {s1, s2, . . . , sk} /* Final set of representatives */
Function: s = median string(S′, s, d) /* Median string computation */
Method:
S = S0

for i = 1 to k do Ci = {t ∈ T : i = argmin
j=1,...,k

d(t, sj)} endfor /* Initial clusters */

repeat
interchange = false
for i = 1 to k do /* For each cluster compute new representative */

aux = si
si = median string(Ci, si, d) /* New representative: approx. median string */
if si = aux then interchange = true endif /* The representative changed */

endfor
∀t ∈ T do /* Cluster reorganization */
let i : t ∈ Ci /* i is the current cluster for t */
i′ = argmin

j=1,...,k
d(t, sj) /* i′ is the cluster of the nearest representative to t */

if i′ = i then Ci = Ci − {t}; Ci′ = Ci′ ∪ {t} endif /* Exchanges t */
end∀

until not interchange

Fig. 1. Generalized k-medians algorithm. The parameters for the median string
function are a set of strings S′, an initial string s and a distance function d

A good and efficient heuristic for the k-medians problem is, precisely, the
technique known as k-medians algorithm [12, 11]. This technique is best de-
scribed as a clustering method in which both the set of k (cluster) represen-
tatives and its associated training set partition are iteratively updated. The
basic updating rule is a necessary optimality condition: each representative of
an optimal set must be a set median of its cluster; otherwise, an improved set
of representatives can be obtained by interchanging each representative with
a set median of its cluster. This updating rule is actually the first of the two
basic steps that are carried out in each iteration of the algorithm. The second
step is simply to update the current partition of the training set in accordance
with the (new) set of representatives obtained in the first step. These two basic
steps are repeated until no change of representatives occurs. For more details
about the k-medians algorithm, including the aspects of computing efficiency
and initialization, see [12, 11].

Although the k-medians algorithm can effectively provide good approximate
solutions to the generalized problem, we think that significantly better solutions
can be obtained using ad-hoc optimization methods. With this idea, we propose
here to generalize the k-medians algorithm so that is works with arbitrary strings
as cluster representatives, not just with strings included in the training set. More
precisely, we propose using the “perturbation” method described in Section 2 in
order to attempt to improve the generalized representative of each cluster. See
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Fig. 2. Chromosome preprocessing. Each digitized chromosome image is trans-
formed into a string by first computing an idealized, one-dimensional density
profile and then difference-coding successive density values

Fig. 1 for a detailed algorithmic description of this new generalized k-medians
algorithm. The time complexity of this algorithm (per iteration) depends mainly
on the approximated median string computation for each cluster. Therefore, the
time complexity is proportional to O(l3 · |T | · |Σ|). A straightforward approach to
initializing this algorithm consists of using the solution given by the conventional
method.

4 Experiments and Results

The data used in the experiments, known as the Copenhagen corpus, was ex-
tracted from a database of approximately 7, 000 chromosomes that were classified
by cytogenetic experts [13]. Each digitized chromosome image was automatically
transformed into a string by using the procedure illustrated in Fig. 2. This pro-
cedure starts by obtaining an idealized, one-dimensional density profile that em-
phasizes the band pattern along the chromosome. The idealized profile is then
mapped into a string composed of symbols from the alphabet {1, 2, 3, 4, 5, 6}.
Then this string is difference coded to represent signed differences of successive
symbols, using the alphabet Σ = {e, d, c, b, a,=, A,B,C,D,E} (“=” for a differ-
ence of 0; “A” for +1; “a” for -1; etc.). See [14] for a detailed description of this
procedure.

The chromosome dataset actually used in the experiments comprises 200
string samples for each of the 22 non-sex chromosome types, i.e. a total of
4400 samples. The standard classification procedure to estimate the error rate of
a classifier for this data is a 2-fold cross-validation in which both sets are chosen
to have 100 samples of each of the 22 non-sex chromosomes types. Following this
procedure, recently an error rate around 4% was achieved by using the k-Nearest
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Fig. 3. Accumulated distance for the conventional k-medians and the general-
ized k-medians algorithms as a function of k (number of clusters)
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Fig. 4. Classification error for the conventional k-medians and the generalized k-
medians algorithms as a function of k (number of clusters). The base classifier
is a 3-NN classifier built from the k string prototypes of each class

Neighbour classifier (k-NN) with k ≥ 3 and a (properly) weighted normalized
edit distance [7].

In this work, the above-mentioned estimation procedure was repeated using
a 3-NN classifier built from k string prototypes of each class. Both the conven-
tional k-medians algorithm and its generalized version were used to compute
the k string prototypes of each class. The idea is to measure to what extent our
new technique improves on the conventional algorithm to obtain accurate yet
compact models of string sets. To this end, the classification error rate for each
algorithm was computed as a function of k (number of clusters per class), and
also the accumulated distance (i.e., the value of the objective function (2)). See
Figs. 3 and 4.

As expected, the results shown in Figs. 3 and 4 indicate that the general-
ized k-medians algorithm gives more accurate representatives than the conven-
tional k-medians algorithm, both in terms of accumulated distance and in terms
of classification error rate. Generally speaking, it can be said that the accuracy
gained is not very significant when the desired number of clusters (representa-
tives) is large in comparison to the size of the training set (e.g., more than, say,
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10 clusters in our chromosome task). On the contrary, when only a small num-
ber of representatives is to be computed, we can get significant improvements
in accuracy by using generalized medians instead of set medians. An example of
this is given in the left panel of Fig. 4, where a relative error rate reduction of
around 30% is reported for k ≤ 10.

It must be noted that, for the experiments conducted here, we have used a
simple initialization procedure. On the one hand, in order to compute an initial
solution for the conventional algorithm, we simply use the set of representatives
returned by the (k − 1)-medians algorithm plus the string sample whose closest
representative is the farthest away. On the other hand, to obtain an initial solu-
tion for the generalized algorithm, we directly use the k representatives given by
the conventional k-medians algorithm. Of course, this is not the only procedure
we can use for initialization purposes and, in fact, there are several initialization
techniques for the conventional algorithm that could be generalized to work with
arbitrary strings [11].

5 Conclusions and Future Work

In this work, we have proposed a new clustering process, called generalized k-
medians, based on an approximation to the (generalized) median string. The
approximated median string is used as a representative of the clusters. This
alternative clearly outperforms the conventional k-medians algorithm, whose
solution is used as a starting point.

Future work is directed towards exploring other combinations of both set
median and approximated median string in the clustering. One possibility could
be to use the approximated median string in the initialization process (i.e., not
to use the k-medians result as initialization, but rather to use the generalized k-
medians result). Exploring different initializations in the computation of the
approximated median string (and not only the current cluster representative) is
another interesting option.
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Abstract. In this paper we describe a system to generate in an inter-
active way and thinking in multimedia applications, realistic simulation
of a 3D deformable object’s. The physically elastic deformation tech-
niques are actually an important and challenging feature in applications
where three-dimensional object interaction and behaviour is considered
or explored. Also, in multimedia environments we need a rapid com-
putation of deformations with a good visual realism. In this paper we
present a prototype of a system for the animation and simulation of elas-
tic objects in an interactive system and under real-time conditions. The
approach makes use of the finite elements method (F.E.M) and Elastic-
ity Theory. Using picking node selection the user can interactively apply
forces to objects causing their deformation. The deformations computed
with our approach have a physical interpretation based on the mathe-
matical model defined. In particular we extend our original system to
non-homogeneous regions. This property is very important to able simu-
lations with material that have deferents density functions. Finally, a set
of results are presented which demonstrate this capability. All programs
are written in C++ using POO, VRML and Open Invertor tools.

Keywords: Elastic Deformation, Finite Elements Method, Elasticity
Theory, Computer Animation, Physical Models, VRML, Non-homoge-
neous objects.

1 Introduction and Related Work

Obviously, flexible and deformable objects are inherently more difficult to model
and animate in computer graphics than rigid objects. Until recent years, the
computer graphic methods proposed were limited to modelling rigid objects.
However, recent advances in algorithms and computer graphics hardware sup-
port the processing of flexible objects. Today, there is a great need in many
� This work is partially subsidized by CICYT under grant TIC2001-0931 and by UE
under grant Humodan-IST-2001-32202.
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engineering and medical applications to be able to simulate the material and
geometrical behaviour of 3D objects under real forces. In general, different mod-
elling techniques are usually classified into three categories: geometrical, physical
and hybrid:

Geometrical Techniques. Geometrical models do not consider the physical
properties of objects.

Physical Techniques. In this group of techniques, the objects are modelled as
a triangular or rectangular grid in 2D or voxeled volumed in 3D. Each joint
or node in the grid can be affected by forces and the global grid is governed
by the interaction of physical forces on each node considered.

Hybrid Techniques. Finally, we can combine physical and geometrical meth-
ods to avoid problems and improve efficiency.
See [7] for more details.

In particular, the growth in hardware graphics can overcome the time con-
suming restrictions of physically based methods. So in this paper we present
our extended system to deal with non-homogeneous objects. It is based on Fi-
nite Element Methods (F.E.M) and uses the Elasticity Theory. As we know, the
solid theory used guarantees the robustness of the system and is actually widely
used by other researchers [4]. Thus, we are principally interested in designing a
new system that can run in real or near real time systems. We believe that in
Virtual Reality systems the time in interaction and feedback is very critical. In
this case, the efficiency of implementation is very important and results must be
checked to reach this condition. In some cases, an initial off-line process can be
introduced to improve efficiency.

This paper is organized in several sections. The second section includes a biref
intreduction of the mathematical model proposed. The third section is dedicated
to presenting the F.E.M implemented. The fourth section includes the exten-
sion to non-homogeneous simulations, presenting the new extended model and
some intereting results. Finally, we conclude with some considerations about
parallelization, efficiency and computational cost. The paper also includes the
conclusions, future work and related bibliography.

2 Mathematical Model Proposed

LetΩ be an enclosed and connected solid in IR3. Let us assume that the boundary
of Ω, Γ , is C1 piecewise. We divide Γ into two parts, Γ0 and Γ1, where Γ1 is the
part of the boundary which receives external forces and Γ0 is the fixed part of
the boundary whose size we assume to be strictly positive. Note that boundary
Γ does not necessarily need to be connected, which will enable us to simulate
deformations of objects with holes.

The aim of this work is to study and analyse the computational cost of the
evolution of Ω under the action of external forces f on the inside and external
sources g on the boundary Γ1.
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The position of the object is defined by the function u(t,x). Our problem
is, therefore, reduced, given the functions u0 (initial position of the object) and
u1 (initial speed), to finding the position u(t,x) = (u1, . . . , u3) of these in the
domain QT = Ω × (0× T ) which will verify the following evolution system in
time: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρδ
2ui
∂t2 −

∑3
j=1

∂
∂xj

σij = fi, i = 1, 2, 3 enQT ,

ui = 0, i = 1, 2, 3 enΓ0 × (0, T ) ,∑3
j=1 σijnj = gi, i = 1, 2, 3 enΓ1 × (0, T ) ,

ui (·, 0) = u0,i, i = 1, 2, 3 en Ω ,

∂ui
∂t (·, 0) = u1,i, i = 1, 2, 3 en Ω .

(1)

where functions σij are the components of the tension tensor, nj are the com-
ponents of the normal vector at a point on the surface of the domain Γ1× (0, T )
and ρ is the density of the object.

The resolution of the above problem is carried out by variational formulation.
The solution of a discrete approximation uh of the above formulation gives us
the approximate solution to our problem.

Specifically, we consider a subspace Vh with a finite dimension I = I(h) of
Hilbert’s space H defined by H =

{
v ∈ (

H1 (Ω)
)3
, tal , quev = 0 sobreΓ0

}
.

Our problem is reduced to finding a function uh defined in QT solution to
the following differential system:⎧⎪⎪⎪⎨⎪⎪⎪⎩

∀vh ∈ Vh, ρ
d2

dt2 (uh (t) ,vh) + a (uh (t) ,m
¯
vh) = L(vh) ,

uh (0) = u0,h ,

duh

dt (0) = u1,h ,

(2)

where the expression a (·, ·) is the bilinear continous form defined by a (u,v) =∑3
i,j=1

∫
Ω σi,j (u) εij (v) dx , (·, ·) is the following scale product defined for func-

tions defined in QT : (u,v) =
∑3

i=1

∫
Ω ui (x) vi (x) dx and L(v) is the following

continuous linear form on Vh: L(v) =
∑3

i=1

∫
Ω fividx+

∫
∂Ω gividσ.

Let ϕi be a Vh base of functions. If we write the solution to look for uh as,
uh (t) =

∑I
i=1 ξi (t)ϕi , the components ξi verify the next differential system:

ρ

I∑
i=1

ξ′′i (t) (ϕi,ϕj) + γ

I∑
i=1

ξ′i (t) (ϕi,ϕj) +
I∑

i=1

a (ϕi,ϕj) ξi (t) = L (ϕj) . (3)
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In the above system we have added a new term (γ
∑I

i=1 ξ
′ (t) (ϕi,ϕj)) to simu-

late a damping effect of the object. The above system, written in a matrix form,
is:

ρMξ′′ + γMξ′ +Kξ = L , (4)

with M and K as the mass and tension matrices respectively:
M = ((ϕi,ϕj)) i, j = 1, . . . , I

K = (a (ϕi,ϕj)) i, j = 1, . . . , I .

By discretizing in time this last equation:

M ( ρ
Δt2+

γ
2Δt) ξ (t+Δt) =

= L+ ρM
Δt2 (2ξ (t)− ξ (t−Δt)) + γM

2Δtξ(t−Δt)−Kξ (t) .
(5)

The simulation of different physical phenomena such as instantaneous blows,
constant forces, waves, etc. are implicit in the expression of vector L.

3 F.E.M and K,M,L. Definition

In order to choose the type of finite elements to use we will base our decision on
two basic criteria: the type of finite element to be used must correctly transmit
the propagation of the tensions in the direction perpendicular to each face of the
finite element and the type of finite elements to be used must possibility a real
time computational process.

This is why finite elements of a rectangular prism type will be chosen. This
kind of finite element makes a right transmition of the propagation of the tensions
in the direction perpendicular to each face of the finite element and gets a low
computational cost.

Note that by means of the type of finite elements chosen it is possible to
define uniform grids (grids which possess all the finite elements of an identical
length), and non-uniform grids. This second type of grid let us make an approach
of the boundary of Ω.

First of all, we will define the fundamental tool which will allow us to work
with the finite elements: domain with a pair of points.

Let i and j be two arbitrary nodes of the grid of finite elements of the object.
Let sup ϕi be the set IR3 where ϕi �= 0.

Ωi,j is defined as the integration domain of a pair of points (i, j) such as

Ωi,j = sup ϕi ∩ sup ϕi .

3.1 Base Functions

In the three-dimensional model, there are three types of base functions:

ϕ
(1)
i = (ϕi, 0, 0) ,ϕ

(2)
i = (0, ϕi, 0) ,ϕ

(3)
i = (0, 0, ϕi) . (6)

The expression of ϕi is the same in each base function: it is that function
which has a value of 1 in the i-th node and 0 in the other nodes.



522 Miquel Mascaró Portells et al.

3.2 Deformations Tensor

The deformations tensor is defined by the following expression:

εij (v) =
1
2

(
∂vi
∂xj

+
∂vj
∂xi

)
, 1 ≤ i , j ≤ n . (7)

3.3 The Tension Matrix K

The internal bonds of the object can be seen in tension matrix K.The compo-
nents of matrix K are: Kij = K(ϕ(k)

i ,ϕ
(k)
j ), where ϕ(k)

i and ϕ
(k)
j are the base

functions defined in (6) and the expression of K(u,v) is the following where u
and v are any H functions:

K (u,v) = λ

∫
Ω

(
n∑

k=1

∂uk
∂xk

)(
n∑

k=1

∂vk
∂xk

)
dx1dx2dx3

+2μ
n∑

i,j=1

∫
Ω

εij (u) εij (v) dx1dx2dx3 , ∀u,v ∈ H.

(8)

The expression of matrix K is the following:

K =

⎛⎜⎜⎜⎝
K

(
ϕ
(1)
i ,ϕ

(1)
j

)
K

(
ϕ
(1)
i ,ϕ

(2)
j

)
K

(
ϕ
(1)
i ,ϕ

(3)
j

)
K

(
ϕ
(2)
i ,ϕ

(1)
j

)
K

(
ϕ
(2)
i ,ϕ

(2)
j

)
K

(
ϕ
(2)
i ,ϕ

(3)
j

)
K

(
ϕ
(3)
i ,ϕ

(1)
j

)
K

(
ϕ
(3)
i ,ϕ

(2)
j

)
K

(
ϕ
(3)
i ,ϕ

(3)
j

)
⎞⎟⎟⎟⎠ . (9)

The space of functions we consider is that generated by the polynomials IR3

< 1, x1, x2, x3, x1 ·x2, x1 ·x3, x2 ·x3, x1 ·x2 ·x3 >. Therefore, the function ϕi will
have a linear combination of these polynomials.

The calculation of
∫ ∫ ∫

Qs

∂ϕ,
i

∂x,
i

∂ϕ,
j

∂x,
j
dx,1 dx

,
2 dx

,
3 is quite simple as we are work-

ing with a standard cube.
In this way, the 64 possible values K(k)

ij can be obtained. It can be seen that
there are only 8 different values.

3.4 The Mass Matrix M

The mass matrix M will be made up of nine sub-matrices whose expression is
the following:

M =

⎛⎜⎜⎜⎝
(
ϕ
(1)
i ,ϕ

(1)
j

)
0 0

0
(
ϕ
(2)
i ,ϕ

(2)
j

)
0

0 0
(
ϕ
(3)
i ,ϕ

(3)
j

)
⎞⎟⎟⎟⎠ , where:

(
ϕ
(1)
i ,ϕ

(1)
j

)
=

(
ϕ
(2)
i ,ϕ

(2)
j

)
=

(
ϕ
(3)
i ,ϕ

(3)
j

)
�= 0 si Ωij �= ∅.
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In order to calculate (ϕi,ϕj) in an effective way, we will use a method of
approximate integration using the vertices of the finite elements as nodes. That
is, using:

(
ϕ
(1)
i ,ϕ

(1)
j

)
=

∑
k|Qk⊂Ωij

∫
Qk

ϕi(x)ϕj(x)dx, we approximate the in-
tegration as: ∫

Qk

ϕi(x)ϕj(x)dx ≈
8∑

l=1

Aiϕi(Pl)ϕj(Pl), (10)

where Pl are the vertices of the finite element Qk and Ai are the coefficients of
the approximate integration formula.

In this way, we manage to make the mass matrix M diagonal since ϕi(Pl) =
δil. Furthermore, since the numerical integration error is less than the error we
make in the variational approximation of the problem which is in the order of h3

where h is the maximum length of the sidesQk (see [7]), the use of the integration
method does not increase the overall error in the approximation.

3.5 The External Force Vector L

The external force vector L will be of the type:

L =
(
L
(
ϕ
(1)
i

)
, L

(
ϕ
(2)
i

)
, L

(
ϕ
(3)
i

))�
, where L

(
ϕ
(k)
i

)
, k = 1, 2, 3, are dimen-

sion vectors N with N as the number of nodes of the grid of finite elements
which does not belong to Γ0, that is, non fixed nodes.

The expressions of the vectors L(ϕi), L(ϕ′
i) and L(ϕ′′

i) are the following:

L
(
ϕ
(k)
i

)
=

∫
supϕi

fk(x)ϕi(x)dx+
∫
∂Ω∩supϕi

gk(x)ϕi(x)dσ,

where k = 1, 2, 3.
In all the experiments carried out, we have assumed that f = 0. Therefore,

the first term in the above expressions will be null.
If the external forces g applied on the boundary are constant, the above

expressions are reduced to: L
(
ϕ
(k)
i

)
= gk

∫
∂Ω∩supϕi

ϕi(x)dσ.

Our problem is, therefore, reduced to finding
∫
∂Ω∩supϕi

ϕi(x)dσ.
We will assume that the boundary of Ω is approximated by square prism

type finite elements. Therefore, we have the case in which the integration domain
∂Ω ∩ supϕi will be: ∂Ω ∩ supϕi = ∪Πik, where Πik are flat rectangles situated
on a plane xi =constant.

We have, therefore, the case in which the value of the above integral can be
calculated as:

∫
∂Ω∩supϕi

ϕi(x)dσ =
∑

k

∫
Πik

ϕi(x)dσ
The above integral

∫
Πik

ϕi(x)dσ can be reduced by the variable change
adapted to a double integral on the standard square [0, 1]× [0, 1].

For more details about Mahtematical Model, Dynamic Solution System, Par-
allelization and Computational Cost you canrefers to [7].
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4 Non-homogeneous Objects Simulation

In this section we introduce our new proposal, to simulate objetcs with differents
F.E. with more than one dentsity value.

Two important points in the simulation of elastic deformations in a three-
dimensional solid object made of a certain material, such as the precise definition
of the objects boundary and the application of forces on a precise region of the
boundary, require a greater precision in the definition of the object. This preci-
sion can be obtained in a very simple way: by decreasing the size of the elements
of the grid defining the deformable object. This would be a good solution if the
use of the application was aimed at animation techniques, but not at virtual
reality environments, where the desired real time computation would cease to
be feasible, since, by griding the object with a greater quantity of elements, the
increase in memory and computation time required to attain a solution are too
high for such a purpose.

One possible solution to the problem would be to use a progressive grid,
where the areas of the object that need a greater definition are grided with
finer finite elements, whereas the rest of the object can be made up of elements
with a greater dimension. This simple solution is not applicable to the model
represented here for two fundamental reasons:

– The progressive grid can only partly solve the problem of the increase in the
matrices in the system and the computation time of the final solution.

– On the other hand, the model presented here does not allow for the use of
a group of elements which do not have, at least, one of the faces which are
identical, which in part makes the progressive grid impossible.

All of this leads us to look for the solution to the problem in another direction,
since in our model, it is only possible to refine the boundary of the object to
a certain point. Thus, the solution could be to use the elements of the grid which
have a behaviour capable of defining the boundary of the object in a precise and
accurate way. That is, using finite elements which do not represent a uniform
behaviour throughout their whole domain. In this way, it would be feasible to
represent boundaries of any kind, since a cutting funtion can be defined which
would divide the finite element in two, where each of them would have a material
with different characteristics. In figure 1 we can see the definition of a 2D object
using a uniform grid with non-uniform finite elements. On the other hand, the
joint use of non-uniform grids and non-uniform finite elements, as far as the
characteristics of the material is concerned, would make it possible to define
a whole range of objects made up of different materials (layers, blocks, etc).

5 Objects with Grid Elements Made
of Different Materials

This type of grid would enable us to define obejcts made up of layers of different
materials.
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λ2,μ2

λ1,μ1

Fig. 1. Object where the spare part of the grid elements would be made up of
a very weak material or of one with little resistence to an external force

Fig. 2. Sequences of the deformation of an object with finite elements of two
different materials. The time instants represented from left to right and top to
bottom are: 0, 4, 6 and 10 seconds of the simulation

a

1

0

λ  ,   μb b

λ  ,   μa a

Fig. 3. Non-homogeneous finite element with two areas made of a different
material

As an example of how well this model works with this type of elements, we
will take an object made of two types of materials: hard rubber and soft rubber.
In figure 2 it can be observed that the object is made up of hard rubber (green)
but it has a series of zones at the top made up of another type of softer rubber
(blue). The object is fixed at the bottom and an external force defined by p =
(0,100,0) Pa is applied to its upper face (blue cubes in figure 2). This pressure
is applied for the ten seconds the simulation lasts. The initial result expected
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is that in the elements which have softer rubber, the incidence of the external
forces will be much greater, but the overall coherence of the behaviour of the
object must be maintained. In figure 2 it can be observed that the result of the
simulation is what we expected.

6 Objects which Have Non-homogeneous Finite Elements

With the aim of simplifying the problem, we will simulate deformations in objects
which have non-homogeneous finite elements as far as their Young Module and
Poisson Coefficient are concerned.

With the purpose of checking the validity of the strategy, we opted for the use
of elements with a cut in the Y plane of the elements domain and where each part
of this will be made up of a different material. In figure 3, a non-homogeneous
element of this type can be seen.

6.1 Changes in the Model

The general equation of the dynamic system (5) does not change at all, what will
change is the value of some of its components. Since the elasticity conditions are
the only ones to change, the only value of (equation 5) to undergo modifications
is tension matrix K. To obtain the values of matrix K: Taking into account the
fact that, in non-homogeneous elements, the parameters lambda and mu are not
constant throughout the whole of the integration domain; the expression of the
terms K (ϕi, ϕj) of tension matrix K would be as follows, the rest would be
calculated in an analogous way:

K (ϕi, ϕj) = (λa + 2μa)
∫
Ωa

∂ϕi
∂x1

∂ϕj
∂x1

dx1dx2dx3

+ μa

∫
Ωa

∂ϕi
∂x2

∂ϕj
∂x2

+
∂ϕi
∂x3

∂ϕj
∂x3

dx1dx2dx3 + (11)

(λb + 2μb)
∫
Ωb

∂ϕi
∂x1

∂ϕj
∂x1

dx1dx2dx3

+μb
∫
Ωb

∂ϕi
∂x2

∂ϕj
∂x2

+
∂ϕi
∂x3

∂ϕj
∂x3

dx1dx2dx3 ,

In this expression, the terms Ωa and Ωb correspond to the integration domains
of the two existing parts in a non-homogeneous finite element.
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Fig. 4. The time instants corresponding to 10, 20, 30 and 40 seconds of the
simulation of the deformation in a homogeneous rod are represented from left to
right and from top to bottom

7 Results and Experiments

7.1 An Elastic Non-homogeneous Simulation Example

The experiment will be carried out initially with a rubber-band type of material
with the aim of defining the base behaviour of this so as, in later experiments, to
introduce into the object some parts made of plywood material and to observe
the changes that are produced.

a) Simulation in an Homogeneous Rod For this experiment, we take a rod
such as that in figure 5 and fix its ends. The rod is subjected to the action of
the normal gravitational field and its behaviour is observed over 40 seconds. We
can see the result of the simulation in figure 4. The material used to carry out
the simulation has the following physical parameters:

– Density: 960 kg/m3.
– Damping: 1 s−1.
– Young’s Module: 0.35MPa.
– Poisson Coefficient: 0.45.

b) Simulation in a Half Rubber, Half Plywood Rod For this experiment,
we take a rod similar to the one in the above experiment, as far as its shape
and situation are concerned, but modifying the material it is made of, in such
a way that the left hand side of the rod is made of plywood (hypothetically high
density) and its right hand side of rubber. The rod is subjected to the action
of the normal gravitational field and its behaviour is observed over 40 seconds.
The materials used to carry out the simulation for both halves are:

Left side (plywood) right side (rubber)
Density : 960 kg/m3 Density : 960 kg/m3

Damping : 1 s−1 Amortiguación : 1 s−1

Y oung′sModule : 1800MPa Y oung′sModule : 0.35MPa
PoissonCoefficient : 0.32 PoissonCoefficient : 0.45
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Fig. 5. Rod with two halves made of different materials. The time instants
corresponding to 10, 20, 30 and 40 seconds of the simulation are represented
from left to right and top to bottom

In figure 5, we can observe the instants corresponding to 10, 20, 30 and
40 seconds of the simulation of the deformation, obtained after 260 seconds of
computation. In figure 5, it can be appreciated that, while the left hand side
behaves like plywood, the right hand side behaves like rubber. This would be
the case of an object made up of homogeneous finite elements of two types of
different materials.

8 Conclusions and Future Work

In this work we have implemented a 3D deformation dynamic model based on
the Theory of Elasticity which is capable of simulating deformations in three-
dimensional objects with non-homogeneous finite elements and of automatically
generating animations of such simulations. The capacities of this model make
it suitable for virtual reality uses where it is important to attain a solution in
real time, which is managed through the use of parallel programming techniques
and heuristics which simplify the computational cost associated to attaining the
solution of the model. This model uses a rectangular parallepiped grid of finite
elements that lets us make pre-computation values of matrices M & K. The main
contributions can be summed up in the following points:

– An application of deformations which implements a model of physical de-
formations has been obtained. The application is capable of generating by
itself simulations of objects from a few initial parameters introduced by the
user. What is more, all the software used in the development of the appli-
cation is of free use (public domain software) which, together with the fact
that it is based on the use of multiplatform libraries and on object oriented
programming techniques, make it a free, portable, modern system.

– We have posed and developed a new technique and implemented an appli-
cation of deformations which uses non-homogeneous finite elements, which
will make it possible in the future to adapt the model in order to simulate
deformations in objects with a complex geometry and material properties
without the need to increase the data load involved in the calculation.

The possibilities afforded by the work carried out as regards future lines of
research and development in the field of animation and virtual reality are varied.
Although it is true that in the near future it is worth highlighting the following:
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– By introducing collision detection techniques in the model, it will be possible
to simulate elastic deformations in scenes made up of different objects.

– To increase the capacities of the model in order to simulate rips/tears by
incorporating techniques which enable us to control the rip/tear tension in
the materials used to represent the objects, which opens the doors to the
automatic generation of a wide range of visual effects.

– To adapt the model implemented in order to generate deformations in parts
of the human body with the aim of producing realistic animations in this in
an automatic way.
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Computer Vision Center-Dept. Informàtica
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Abstract. Two different approaches to dimensionality reduction tech-
niques are analysed and evaluated, Locally Linear Embedding and a
modification of Nonparametric Discriminant Analysis. Both are consid-
ered in order to be used in a face verification problem, as a previous step
to nearest neighbor classification. LLE is focused in reducing the dimen-
sionality of the space finding the nonlinear manifold underlying the data,
while the goal of NDA is to find the most discriminative linear features
of the input data that improve the classification rate (without making
any prior assumption on the distribution).

1 Introduction

Many problems in Computer Vision often use dimensionality reduction tech-
niques to obtain more compact representations of the input data. The advan-
tages of dimensionality reduction are the compression of the data, and the fact of
simplifying decisions making in a higher dimensional level (reducing the amount
of parameters to estimate in a classifier, etc..). Dimensionality reduction can be
faced under two points of view: focusing the algorithm to find a low dimensional
space to embed the data, or focusing the method to find the most discriminative
features and reduce dimensionality at the same time. In this paper we will com-
pare two different techniques which belong to these two classes, LLE and NDA,
in order to be applied to a face verification scheme.

Reduction of data dimensionality applied to face classification has been sub-
ject of deep research in the last years. Some of the most spread out techniques
are Principal Component Analysis and eigenfaces ([1, 2]), where the goal is to
find the low dimensional representation that preserves the maximum amount of
input data variance. In the same way Linear Discriminant Analysis (LDA [3])
tries to find the most discriminative features in the dimensionality reduction,
but it has some limitations, basically LDA assumes Gaussian densities and the
resulting dimensionality is upper bounded by the number of classes. These al-
gorithms are linear projections of the input data in low dimensional spaces,
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but sometimes they are not completely efficient for the classification of complex
structures. Last years, some nonlinear techniques have appeared, like Isomap [4]
or LLE ([5, 6]). Isomap technique takes into account the geodesic distances be-
tween input points to improve the data embedding. The scope of LLE will be
explained in next section with more detail. In section 3 we will introduce the
Nonparametric Discriminant Analysis approach, and a modification of the orig-
inal algorithm. In section 4 we will show the experiments in face verification, to
compare both techniques (LLE and NDA). The final conclusions will we exposed
in section 5.

2 Dimensionality Reduction Techniques

2.1 Locally Linear Embedding (LLE)

The goal of LLE is to find a mapping from a high dimensional space to a low
dimensional one. Sometimes the high dimensional data lies in a nonlinear man-
ifold which can be represented using less dimensions than the dimensionality of
the original points. To reach this objective, LLE takes into account the restric-
tion that neighborhood points in the high dimensional space must remain in the
same neighborhood in the low dimensional space, and placed in a similar relative
spatial situation (it doesn’t change the local structure of the nearest neighbors
of each point).

Algorithm Let’s suppose that we have N n×m training images, the inputs to
the LLE algorithm will be N d-dimensional vectors, Xi (d = n×m). So the LLE
algorithm is divided in 3 steps. In the first step, the nearest neighbors of each
point are found. In the second step the goal is to capture the local geometry
of the input data, using a set of W coefficients per each point, corresponding
to the weights that best reconstruct the vector from its K nearest neighbors
(usually using Euclidean distance). So the weights Wij must minimize the error
reconstruction equation:

ε(W ) =
N∑
i=1

|−→Xi −
K∑
j=1

Wij
−→
Xj|2 (1)

To find the vectors that minimize this equation, a least-squares problem must
be solved. For more details see [6].

In the last step the coordinates of each point in the low dimensional space
d′ � d are computed as the vectors Yi that best minimize the equation:

θ(Y ) =
N∑
i=1

|−→Yi −
K∑
j=1

Wij
−→
Yj |2 (2)

Here the weights found during the previous stage are constant, and we want
to find the low dimensional outputs −→Yi that best reconstruct each vector using
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its K nearest neighbors and the weights of the second step, which capture the
local geometric properties of each point in the original space. So the equation to
find the output vectors is independent of the input vectors −→X in the final step.
To find efficiently the vectors −→Yi an eigenvector problem must be solved. A new
sparse matrix M is created and defined as:

Mij = δij −Wij −Wji +
K∑
k=1

WkiWkj (3)

It can be proved that the output vectors −→Yi are the d′+1 eigenvectors of the
matrix M associated to the lowest eigenvalues (see [6, 5] for more details).

2.2 Projections of the Test Vectors

As it has been shown, the LLE algorithm is a globally nonlinear technique.
This property has some advantages when finding the underlaying manifolds, but
there’s an important drawback when a new point −→u is entered as a new input
to the system. An approximation of the mapping is necessary in order to avoid
rerunning the algorithm each time (solving the expensive eigenvector problem
each time). Parametric (probabilistic) and non-parametric models have been
used to solve this problem (see [6, 5]).
What we propose here is to use a neural network approach to learn the mapping,
using a multilayer perceptron network to solve the regression problem. The idea
is to run the LLE algorithm with a set −→X of N training vectors (so the network
must haveN inputs), in order to obtain their projection−→Y in the low dimensional
space. Then we train the MLP using X as inputs and −→Y as desired outputs.
As a previous step all the vectors must be normalized to the range [-1,1]. The
intrinsic characteristics of the neural network can depend on the problem, but in
our experiments we have seen that a MLP with 2 hidden layers (with 15 and 10
neurons each one) is enough to capture the nonlinear dimensionality reduction.
The projection of new input vectors in the low dimensional space becomes easy,
it’s only necessary to run a forward step in the multilayer perceptron in order
to obtain the reduced vector.

3 NDA

As we have seen LLE can be considered a dimensionality reduction method that
preserves the local neighborhood structure of points. NDA (Nonparametric dis-
criminant analysis) algorithm also tries to find a low dimensional space of the
input data, but it takes into account labels too, so the main goal of NDA is
to perform a dimensionality reduction focused on getting the most discrimina-
tive features. We propose a modification of the classic NDA (as is presented
by Fukunaga [8]). In the next sections, we will introduce the basis of discrimi-
nant analysis and classic NDA, and our modification of the original algorithm
(designed to improve the Nearest Neighbor performance).
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Fig. 1. Example of MLP projection in a 2-class problem (the results of LLE are
two clouds of points corresponding to each class). 500 points were used to train
LLE and the MLP (plotted as dots). Other different 500 points were projected
using the MLP (plotted as triangles). As can be seen, the MLP reaches a good
approximation of LLE projection

3.1 Linear Discriminant Analysis

In Linear Discriminant Analysis (see [3]) the goal is to find the linear trans-
formation W to project the input data −→X (N d-dimensional vectors) in a low
dimensional space d′, and find the features that best separate the data in dif-
ferent classes. To reach it, two matrices are needed, the scatter of the vectors
between different classes Sb, and within class Sw. The algorithm to project the
original data to the reduced space consist of three steps:

– First, the data is whitened with respect to Sw projecting the sample vectors
with the matrix Λ−1/2ΦT , where Φ is the eigenvector matrix of Sw and Λ
the corresponding eigenvalues.

– Then the Sb matrix is computed using the whitened data. A new matrix
Ψd′ = [ψ1, . . . , ψd′ ] is created with the d’ eigenvectors of largest eigenvalue
of the matrix Sb.

– The final linear transform to project the input data, is refined as A =
ΨT
MΛ−1/2ΦT .

The main limitation of LDA is that it assumes gaussianity on the class-
conditional distributions, so the efficiency of the algorithm decreases when the
problem requires to classify complex non gaussian structures.

3.2 Nonparametric Discriminant Analysis

To solve this problem, NDA uses a nonparametric between-class scatter matrix
not based in differences among class means. This matrix is constructed using
vectors that point locally to another class.
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– For each sample x its extraclass nearest neighbor is defined as xE = {x′ ∈
Lc/‖x′ − x‖ ≤ ‖xk − x‖, ∀xk ∈ Lc}. The intraclass nearest neighbors are
defined in similar way xI = {x′ ∈ Lc/‖x′ − x‖ ≤ ‖xk − x‖, ∀xk ∈ Lc}.

– The next step is define the extra-class and intra-class differences as: xE

ΔE = x− xE and ΔI = x− xI .
– The non-parametric between-class matrix is defined as:

Sb =
1
N

N∑
n=1

wn(ΔE
n )(ΔE

n )T (4)

where ΔE
n is the extraclass difference of the sample n, and Wn is a sample

weight that deemphasizes samples which are far from the boundaries.

wn =
min{‖ΔE‖α, ‖ΔI‖α}
‖ΔE‖α + ‖ΔI‖α (5)

where α ∈ (0,∞) is a control parameter to adjust how fast the sample
weights will fall from 0.5 to 0, according to the distance of the sample to the
boundary.

– The within-class scatter matrix is chosen in the same way as in LDA:

Sw =
1
C

C∑
c=1

Σc (6)

Finally, sample data is projected in the same way as in LDA algorithm.
Our modification of classic NDA ([9])suggest to use a different within-class

scatter matrix, in a nonparametric form too (while between-class scatter matrix
remains the same as (4)):

Sw =
N∑
n=1

ΔI
nΔ

I
n

T
(7)

In our experiments we’ve seen that this modification in the whitening of the
data improves the nearest neighbor classification with respect to classic NDA,
because second-order statistics measuring the mean distance to the mean, fail
to represent classes with complex distributions.

4 Experiments

4.1 Acquisition Protocol

Our experimental data consist of a set of 3000 face images of 50 different peo-
ple, acquired in a fixed location of the Computer Vision Center building (in the
principal access). There were no restrictions in users pose or illumination con-
ditions (images were taken all day long). Images where captured in a natural
and non controlled environment: they were taken during different days, subject
to strong light changes, there were not the same number of faces of each person
and faces can be slightly rotated, smiling, and other similar gesture effects. Each
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Original Data Covariance Whitening NonParametric Whitening

(a) (b) (c)

Fig. 2. (a)Original data from a toy dataset (b)Whitened data using covari-
ance matrix (c)Whitened data using our nonparametric modification. As can
be seen in (c) the distribution of the intra-class nearest neighbor distances are
normalized, while the whitening using (6) fails to reach this goal

(a) Original (b) Normalized

Fig. 3. (a) Example of 56 capture samples eye-centered (b) The same samples
after light normalization

image was preprocessed by a face detector, which aligns and centers the eyes of
each face image, and scales the image to a normalized size. Light normalization
consisting of ridges and valleys detection is performed. The resulting image is
scaled and cropped to a 64×64 picture, which is reshaped to a 4096-dimensional
vector.

4.2 Training the System

The set of 3000 images is divided in two subsets of 1000 train images and 2000
test images. The train set is composed of 250 images from the same person
(subject of verification) and 750 images randomly selected, and the test set is
composed of 200 images from the same person and the remaining 1800 images.

Our experiments use a LLE projection to a low dimensional space, a NDA
projection and a standard PCA (see [1] for more details). To project the test
points onto the LLE space a MLP Neural Network (as it was described in pre-
vious sections) has been used.
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4.3 Tests

Our goal is to find the best dimensionality reduction technique to use in the
problem of verification of face images. In this kind of problems there are two
different ratios to determine the efficiency of the system: the percentage of faces
wrongly accepted as the target person (so incorrectly authorized), called false
acceptance, and the percentage of faces incorrectly rejected (false rejection). In
the experiments we have analyzed both ratios as a function of the final dimension.
Once each image vector has been projected onto the reduced space, we have used
the nearest neighbor as the classification procedure to get the labels of the test
data. The use of the NN classification is justified because we have a lot of images
of each person, and both algorithms tested are designed to work well using NN.

As can be seen in Fig. 4 both techniques improve the PCA results. LLE ratios
are slightly better than NDA in false acceptance (where we obtain 93.54 per-
cent using nearest neighbor in the original space ), what suggests that nonlinear
techniques are more appropriate to deal with this kind of problems, where im-
ages often have gesture, rotations, and illumination. The main drawback of NDA
is that it usually decreases the accuracy when the number of different classes
increases (more than 50 different people have been used in the experiments).
Another important drawback of NDA is that it is not very robust in presence
of noise in the images. This inconvenient can be solved applying a preprocessing
step, typically a PCA, to eliminate the noise. In our experiments the dimension-
ality has been reduced (using PCA) from 4096 to 1000 before the application of
the discriminant analysis.

An important advantage of LLE is that it reaches good recognition scores,
even in very low dimensions (2-dimensional space).

The results in false rejection are very similar in both techniques, and remain
very close to Euclidean distance classification in the original space (99.7 percent).

5 Conclusions

In this paper two different approaches to dimensionality reduction have been
shown (LLE focused on preserving the spatial relation between points in the
embedding and NDA focused on finding the best discriminative features ). As we
have seen, LLE can be a good candidate algorithm for face verification problems.
The fact that LLE is able to reach almost the best ratios at very low dimensional
space, allows additional advantages, if a more sophisticated classifier is used
(Bayesian classifier), because the number of parameters to estimate decreases
drastically. Another interesting application is the easy visualization of input
data, in a 2-3 dimensional space (losing not much information).

The results obtained with LLE suggest that other techniques could be com-
bined with LLE to improve the ratios, and to be applied to the problem of
face verification, where the ratios of false acceptance should be as close to 0 as
possible. Boosting algorithms are been studied in order to reach this goal.
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(a) False acceptance (b)False rejection

Fig. 4. (a) False acceptance as a function of dimensionality reduction (we reach
the maximum ratio at 99.5 percent using LLE) (b) False rejection as a function
of dimensionality reduction (using PCA we reach the maximum at 99.96 percent)

On the other side, we have showed that our improvement of Nonparametric
Discriminant Analysis improves the classic PCA algorithm, and can be very
useful in finding the most discriminative features.
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Abstract. This paper deals with the problem of reconstructing a high-
resolution image from an incomplete set of undersampled, blurred and
noisy images shifted with subpixel displacement. We derive mathematical
expressions for the calculation of the maximum a posteriori estimate of
the high resolution image and the estimation of the parameters involved
in the model. We also examine the role played by the prior model when
this incomplete set of low resolution images is used. The performance of
the method is tested experimentally.

1 Introduction

High resolution images can, in some cases, be obtained directly from high preci-
sion optics and charge coupled devices (CCDs). However, due to hardware and
cost limitations, imaging systems often provide us with only multiple low reso-
lution images. In addition, there is a lower limit as to how small each CCD can
be, due to the presence of shot noise [1] and the fact that the associated signal
to noise ratio (SNR) is proportional to the size of the detector [16].

Over the last two decades research has been devoted to the problem of recon-
structing a high-resolution image from multiple undersampled, shifted, degraded
frames with subpixel displacement errors (see [3] for a review). Most of the re-
ported work addresses the problem of estimating an LM × LN high resolution
image from at least L × L low resolution images of size M × N , that is, when
the number of available low resolution images is at least equal to L2, where L
is the magnifying factor. In Molina et al. [12] a method for simultaneously es-
timating the high resolution image and the associated parameters within the
Bayesian model is presented. Kim et al. [9] explore the conditions the shifts of
the L × L low resolution images have to satisfy in order to solve the high reso-
lution problem, at least from the least squares perspective. Elad and Feuer [6]
� This work has been partially supported by the “Comisión Nacional de Ciencia y
Tecnoloǵıa” under contract TIC2000-1275.
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study the same problem when combining Bayesian, Projection onto Convex Sets
and Maximum Likelihood methodologies on high resolution problems. Baker and
Kanade [2] also examine the impact of increasing the number of low resolution
images, when proposing an alternative approach to the super resolution prob-
lem. However, not much work has been reported on the role played by the prior
model when the system is incomplete, that is, when we have less than L×L low
resolution images or when the shifts do not satisfy the conditions in [9] or [6].
In our previous work [10] we proposed a new method to solve the high resolu-
tion problem from an incomplete set of low resolution images when no blurring
was present in the observation process. The method was based on the general
framework for frequency domain multi-channel signal processing developed by
Katsaggelos et al. in [8] (a formulation that was also later obtained by Bose and
Boo [4] for the high resolution problem).

In this paper we extend the approach in [10] by considering that the low
resolution images are also blurred, a case that frequently appears in Astronomy
(see [11] for instance) and remote sensing. We also propose a method for esti-
mating the high resolution image and the parameters associated to the model
when blurring is present in the low resolution observations. The method per-
forms well even when very few low resolution blurred images are available and
they have different noise characteristics. Finally, we examine how the prior model
compensates for the lack of information in the incomplete noisy and blurred low
resolution observation set.

The rest of the paper is organized as follows. The problem formulation is
described in section 2. In section 3 the degradation and image models used in
the Bayesian paradigm are described. The application of the Bayesian paradigm
to calculate the MAP high resolution image and estimate the hyperparameters
is described in section 4. Experimental results are described in section 5. Finally,
section 6 concludes the paper.

2 Problem Formulation

Consider a camera sensor with N1 × N2 pixels and assume that we have a set
of q shifted images, 1 ≤ q ≤ L × L. Our aim is to reconstruct an M1 × M2

high resolution image with M1 = L × N1 and M2 = L × N2, from the set of
low-resolution observed images.

The low resolution sensors are shifted with respect to each other by a value
proportional to T1/L× T2/L, where T1 × T2 is the size of each sensing element
(note that if the sensors are shifted by values proportional to T1 × T2 or q <
L × L, the high-resolution image reconstruction problem becomes singular). In
this paper we assume that the normalized horizontal and vertical displacements
are known (see [4, 13] for details). When the displacements are unknown see, for
instance, [7] and [17] for their estimations.

Let gl1,l2 be the (N1×N2)×1 observed low resolution image acquired by the
(l1, l2) sensor. Our goal is to reconstruct f , the (M1 ×M2)× 1 high resolution
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image, from a set of q low resolution images gl1,l2, with 1 ≤ q ≤ L2. We will
denote by I, the set of indices of the available low resolution images.

The process to obtain the observed low resolution image by the (l1, l2) sensor,
gl1,l2, from f can be modeled as a two stages process as follows. In the first stage,
the optical distortion in the observation process is represented by Bl1,l2, the
(M1×M2)×(M1×M2) point spread function defining a systematic blur, assumed
to be known, due , for example, to motion or out of focus blurring, defects in
the camera optics, etc. The second stage models the CCD pixel resolution. Let
H l1,l2 be an (M1×M2)× (M1×M2) integrating matrix that represents the way
a set of pixels in the high resolution image affects each low resolution pixel. In
this paper we use an H l1,l2 representing a linear space-invariant blurring system
with impulse response

hl1,l2(u, v) =
{

1
L2 u, v = −(L− 1), . . . , 0
0 otherwise . (1)

Let now Dl1 and Dl2 be the 1-D downsampling matrices defined by

Dl1 = IN1 ⊗ etl , Dl2 = IN2 ⊗ etl , (2)

where INi is the Ni × Ni identity matrix, el is the L × 1 unit vector whose
nonzero element is in the l-th position and ⊗ denotes the Kronecker product
operator.

Then for each sensor the discrete low-resolution observed image gl1,l2 can be
written as

gl1,l2 = Dl1,l2H l1,l2Bl1,l2f + nl1,l2 = W l1,l2Bl1,l2f + nl1,l2, (3)

where Dl1,l2 = Dl1⊗Dl2, denotes the (N1×N2)×(M1×M2) 2D downsampling
matrix and nl1,l2 is modeled as independent white noise with variance β−1l1,l2. We
denote by g the sum of the upsampled low resolution images, that is,

g =
∑
u,v∈I

Dt
u,vgu,v. (4)

Note that the only, but important, difference between the model in equation 3
and the one used in [10] is the presence of additional blurring in the observation
process.

3 Degradation and Image Models

From Eq. 3, the probability density function of gl1,l2, the (l1, l2) low resolution
image, with f the ‘true’ high resolution image, is given by

p(gl1,l2|f , βl1,l2) ∝ 1
Z(βl1,l2)

exp
[
−βl1,l2

2
‖ gl1,l2 −W l1,l2Bl1,l2f ‖2

]
, (5)

where Z(βl1,l2) = (2π/βl1,l2)(N1×N2)/2 and βl1,l2 the inverse of the noise variance.
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Since we have multiple low resolution images, the probability density function
of g given f is

p(g|f , β) =
∏

(l1,l2)∈I
p(gl1,l2|f , βl1,l2)

∝ 1
Znoise(β)

exp

⎡⎣−1
2

∑
(l1,l2)∈I

βl1,l2 ‖ gl1,l2 −W l1,l2Bl1,l2f ‖2
⎤⎦ ,(6)

where β = (βl1,l2|(l1, l2) ∈ I), and Znoise(β) =
∏

(l1,l2)∈I Z(βl1,l2).
As prior model for f we use a simultaneous autoregression (SAR) [15], that

is
p(f |α) =

1
Zprior(α)

exp{−1
2
α f tCtC f}, (7)

where the parameter α measures the smoothness of the ‘true’ image, Zprior(α) =
(
∏

i,j λ
2
ij)
−1/2(2π/α)(M1×M2)/2 and λij = 1 − 2φ(cos(2πi/M1) + cos(2πj/M2)),

i = 1, 2, . . . ,M1, j = 1, 2, . . . ,M2 and C is the Laplacian operator.

4 Bayesian Analysis

Having defined the degradation and image models, the Bayesian analysis is per-
formed to estimate the hyperparameters, α and β, and the high-resolution image.
In this paper we use the following two steps:

Step I: Estimation of the hyperparameters

α̂ and β̂ = (β̂l1,l2|(l1, l2) ∈ I) are first selected as

α̂, β̂ = argmax
α,β

Lg(α, β) = argmax
α,β

log p(g|α, β), (8)

where p(g|α, β) =
∫
f
p(f |α)p(g|f , β)df .

The solution to this equation is obtained with the EM-algorithm with X t =
(f t, gt) and Y = g = [0 I]tX .

Note that although different methods have been proposed for the estimation
of the parameters in high resolution problems (see, for instance, [14, 5]), those
works assume the same noise variance for all the low resolution observations. In
the framework we are proposing, these variances may be different.

Step II: Estimation of the high-resolution image

Once the hyperparameters have been estimated, the estimation of the high-
resolution image, f (α̂,β̂), is selected to minimize

α̂ ‖ Cf ‖2 +
∑

(l1,l2)∈I
β̂l1,l2 ‖ gl1,l2 −W l1,l2Bl1,l2f ‖2, (9)
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which results in

f (α̂,β̂) = Q
(
α̂, β̂

)−1 ∑
(l1,l2)∈I

β̂l1,l2B
t
l1,l2W

t
l1,l2gl1,l2, (10)

where Q(α̂, β̂) = α̂CtC +
∑

(l1,l2)∈I β̂l1,l2B
t
l1,l2W

t
l1,l2W l1,l2Bl1,l2.

Note that the prior model in Eq. 7 plays an important role in the estimation
of the high-resolution image and the hyperparameters. If we examine the matrix
Q(α, β) in Eq. 10 we note that when fewer than L×L low resolution observations
are available or when the shifts in those low resolution images do not satisfy the
conditions in [9] and [6] this matrix would not be invertible without the presence
of C. It is therefore important to examine the quality of the reconstruction and
also the accuracy of the estimated hyperparameters as a function of the number
of low resolution observations, q. This is done experimentally, as described in
detail in the next section.

It is important to note that the calculations involved in finding α̂, β̂ and
f (α̂,β̂) can be performed using the general framework for frequency domain multi-
channel signal processing developed in [8].

5 Experimental Results

A number of experiments were performed with the proposed algorithm over a set
of images to evaluate its behavior as a function of the number of available low
resolution images. Results are presented in Fig.1.

The performance of the proposed algorithm was evaluated by measuring the
peak signal-to-noise ratio (PSNR) defined as PSNR= 10 × log10[M1 × M2 ×
2552/ ‖ f − f (α̂,β̂) ‖2], where f and f (α̂,β̂) are the original and estimated high
resolution images, respectively.

According to Eq. 3 the high resolution image in Fig. 1a was blurred using
a motion blur of length 10. Then, the integrating function in Eq. 1 was ap-
plied to the blurred image obtaining u = HBf . This high resolution image,
u, was downsampled with L = 4, thus obtaining a set of 16 low resolution im-
ages, ul1,l2(x, y) = u(L1x + l1, L2y + l2), x, y = 0, . . . , M1

L − 1, l1, l2 = 0, . . . , 3.
Gaussian noise was added to each low resolution image to obtain three sets
of sixteen low resolution images, gl1,l2, with 20, 30 and 40dB SNR. The noise
variances for the 30dB set of images are shown in Table 1.

In order to test the performance of the proposed algorithm we ran it on dif-
ferent sets of q randomly chosen low resolution images with 1 ≤ q ≤ 16. For
comparison purposes, Fig. 1b depicts the zero-order hold upsampled image of
g0,0 for 30dB SNR (PSNR=13.68dB) while the bilinear interpolation of g0,0 is
shown Fig. 1c (PSNR=14.22dB). The estimated high-resolution images using 1,
2, 4, 6 and 16 low resolution images are depicted in Fig. 1d–h, respectively. A vi-
sual inspection of the resulting images shows that the proposed method clearly
outperforms zero-order hold and bilinear interpolation even when only one low
resolution input image is used and the quality of the high resolution estimated
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Table 1. Noise variances for the low resolution image set with SNR of 30dB

β−1
l1,l2 0 1 2 3

0 3.44 3.44 3.45 3.46
1 3.44 3.44 3.45 3.46
2 3.42 3.42 3.43 3.43
3 3.42 4.42 3.43 3.43

a b c d

e f g h

Fig. 1. (a) original image (b) zero order hold, (c) bilinear interpolation, (d)-(h)
results with the proposed method using 1, 2, 4, 6, and 16 low resolution images

image increases with the number of images. Note also that the visual quality
of the estimated high resolution images obtained using 6 and 16 low resolution
input images (depicted in Fig. 1g and h, respectively) are almost indistinguish-
able, which means that the prior model assists in accurately recovering the high
resolution image even when we have little information.

The estimated noise parameters, β̂, using the proposed algorithm on the
30dB low resolution image set are shown in Table 2. From our experiments we
conclude that the proposed method produces accurate estimations for all low
resolution image noise variances especially when the number of input images is
high. The proposed algorithm also provides good results when only a few input
images are considered, even when only one low resolution input image is used.

PSNR evolution against the number of low resolution input images is shown
in Fig. 2 for all the 20, 30 and 40dB low resolution images sets. Numerical results
show that the proposed method provides a clear improvement even in the case
when severe noise is present, although higher improvements are obtained as the
noise decreases. Note that the proposed algorithm always outperforms bilinear
interpolation even when only one image is used. For example, for the 30dB SNR
low resolution images set, the PSNR for the reconstructed image using just one
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Table 2. Estimated noise variances for the low resolution image set with SNR
of 30 dB

1 β̂−1
0,0

image 4.46

2 β̂−1
0,0 β̂−1

0,1

images 3.97 3.56

4 β̂−1
0,0 β̂−1

0,1 β̂−1
2,2 β̂−1

3,1

images 3.38 3.50 4.72 4.54

6 β̂−1
l1,l2 0 1 2 3

images 0 3.43 3.38 N/A N/A
1 N/A N/A N/A 4.25
2 N/A N/A 3.46 N/A
3 N/A 4.47 3.64 N/A

16 β̂−1
l1,l2 0 1 2 3

images 0 3.48 3.41 3.52 3.44
1 3.41 3.43 3.49 3.43
2 3.34 3.25 3.53 3.41
3 3.48 3.56 3.44 3.42

14

16

18

20

22

24

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

PS
N

R
 (

dB
)

number of low resolution images

20dB set
30dB set
40dB set

30dB g0,0 bilinear int.

Fig. 2. PSNR evolution with the number of low resolution images

low resolution input image is equal to 16.74dB (see Fig. 1d), and it increases
monotonically to 21.96dB with the number of images. Note also that most of
the improvement is achieved when a low number of input images is used. This
makes clear the importance of the prior model in the information recovering
process.

6 Conclusions

A new method to estimate a high resolution image from an incomplete set of
blurred, undersampled low resolution images has been proposed. The approach
followed can be used with any number of low resolution images from 1 to L2,
since the prior model accurately recovers the high resolution image even in the
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case where just one or very few input images are provided. The proposed method
has been validated experimentally.
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Abstract. A Procedure for fast pattern matching in protein sequences is
presented. It uses a biological metric, based on the substitution matrices
as PAM or BLOSUM, to compute the matching. Biological sensitive pat-
tern matching does pattern detection according to the available empirical
data about similarity and affinity relations between amino acids in pro-
tein sequences. Sequence alignments is a string matching procedure used
in Genomic; it includes insert/delete operators and dynamic program-
ming techniques; it provides more sophisticate results that other pattern
matching procedures but with higher computational cost. Heuristic pro-
cedures for local alignments as FASTA or BLAST are used to reduce this
cost. They are based on some successive tasks; the first one uses a pat-
tern matching procedure with very short sequences, also named k-tuples.
This paper shows how using the L1 metric this matching task can be effi-
ciently computed by using SIMD instructions. To design this procedure,
a table that maps the substitution matrices is needed. This table defines
a representation of each amino acid residue in a n-dimensional space of
lower dimensionality as possible; this is accomplished by using techniques
of Multidimensional Scaling used in Pattern Recognition and Machine
Learning for dimensionality reduction. Based on the experimental tests,
the proposed procedure provides a favorable ration of cost vs matching
quality.

Keyword: Pattern Matching, Biological Pattern Analysis, Sequence
Alignments, Multidimensional Scaling, SIMD Processing.

1 Introduction

The fast growing of information contained in the biological databases[2] requires
more efficient processing systems to find functionality and meaning in the DNA
and protein sequences. More efficient systems are obtained by hardware and
architectural improvements, and also by defining more efficient computational
procedures. Artificial Intelligence, Pattern Recognition and Machine Learning
techniques can provide additional approaches to allow better computational per-
formances in Gemomic related systems[14]. This paper uses Pattern Recognition
and Machine Learning techniques applied in Bioinformatics[4] to define a match-
ing procedure to get some architectural improvements in alignment procedures of
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biological sequences. These architectural improvements are initially introduced
for multimedia and information retrieval applications, but by means of special
software design they can also be used in genomic related computations.

Single Instruction Multiple Data(SIMD) instructions are included in most mi-
croprocessors of low cost computer systems, as Intel and AMD. They can be used
to speed up workstations and servers in Genomic, but special designs are needed
because available compilers do not take advantage of these instructions for gen-
eral software. Modern computer items as cache hierarchy, memory access and
SIMD processing upgrade the performance of generic software, but additional
increase of the power in genomic based procedures can be obtained if they are de-
signed according to the above processor characteristics[6]. Some works have dealt
with the use of parallel computation for sequence analysis[13, 24], and also with
the use of SIMD instructions in the improvements of local alignments[20, 19].
However, this work presents a process for the first stages of some local align-
ment procedures. The proposal requires the computation of some tables to map
the amino acid residues in a n-dimensional space according to the biological
properties represented in the score or substitution matrices, as PAM[8] and
BLOSUM[11].

The search of local alignment between biological sequences is one of the
most used tools in discovering the functional and evolutionary similarities. The
Smith-Waterman procedure[23], based on dynamic programming, has the high-
est biological significance. However, its computational cost is greater than other
heuristics procedures as FASTA[18] and BLAST[1] which have lower computa-
tional cost having a high level of biological significance. The first stage of both
FASTA and BLAST is the searching of very short pre-coded sequences, named
k-tuples, in the sequences included in the biological databases. The matching
of k-tuples, named ktup in FASTA and w-mers in BLAST, between a query
sequence and the database can be efficiently computed by information retrieval
procedures.

However instead of naive ASCII code matching, a n-dimensional code match-
ing based on the biological information contained in the score or substitution
matrices is proposed in this paper. The information retrieval procedure takes
advantage of two architectural improvements of modern microprocessors: par-
allel computation with multiple data processing units, and sequential memory
access which increases the cache throughput. This paper present the process to
map the amino acid residues in a virtual meaning less n-dimensional space. This
is accomplished by non-linear dimensionality reduction methods used in Mul-
tidimensional Scaling(MDS)[9, 10, 15, 3, 22] which are mainly used in Pattern
Recognition and Machine Learning for feature selection and also for visualization
of high dimensional data sets.
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2 Pattern Matching of k-Tuples

An efficient procedure for pattern matching of k-tuples is proposed. The dis-
tance D(U, V ) between two vector U and V in RM based on the L1 norm is
defined as:

D(U, V ) =
M∑
i=1

| Ui − Vi | (1)

The Intel IA-32 computer architecture includes an instruction to compute
this distance with M = 8 in a single system clock cycle. The norm for M = 8×m
also can be fast computed from the previous. The continuous increasing of micro-
processor clock frequency provides a powerful method to speed up many of data
processing tasks which can be re-formulated to fit in a L1 norm. This instruc-
tion is part of the MMX instruction set included to improve the performance of
multimedia, text retrieval and signal processing applications. Most of problems
related with sequence analysis are based on score matrices to model the amino
acid distances and similarities; this is not an efficient choice to use the power that
current hardware provides. If A is the amino acid symbols set, instead of using
a score matrix s(a, b); a, b ∈ A, a distance based on norm L1 can be required:

DX(a, b) =
n∑
i=1

| Xi(a)−Xi(b) | (2)

where X(a) is a n-dimensional vector which is the representation of the amino
acid, andDX(a, b) is the desired distance. In raw text searching of query sequence
in a biological database, this vector is the 1-dimensional ASCII code of the
residue symbol. However, this is a too simplistic representation of the amino acid
properties which ignores the biological meaning and the affinity relations. The
similarity relations of amino acid require the introduction of a representation
in a multidimensional space with the lowest dimensionality as possible. This
representation must contain the biological information of similarity which is
gathered in the substitution matrices. PAM and BLOSUM matrices are defined
from statistical properties related with residues substitutions from evolutionary
or blocks alignments. They are nor distance neither similarity functions. They are
score factors which verifies: s(a, b) = s(b, a) and also generally: s(a, a) ≥ s(a, b).
From a score matrix several distance functions, d(a, b), can be proposed; the
considered in this paper is:

d(a, b) = s(a, a) + s(b, b)− 2s(a, b) (3)

This verifies the symmetrical property: d(a, b) = d(b, a), is lower bounded:
d(a, b) ≥ 0 and also verifies: d(a, a) = 0, but is not a metric. When is verified
that s(a, a) > s(a, b), it is also verified that if d(a, b) = 0 it must be: a ≡ b.
The triangular properties is not verified in the general case, thus the proposed
function is a distance, but not a metric one. This distance has also a probabilistic
expression when is computed from the PAM and BLOSUM substitution matri-
ces. Both are obtained by means of a probabilistic ratio obtained from different
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empirical environments. In these cases, the score matrix and the distance are
defined as:

s(a, b) =
1
λ

log
p(a, b)
papb

d(a, b) = − 2
λ

log
p(a, b)√

p(a, a)p(b, b)
(4)

where p(a, b) is the probability of substitution between two residues, pa term is
defined from the p(a, b), and λ is a suitable parameter. The score of a k-tuple
of two sequences U and V is computed in the alignment procedures[23, 16] by
using substitution matrices as:

s(U, V ) =
k∑

j=1

s(uj , vj) (5)

where u(j) and v(j) correspond to the amino acid in the k-tuple. If the distance
of this k-tuple, d(U, V ), is defined as: d(U, V ) = s(U,U) + s(V, V )− 2s(U, V ), it
can be computed as:

d(U, V ) =
k∑

j=1

d(uj , vj) � DX(U, V ) =
k∑

j=1

n∑
i=1

| Xi(uj)−Xi(vj) | (6)

If d(a, b) can be computed by DX(a, b) with a reduced error. This last is a L1

norm with M = n × k. Due to hardware constraints, the optimal computation
can be achieved when n × k = 8 ×m. The high k value reduces the sensibility
whereas the low k value implies a lower significative; BLAST uses k = 3, 4, 5, to
compute the hits or initial alignment clues. The k-tuple matching between two
sequences is computed in this paper as:

T (h, l) =
k∑

j=1

n∑
i=1

| Xi(uh+j−1)−Xi(vl+j−1) | (7)

2.1 Multidimensional Scaling

A problem which must be solved is how compute DX(a, b) as a good approxima-
tion of d(a, b); this requires the computing of the vector set: X(a), a ∈ A. The
Sammon method [21] is used to achieve this goal; it provides a good ratio of re-
sult quality to computational complexity[15, 3, 22]. It maps a distance function
to a reduced dimensionality space based on the minimization of an objective
function assigning to each amino acid tentative coordinates. These coordinates
are meaning less, and they are useful only to compute the distance. The Sammon
method is based on the minimization of a non-lineal goal function related with
the error between the original distances and the tentative ones, consequently
several solutions can be obtained if some local minimum exists. The procedure
requires the minimization of the goal function S(X) which can be assimilated
to a relative error of the mapping process:

min
X

S(X) =

∑
a

∑
b<a

[DX (a,b)−d(a,b)]2
d(a,b)∑

a

∑
b<a d(a, b)

(8)
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while the relative error is compute as:

E(X) =
2

N(N − 1)

∑
a

∑
b<a

[DX(a, b)− d(a, b)]2

d2(a, b)
(9)

where N is the amino acid number. The X solution is not unique due to the
geometrical transformations that preserve the distance DX . For the L1 metric
the freedom degrees are less that in euclidean or L2 metric, because the rota-
tion group is finite dimensional in the first case instead of infinite dimensional
of the second case. The vector X(a) provided by the optimization procedure is
transformed to the Y(a) vector in the byte values range [0, 255] by geometrical
transformations of translation and scaling. Table 1 contains the second coordi-
nate type for 1,2,4 and 8-dimensional mapping. Due to the hardware restrictions
these dimensional values are the most useful for practical proposes. The trans-
lation to the origin of coordinates does not modify the distances, whereas the
scaling to fit the [0, 255] range modifies the distance with a constant factor ρ
related with the scaling transformation. The relation between the distances com-
puted by mean of the two vector type is:

DX(a, b) = ρDY (a, b) (10)

3 Results

Both Genetic and Gradient optimization methods can be used to achieve the
minimization of the goal function. Gradient procedures have better convergence
around local minima, while Genetic procedures allow a better global optimization
by considering several local minima. Many solutions are expected in the proposed
problem, covering a wide range of both local minimum due to non-linearity and
also due to geometrical transformations.

A Genetic Algorithm is used to obtain a solution which is afterward refined
by applying a Gradient procedure based on Quasi-Newton algorithm. Genetic
algorithm are good to jump far of tentative local minima. However, in practice
after a number of iterations the genetic algorithm is mainly working in the
refinement of a local minimum, but for this task the gradient procedures are more
efficient. The minimum of several trial cases of genetic and gradient procedures
is chosen as the solution. GAOT[12] is a public domain Genetic Toolbox that
is used for the first stage and the MATLAB Optimization Toolbox[7] for the
second one. Figure 1 shows the graphical representation of the value S(X) of
the Sammon function and the relative error E(X) vs the dimensionality n of
the mapping space. Table 1 contains the obtained Y coordinates for 1,2,4, and
8-dimensionality.

To illustrate the pattern matching procedure an example with two protein
sequences is used. These proteins have the entry names GTH2 TOBAC and
GTH1 MAIZE in SWISS-PROT database; both are related proteins, member of
the Glutathione S-transferases family[17], included in the GST C entry of the
Pfam protein families database[5].
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Fig. 1. Goal function S(X) and error E(X) vs the mapping space dimension-
ality n

Table 1. Mapping coordinates for 1,2,4 and 8-dimensionality of BLOSUM62
transformed to integer [0,255] range for use in fast matching procedures

n = 1 n = 2 n = 4 n = 8

Amino Acid Y1 Y1 Y2 Y1 Y2 Y3 Y4 Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8
A 140 100 180 182 94 68 49 31 66 120 85 139 105 98 40
R 180 161 113 181 16 108 79 24 89 105 38 0 97 77 24
N 203 198 191 244 26 73 71 94 83 35 46 63 89 90 41
D 216 227 168 255 59 51 98 117 62 82 66 64 175 84 72
C 31 0 166 154 191 61 56 31 87 149 114 100 0 178 63
Q 164 184 146 173 10 65 100 34 68 88 35 36 129 43 50
E 190 177 175 205 36 54 110 13 66 87 53 49 176 85 46
G 228 148 233 230 105 101 61 88 67 88 70 175 63 71 11
H 239 207 92 193 0 0 66 25 67 0 69 40 81 73 126
I 97 63 142 157 65 50 8 36 34 158 17 115 103 115 80
L 89 76 124 154 50 70 0 22 24 144 4 101 88 106 66
K 173 170 134 181 42 88 123 24 121 109 42 63 132 73 25
M 115 95 127 151 33 81 23 28 41 149 0 95 98 50 56
F 59 91 76 97 52 37 45 0 20 207 61 88 78 75 96
P 255 129 255 167 65 164 97 37 34 56 167 107 150 69 25
S 154 139 171 199 76 74 76 69 77 102 81 88 107 86 47
T 131 113 198 142 85 73 89 54 30 101 61 77 107 150 34
W 0 121 0 0 46 82 61 33 0 255 69 52 44 0 0
Y 71 129 62 117 44 8 63 37 10 184 74 40 79 71 122
V 105 70 153 163 70 55 16 37 34 157 35 121 116 115 64

ρ 0.1444 0.1036 0.0802 0.0421

Figure 2 at left shows the standard dotplot representation of both proteins.
The dotplot is the simplest matching procedure, it is a 1-tuple matching. In
this figure each point means a score value greater that a threshold. In this case
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Fig. 2. At left, Dotplot representation between two proteins, GTH2 TOBAC
and GTH1 MAIZE. Both are related proteins members of the Glutathione S-
transferases family. Each point has a score s(a, b) ≥ 4 using the BLOSUM62
substitution matrix. The two local alignments between the proteins are shown
below with the position in the sequence. Each amino acid symbol means exact
match, while the - symbol means mismatch. The stronger similarity is in the
49-75 region, also very week alignments are detected in the 27-48 and 139-167
regions. At right, k-Tuple matching representation between both proteins by
using a tuple size k = 4 and a mapping dimensionality n = 2 of the BLOSUM65
matrix. Shown points have a tuple distance DY (U, V ) ≤ 10

s(a, b) ≥ 4 according with the BLOSUM65 matrix. The previous alignment of
both sequence shows a significative match in the 49-75 region. Other matches
are too weak to be considered. Also, Figure 2 at right shows the solution of the
matching procedure with tuple size k = 4, the mapping dimensionality n = 2, by
using a threshold DY (U, V ) ≤ 20. As shown the significative region is detected
as can be supplied to next stages of heuristics procedures as FASTA or BLAST.

Figure 3 shows a comparative evaluation of the computational time of some
matching procedures. The sequence of the protein GTH1 MAIZE is matched
with some randomly chosen sequences in the SWISS-PROT database. The length
of the GTH1 MAIZE sequence is 213 amino acids, the figure shows the compu-
tational cost in msec. of each protein match vs the sequence length. To avoid
the noise produced by the operating system interruptions and services, no other
user task was running and each represented value is the mean over a thousand
cases. The computation of the dotplot is compared with the computation of the
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Fig. 3. Computational time in msec. of matching procedures between the
GTH1 MAIZE and some randomly chosen protein sequences vs the protein
length. Included Procedures are Dotplot, which is an 1-tuple, C and MMX im-
plementations of matching 4-tuple with a mapping dimensionality n = 2. MMX
implementation has a similar computational cost that Dotplot that is the sim-
plest k-tuple procedure, while it allows a high quality detection of preliminary
regions of local alignments

matching procedure defined in equation (7) with k = 4 and n = 2; the latter
is computed by coding in C language and also by using the MMX instruction
set in assembler language. The processor used is a Intel Pentium IV at 2Ghz.
It is concluded that the 4-tuple matching coded in MMX has similar cost that
the dotplot, but the quality of results is better as shown in Figure 2. The MMX
procedure is slight faster than the dotplot in long sequence and also slight slower
in short sequences. In all case the 4-tuple matching in C is the slower option.
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Abstract. Descriptive knowledge about an Information System can be
expressed in declarative form by means of a binary Boolean based lan-
guage.
This paper presents a contribution to the study of an arbitrary multi-
valued Information System structure by introducing an algebra (not bi-
nary) that allows the treatment of multiple valued data tables with sys-
tematic algebraic techniques.
Elements |ti| and ||tp||, called arrays and co-arrays, are defined, opera-
tions ∼, ‡ and ◦ are described. The proposed methodology allows mul-
tivalued algebraic expressions describing a multivalued Information Sys-
tem (multivalued Object Attribute Table).
Furthermore, the same Information System can be described by several
distinct, but equivalent, algebraic expressions. Among these, the prime-
ar expression is singled out. The usefulness of the described algebra to
represent an Information System is shown.

1 Introduction

Scientific and engineering disciplines are developing daily. This progress is strong-
ly connected to complex techniques and methods. However, it is surprising to
observe that the majority of Information Systems considered are binary and, of
course, the methods and techniques used are binary based.

Much of the knowledge one has about its environment is descriptive and can
be expressed in declarative form by means of a language. A first level declara-
tion or itemized description describes one object. A second level declaration or
declarative description refers to subsets of objects not in terms of the elements
of the subset but in terms of the attributes and the values these attributes take.
Thus, declarative expressions describe aspects of the reality in terms of subsets
of objects characterized by their attribute values.

The transfer of knowledge from the declarative level to the itemized level is
very simple, since every one of the elements of the subset inherits the properties
assigned to the subset in the declaration. On the other hand the construction
of a true declarative sentence describing a given subset of objects is not a sim-
ple matter. In general the problem is not trivial because it may have multiple
solutions.
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The need to establish computer programs that determine declarations has
brought the problem back to the surface and several groups have designed
approaches to it. Directly or indirectly, work by Michalski [1], Quinlan [2],
Pawlak [3], Miró [4], Wille [5] and Fiol [6] has to do with this problem. However,
their efforts are mainly directed to binary descriptions.

Definition 1. Let D = {d1, d2, . . . , di, . . . , dm} be an ordered set called domain,
of elements di representing the m objects, let R = {rg, . . . , rc, . . . , ra} be a set
of the g attributes or properties of the objects. The set of values of attribute c
is represented by C = {[cnc ], . . . , [cj ], . . . , [c1]}. The elements of set C, [cj ], are
called 1-spec-sets since the elements are defined by means of one specification.
An Object Attribute Table (OAT) is a table whose rows represent the objects,
and whose columns represent the attributes of these objects. Each element [ci]
represents the value of attribute rc that corresponds to object di.

In order to handle the multivalued OAT a new mathematical tool is needed:
a multivalued language.

2 Multivalued Language

2.1 Symbolic Representation of a Subset

The initial objective of the multivalued language is to offer a general and compact
symbolic representation of an arbitrary subset Ch ⊆ C and of the set operations
between subsets.

The set of all subsets of a given set C (the power set of C), ρ(C), forms
a Boolean algebra < ρ(C),∪,∩, ,̂ ∅, C >. There is a parallel Boolean algebra
< Sc,+, ·, ,̂∨c,∧c > defined on the set Sc of all possible symbols representing
subsets of C. Throughout this paper, the symbol � may be read as: “is described
by”. Therefore, Ch � ch expresses: “subset Ch is described by symbol ch”. The
symbolic representations of regular set operations complement (̂), union (∪)
and intersection (∩) are: Ĉh � ĉh, Ch ∪Ck � ch + ck, Ch ∩ Ck � ch · ck.

This symbolic representation has been carefully studied in [7]. Also, tables
for operations ,̂ + and · in octal representation are provided.

2.2 Fundamental Concepts

All the concepts and operations introduced above make reference to only one
set, that is, one attribute. A multivalued OAT has more than one attribute.

Let R = {rc, rb, ra} be a set of 3 attributes whose attribute values are C =
{[cnc ], . . . , [c2], [c1]}, B = {[bnb

], . . . , [b2], [b1]} and A = {[ana ], . . . , [a2], [a1]}.
The elements of sets C,B,A are 1-spec-sets (one specification). A 3-spec-set,
[ck, bj, ai], is a chain ordered description of 3 specifications, one from set C, one
from set B and one from set A. Each spec-set represents itself and all possible
permutations: [ck, bj, ai] = [ck, ai, bj ] = [bj, ck, ai] = [bj , ai, ck] = [ai, ck, bj] =
[ai, bj, ck].
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This idea can be generalized for g attributes. In all definitions that follow,
R = {rg, . . . , rb, ra} is the set of g attributes whose attribute values are given by
non-empty sets G, . . . , B,A respectively.

Definition 2. The cross product G ⊗ · · · ⊗ B ⊗ A is the set of all possible g-
spec-sets formed by one element of G, . . ., one element of B and one element
of A.

G⊗ · · · ⊗B ⊗A = {[gx, . . . , bj, ai] | [gx] ∈ G, . . . , [bj ] ∈ B, [ai] ∈ A}
It is important to mention that the cross product is not the cartesian product.
A g-spec-set represents itself and all possible permutations whereas the elements
of the cartesian product are different if the order in which there are written varies.
The basis T is an ordered chain which establishes the sequential order in which
the spec-sets are always written. In this paper T =< G, . . . , B,A >.

The set of all possible g-spec-sets induced by sets G, . . . , B,A is called the
universe U and every subset of the universe, Ui ⊆ U , is called a subuniverse.

Definition 3. Let Gi ⊆ G, . . ., Bi ⊆ B, Ai ⊆ A, an array |ti| = |gi, . . . , bi, ai|
is the symbolic representation of the cross product Gi⊗ . . .⊗Bi⊗Ai where Gi �
gi, . . . , Bi � bi, and Ai � ai.

Gi ⊗ · · · ⊗Bi ⊗Ai � |ti| = |gi, . . . , bi, ai|
An array |tEy | is called an elementary array if it describes a subuniverse formed
by only one g-spec-set.

Definition 4. Let Gp ⊆ G, . . ., Bp ⊆ B, Ap ⊆ A, the symbolic representation
of the complement (in the universe) of the cross product of subsets Ĝp ⊗ . . . ⊗
B̂p ⊗ Âp where Gp � gp, . . . , Bp � bp, and Ap � ap is called a co-array
||tp|| = ||gp, . . . , bp, ap||.

∼ (Ĝp ⊗ . . .⊗ B̂p ⊗ Âp) � ||tp|| = ||gp, . . . , bp, ap||
Arrays and co-arrays are symbolic representations of subuniverses, 2-dimensional
(two attributes) arrays and co-arrays can be represented graphically as shown
in Fig. 1.
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Fig. 1. Arrays and co-arrays in 2 dimensions
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Definition 5. If |ti| = ‖ti‖, then |ti| is called a degenerate array or a degenerate
co-array.

Degenerate arrays deserve special consideration and have been studied in [7].
There are three types of degenerate arrays:

1. The identity array (co-array)
∧

, which describes the universe: U �
∧

=
|∧g, . . . ,∧b,∧a| = ||∧g, . . . ,∧b,∧a||.

2. The zero array (co-array)
∨

, describing the empty universe: ∅ �
∨

=
|∨g, . . . ,∨b,∨a| = ||∨g, . . . ,∨b,∨a||.

3. Arrays of the form |ti| = |∧g, . . . , di, . . . ,∧b,∧a| = ||∨g, . . . , di, . . . ,∨b,∨a||.
The arrays and the co-arrays describe subuniverses, therefore regular set

operations may be performed with them. Let |ti| = |gi, . . . , bi, ai| and |tj | =
|gj , . . . , bj , aj | be two arrays, the following operations between arrays are intro-
duced:

1. ∼ complement respect to
∧

: ∼ (Gi ⊗ · · · ⊗Bi ⊗Ai) � ∼ |ti|.
2. ‡ sum of arrays: (Gi ⊗ · · · ⊗ Bi ⊗ Ai) ∪ (Gj ⊗ · · · ⊗ Bj ⊗ Aj) � |ti| ‡ |tj | =
|gi, . . . , bi, ai| ‡ |gj, . . . , bj, aj |.

3. ◦ product of arrays: (Gi⊗· · ·⊗Bi⊗Ai)∩ (Gj ⊗· · ·⊗Bj ⊗Aj) � |ti| ◦ |tj | =
|gi, . . . , bi, ai| ◦ |gj , . . . , bj , aj | = |gi · gj, . . . , bi · bj , ai · aj |.
The ◦ product is a closed operation in the set of all arrays.

Let ||tp|| = ||gp, . . . , bp, ap|| and ||tq|| = ||gq, . . . , bq, aq|| be two co-arrays, the
following operations between co-arrays are introduced:

1. ∼ complement respect to
∧

: ∼ [∼ (Ĝp ⊗ · · · ⊗ B̂p ⊗ Âp)] � ∼ ||tp|| =
|ĝp, . . . , b̂p, âp|.

2. ‡ sum of co-arrays: ∼ (Ĝp ⊗ · · · ⊗ B̂p ⊗ Âp) ∪ ∼ (Ĝq ⊗ · · · ⊗ B̂q ⊗ Âq) �
||tp||‡||tq|| = ||gp, . . . , bp, ap||‡||gq, . . . , bq, aq|| = ||gp+gq, . . . , bp+bq, ap+aq||.
The ‡ sum is a closed operation in the set of all co-arrays.

3. ◦ product of co-arrays: ∼ (Ĝp ⊗ · · · ⊗ B̂p ⊗ Âp) ∩ ∼ (Ĝq ⊗ · · · ⊗ B̂q ⊗ Âq) �
||tp|| ◦ ||tq|| = ||gp, . . . , bp, ap|| ◦ ||gq, . . . , bq, aq||.

|ti|

|tj |

B

A

Bi

Bj

Ai
Aj

|ti| ‡ |tj |

||tp||

Bp

Ap

||tq ||Bq

Aq

||tp|| ‡ ||tq || = ||bp + bq , ap + aq||

Fig. 2. ‡ sum of arrays and co-arrays
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|ti|

|tj |

B

A

Bi

Bj

Ai
Aj

|ti| ◦ |tj | = |bi · bj , ai · aj |

||tp||

Bp

Ap

||tq ||Bq

Aq

||tp|| ◦ ||tq ||

Fig. 3. ◦ product of arrays and co-arrays

All the results obtained by use of operations ∼, ‡ and ◦ on arrays or co-
arrays are symbolic representations of subuniverses. If only two attributes are
considered, these operations can be represented graphically as shown in Figures 2
and 3.

3 Algebraic Results

The multivalued language provides us with expressions, such as the ‡ sum of
arrays or the ◦ product of co-arrays, that have only a symbolic value without
being computable. The use of degenerate arrays allows: a) to express an array
as a ◦ product of co-arrays; b) to express a co-array as a ‡ sum of arrays; c)
to perform mixed operations between arrays and co-arrays; and d) to calculate
complements.

All these results have been proven in [7]. Even though only the ◦ product of
arrays and the ‡ sum of co-arrays are closed operations, expressions involving
the ◦ product of co-arrays or the ‡ sum of arrays have been obtained.

4 Expressions

Subuniverses can be described by algebraic expressions of arrays and/or co-
arrays. An expression is a symbolic representation of a subuniverse, an expression
represents the reality described by an OAT.

Definition 6. Every combination of arrays and/or co-arrays using operations
∼, ‡ and ◦ (well formed formula) is called an expression Ei.

Ei = |ti| ‡ (∼ |tj |) ◦ ||tk|| . . .
Generally, a subuniverse can be described by more than one expression. Expres-
sions that describe the same subuniverse are said to be equivalent (declaratively).
The comparison of two distinct expressions, as far as their declarative describing
capability, has been studied in [7], [8] and [9].

Expressions represent subuniverses, therefore an order relation equivalent to
set inclusion may be introduced: Ui ⊆ Uj � Ei  Ej . This order relation has
been studied in [7] and has been used to find simplified equivalent expressions.
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|t1|

|t2|

|t3|

Ei = |t1| ‡ |t2| ‡ |t3|

||t1||

||t2||

||t3||

Ep = ||t1|| ◦ ||t2|| ◦ ||t3||

Fig. 4. 2-dimensional array and co-array expressions

Definition 7. An expression Ei is called an array expression if it is written as
a ‡ sum of arrays: Ei = |tz| ‡ · · · ‡ |ty| ‡ · · · ‡ |tx|.
An expression Ei is called a co-array expression if it is written as a ◦ product

of co-arrays: Ei = ||tp|| ◦ · · · ◦ ||tq|| ◦ · · · ◦ ||tr||.
Fig. 4 displays 2-dimensional array and co-array expressions.

An array expression is called elementary if each of the arrays in the ‡ sum is
an elementary array: EE

i = |tEz | ‡ · · · ‡ |tEy | ‡ · · · ‡ |tEx |.

5 All-Prime-Ar Expression

So far, concepts and procedures come as couples of dual statements. From now
on only the array expressions will be considered.

Definition 8. Let Ei = |tz| ‡ · · · ‡ |ty| ‡ · · · ‡ |tx|, an array |ty| is a prime-ar
(prime array) of Ei if there is no other array |tj | such that |ty|  |tj |  Ei.
A prime-ar is a “largest” array contained in Ei.

Consider the array expression given in Fig. 4. Both |t1| and |t2| are prime-ars,
however |t3| is not a prime-ar.

Definition 9. The ‡ sum of all the prime-ars of an expression Ei is called the
all-prime-ar expression of Ei.

The same subuniverse can be described by more than one prime-ar expres-
sion. How can the equivalency between expressions be studied? This question
was originally proposed in [8] and further studied in [10]. Two prime-ar expres-
sions are equivalent if their all-prime-ar expressions are equal. Even though the
all-prime-ar expression is a unique expression, the number of prime-ars in the
expression may not be minimal.

The following table, studied in [7], represents the general grades on conduct
(rd), diligence (rc), attentiveness (rb) and orderliness(ra) given to a class at the
Ludwig-Georgs-Gymnasium. The data base represents a file of students together
with the grades received. The grades (attributes) are numerical values, conduct
and attentiveness take values from 1 (best grade) to 3 (worst grade), whereas
diligence and orderliness take values from 1 (best grade) to 4 (worst grade).
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conduct diligence attentiveness orderliness

Anna 3 4 3 4
Berend 3 4 3 4
Christa 2 2 2 2
Dieter 1 1 1 1
Ernst 2 2 2 2
Fritz 2 1 2 2
Gerda 2 2 2 3
Horst 2 2 2 3
Ingolf 2 3 3 2
Jurgen 2 2 3 2
Karl 2 3 2 2
Linda 2 1 2 2
Manfred 2 2 2 2
Norbert 3 3 2 2
Olga 1 1 2 2
Paul 1 1 1 1
Quax 2 2 2 2
Rudolf 3 4 3 3
Stefan 1 1 1 1
Till 1 1 1 1
Uta 1 1 2 2
Volker 2 2 3 2
Walter 3 4 3 4
Xaver 1 1 1 1
Zora 2 2 2 2

The basis is T =< D,C,B,A > with D = {3, 2, 1}, C = {4, 3, 2, 1}, B =
{3, 2, 1} and A = {4, 3, 2, 1}. This data is first traslated into octal representa-
tion, and using algebraic techniques it is transformed into an elementary array
expression. Then the all-prime-ar expression describing the data is found.

E =| 1, 01, 1, 01| ‡ | 4, 04, 2, 04| ‡ | 4, 10, 4, 04| ‡ | 2, 02, 2, 06|‡
‡ | 3, 01, 2, 02| ‡ | 2, 07, 2, 02| ‡ | 2, 06, 6, 02|

The proposed array algebra allows a simple description of the data provided. The
all-prime-ar expression allows for notation economy and forsees ways of joining
expressions (information systems) or finding common descriptions between two
or more expressions (information systems).

6 Conclusion

The proposed array algebra does not handle raw data, it handles declarative
descriptions of the data. Declarative expressions from a multivalued information
system can be obtained using arrays and/or co-arrays and declarative expressions
can be transformed by application of the algebraic techniques.
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The algebra of arrays allows the description of an arbitrary information sys-
tem by means of an array expression describing the same partial reality. These
array expressions are not unique. In order to find a unique array expression
the concept of prime-ar is introduced. The ‡ sum of all prime-ars is a unique
expression, although it is not necessarily minimum in the number of prime-ars.

The introduction of the array algebra vastly improves time efficiency when
comparing two sources of information. Furthermore, the technique developed
here is independent of the number of attributes and the number of values of each
attribute. Multivalued and binary information systems are treated similarly.

Finally, it should be mentioned that this array algebra has a dual version, the
co-array algebra that has been introduced in [7] and should be further studied.
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Abstract. A new LVQ-inspired adaptive method is introduced to opti-
mize strings for the 1-NN classifier. The updating rule relies on the edit
distance. Given an initial number of string prototypes and a training set,
the algorithm builds supervised clusters by attaching training samples to
prototypes. A prototype is then rewarded to get it closer to the members
of its cluster. To this end, the prototype is updated according to the most
frequent edit operations resulting from edit distance computations to all
members of its cluster. The process reorganizes training samples into new
clusters and continues until the convergence of prototypes is achieved.
A series of learning/classification experiments is presented which show
a better 1-NN performance of the new prototypes with respect to the
initial ones, that were originally good for classification.

Keywords: Adaptive learning, structural pattern analysis, string match-
ing, nearest neighbor, nonparametric classifier, self-organization.

1 Introduction

The 1-Nearest Neighbor (1-NN) rule is a simple and, under certain conditions,
a close-to-optimal classifier. Given a (large) training set of labeled patterns and
a new pattern x with an unknown label, the 1-NN rule attaches to x the label
of its closest training pattern according to some metric. In spite of its simplic-
ity, it performs well for large training sets. In fact, its recognition rates tend
to be asymptotically better as the number of (representative) training patterns
increases [1]. This worthwhile theoretic result comes into conflict with the feasi-
bility of the 1-NN implementation procedure, which needs to compute distances
(given a metric) between x and all known patterns from the training set. This
amount of computation becomes prohibitive for large data sets, specially for
structural pattern recognition in (non-vectorial) spaces where metrics are usu-
ally complex algorithms, for example, in graph or string matching.

This computational drawback can be overcome with condensing methods [2,
3, 4, 5], which aims at find a reduced set of training prototypes from the original
training set, as a trade-off between minimal cardinality and maximum classifi-
cation accuracy. Apart from reducing the size of the training set, these methods
� This work has been partially supported by the grant CTIDIA/2002/80 of Valencian
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aim to optimize the 1-NN rule performance for an optimum classification of the
original training samples.

One of these most effective scheme for nonparametric classifier design is the
one known as Learning Vector Quantization (LVQ) [3, 6]. It consists of a simple
adaptive optimization procedure based on competitive learning rules to adjust
an initially given set of prototypes with respect to a training set. The algorithm
rewards or punishes a wining prototype depending on some 1-NN based rule at
classifying a reference training pattern. The reward/punishment strategy relies
on the Euclidean metric which makes sense only in vectorial spaces.

This paper introduces a novel adaptive method to learn strings as reference
prototypes for 1-NN classification. The algorithm starts from an initial set of
string prototypes, and organizes the training samples into supervised clusters
based on a 1-NN criterion. It continuously optimizes prototypes according to
the most frequent local differences with respect to the members of their clus-
ters. The clusters are reorganized after each iteration. The process finishes when
prototypes converge to a stable configuration.

2 The Learning Vector Quantization Strategy

Given a training data set T of labeled samples, the LVQ scheme is a nonpara-
metric algorithm which optimizes a number of labeled vectors (prototypes) to
classify T with the 1-NN rule. These vectors are initialized by setting initial
locations, and their labels are computed from simple majority vote of training
samples in T that have each vector as their closest prototype.

The learning procedure consists of a gradient search strategy. The basic LVQ
algorithm searches the closest vector v to a specific training sample s. If the label
associated with s and the label of v agree, the vector v is moved in the direction
of s (reward). On the contrary, if they disagree then the vector v is moved away
from s (punishment). The process iterates until all the vectors converge.

Later versions of LVQ [3] search two vectors (instead of just the closest one)
according to some 1-NN based rule, applying a reward/punishment scheme to
update them. A generic LVQ model is shown in Fig. 1.

3 An Adaptive Learning Scheme for String Classification

The previous LVQ strategy is based on the following issues:

– a metric δ to compute distances which also defines the update rules
– a 1-NN criterion C to obtain winner prototypes
– a δ-based update rule ϕ to reward a prototype
– a δ-based update rule ϑ to punish a prototype

A new LVQ-inspired adaptive algorithm is introduced to learn string proto-
types for 1-NN classification. The method starts from a training set T of labeled
strings and another set of labeled prototypes which are the strings to be “op-
timized” with respect to T . The learning strategy is based on the edit distance
computation [7]. A preliminary skeleton of this method could be:
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Input: a training set T , an initial set of labeled prototypes P

a nonincreasing series of positive learning rates {αt}
an Euclidean-based update rule ϕ(αt) to reward a prototype

an Euclidean-based update rule ϑ(αt) to punish a prototype

a 1-NN criterion C to obtain winner prototypes
Output: the final set of adapted prototypes P

Method:

repeat

for all s ∈ T do

Let W = C(s, P ) be a subset of prototypes to be rewarded
Let L = C(s, P ) be a subset of prototypes to be punished
for all pt ∈ W do pt+1 = ϕ(pt, αt, s)

for all qt ∈ L do qt+1 = ϑ(qt, αt, s)

end-do

until convergence of all prototypes in P

Fig. 1. A generic description of a LVQ scheme

– the metric is the Edit Distance (ED)
– training strings are organized in supervised clusters defined by prototypes,

which are the winner prototypes with respect to their cluster members
– the ED -based reward rule ϕ consists of applying to each prototype the most

frequent local transformations (in terms of edit operations) obtained from
ED computations between the prototype and the strings in its cluster

– none of prototypes is punished

Once all prototypes are updated, a reorganization of training samples into
new clusters is carried out. The process continues until the convergence of pro-
totypes is achieved. The following sections present a detailed description of each
part of the method.

3.1 The Edit Distance: A Collection of Local Differences

The edit distance [7] is a metric which evaluates the extent in which two strings
differ. It measures the total difference between two strings of symbols regard-
ing a sequence of local differences. They are known as edit operations because
they operates over a source string x by actively changing (editing) it into a tar-
get string y. The edit distance is formally defined as the total cost (weight) of
a minimum-cost sequence of weighted edit operations that transforms x into y.

Let Σ be an alphabet and let Σ∗ be the set of all finite-length strings over Σ.
Let ε denote the empty symbol. An edit operation is an ordered pair (xi, yj) ∈
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(Σ ∪ {ε}) × (Σ ∪ {ε}), (xi, yj) �= (ε, ε), denoted by xi → yj. The basic edit
operations and the local editions they perform on x are:

– substitute operation xi → yj , that replaces the symbol xi in x by yj of y
– delete operation xi → ε, that removes the symbol xi from x
– insert operation ε→ yj , that inserts in a position in x the symbol yj of y

As a by-product of the edit distance computation, a corresponding sequence
of edit operations can be obtained [7]. Each edit operation is a local difference
that can be used to locally edit x to make it most similar to y. This fact can be
trivially stated as follows.

Lemma 1. Given two strings x and y and an edit sequence s = e1e2 . . . em
obtained from δ(x, y) computation, the edition of x according to any edit opera-
tion ei in s produces a string x∗ such that δ(x, y) ≥ δ(x∗, y).

Proof. This intuitive result can be proved from splitting s into sp = e1 . . . ei−1, ei
and ss = ei+1 . . . em, being sp the dynamic programming subsequence [7] that
transforms with minimum cost a prefix of x into a prefix of y, and ss, the
optimum subsequence that transform a suffix of x into a suffix of y. The edition
of ei in x removes a possible local difference without modifying sp and ss.

As many edit operations we perform as much the source string x approaches
the target string y. The application of all edit operations on x completely trans-
form x into y.

3.2 Supervised Clustering Based on a 1-NN Criterion

A training set T of classified strings is used to adapt a different set P of labeled
string prototypes for an optimized 1-NN classifier with respect to T . A prelim-
inary organization of training data into supervised clusters associated to pro-
totypes is performed. For each training string s ∈ T , the clustering procedure
searches the same-class nearest prototype p= ∈ P and the different-class nearest
prototype p = ∈ P . The string s is added to the cluster of p= if it is the (absolute)
nearest prototype to s or if δ(p=, s) is “approximately” equal to δ(p =, s) given
a similarity degree β. This 1-NN based rule could be formally stated as follows:

δ(s, p=) < δ(s, p =) or
δ(p =, s)
δ(p=, s)

> β, 0 < β < 1 . (1)

A cluster is then defined by a prototype that is close enough to a number of
same-class training strings which are attached to it. The update rule “optimizes”
each (winner) prototype with respect to its cluster members. Once all prototypes
are updated, training strings are reorganized into new clusters and prototypes
are rewarded again. The process finishes when no prototype is modified after
a complete update iteration.
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3.3 An δ-Based Reward Rule

The ED -based reward rule ϕ consists of performing on each prototype the most
frequent edit operations obtained from the edit distance computation between
the prototype and the strings members of its cluster.

Let p be a prototype to be optimized and let Tp, the set of all training
strings currently associated to p (its cluster). The reward process computes edit
distances between p and all s ∈ Tp. Apart from distance measures, a collection
of sequences of edit operations that transforms p into any member of Tp is also
obtained. Because all edit operations from any sequence edit p, many of them
appear repeatedly. The number of occurrences of each edit operation are counted
and they are ranked from most to least frequent in an ordered list L.

The reward rule edits p with the “most voted” edit operations, those whose
frequencies are greater than a specific threshold η. This parameter can be in-
terpreted as the minimum number of members of Tp whose edit sequences must
include an edit operation to be selected among the most frequent ones.

An example of the reward rule operation is commented. Given a prototype p,
the strings xi members of Tp, the distances δ(p, xi) and their edit sequences:

p Tp δ(p, xi) edit sequences δ̄ = 1
3

∑
δ(p, xi)

abab
x1 = abab 0 {a→ a, b→ b, a→ a, b→ b}

1,33x2 = baab 2 {a→ b, b→ a, a→ a, b→ b}
x3 = bbaa 2 {a→ b, b→ b, a→ a, b→ a}

The reward rule ranks all edit operations of previous sequences in the list
L, considering each edit operation as a structure in the form (edit operation,
position in p from 0, frequency). The ordered list is L = {(a → a, 2, 3), (a →
b, 0, 2), (b → b, 1, 2), (b → b, 3, 2), (a → a, 0, 1), (b → a, 1, 1), (b → a, 3, 1)}. For
any 1 ≤ η < 2, the reward rule edits p with only the first four edit operations
which have frequencies greater than η. The updated prototype is p∗ = bbab and
distances from p∗ to xi are now δ(p∗, x1) = 1, δ(p∗, x2) = 1, δ(p∗, x3) = 1. The
new average distance δ̄ from p∗ to xi ∈ Tp has been reduced from 1, 33 to 1.

4 The Learning Algorithm

The integration of previous components leads to the algorithm of Fig. 2. The
increasing series of positive learning rates {α}, 0 ≤ α ≤ 1, are relative minimum
frequencies to perform an edit operation, which are common for all β-clusters
in each iteration t regardless of their sizes. The convergence is stated in the
following lemma.

Lemma 2. Given an increasing series of positive learning rates {αi}, 0 ≤ αi ≤
1, the algorithm of Fig. 2 converge if αi → 1 when i increases.

Proof. An increasing series of {αi} guarantees a progressive reduction of proto-
type modifications. When αi is close enough to 1 for some i, no edit operation
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Input: a training set T of strings, an initial set of labelled string prototypes P

let δ be the edit distance

an increasing series of positive learning rates {αt}, 0 ≤ αt ≤ 1
an edit distance-based update rule ϕ(αt) to reward a string

a similarity degree β to build clusters according to rule (1)

Output: the final set of adapted string prototypes P

Method:

Organize all s ∈ T into β-clusters Tp attached to p ∈ P

repeat

for all pt ∈ P do

Get the ordered list L of edit operations from δ(pt, s) for all s ∈ Tpt

ηt = αt ∗ |Tpt |, the minimum frequency to performe an edit operation

pt+1 = ϕ(pt, ηt,L)
end-do

Re-organize all s ∈ T into new β-clusters Tpt+1 attached to pt+1 ∈ P

until convergence of all prototypes in P

Fig. 2. The learning algorithm to adapt strings for the 1-NN classification

will have a frequency greater than its |Tp|, and no modifications of prototypes
will be accomplished.

5 Experimental Results

A Chromosome Data Set. The first data set is a part of a larger one which
has 6895 chromosome images [8]. Each digitized image was transformed into a
string of codes (from an alphabet of 11 codes) representing differences between
adjacent density values from a one-dimensional density profile built from the
image [9]. A total of 4400 samples were collected, 200 of each of the 22 non-
sex chromosomes types. Two different random sets (for training and test) with
2200 strings each one were obtained keeping uniform distributions among the
22 classes. The metric used was the edit distance post-normalized by the sum
of lengths of the two strings and the weights of the edit operations are those
reported in [9]. The training set was divided into 10, 20, up to 90 clusters per
class and, for each clustering, a corresponding set of 10, 20 up to 90 prototypes
(one per cluster) were computed (from a minimum distance criterion) as median
strings of the members of each cluster [9]. As a result, 9 sets of 220, 440, 660, 880,
1100, 1320, 1540, 1760, 1980 median strings of clusters were used as the original
prototypes to be updated by the learning algorithm. The parameters used (after
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Fig. 3. a) Results on chromosomes data: the error rates of the 1-NN rule at
classifying the test set as a function of the number of initial and adapted prototypes.
b) Results on chicken pieces data: error rates of the 1-NN rule on test partitions
and average cardinalities of training partitions and the sets of prototypes

a few tries) were β = 0.75 and as {αt}, a geometric series starting at 0.5 with
a ratio 1.1. Figure 3a) illustrates the error rates of the 1-NN rule at classifying
the test set as a function of the number of initial and adapted prototypes. A clear
(but slight) improvement of the 1-NN generalization performance of all sets of
prototypes is achieved. The 1-NN error rate using the whole training set is 6.55.

A Chicken Pieces Data Set. A second experiment uses a set of chain-code
contours describing silhouettes of chicken parts. A set composed by 446 im-
ages from chicken pieces was used [10], each image containing a silhouette from
a particular piece. Each piece belongs to one of five categories (different parts
of the chicken): wing (117 samples), back (76), drumstick (96), thigh and back
(61), and breast (96). All images were adequately clipped and scaled into 64x64
pixels images. A standard 8-direction chain-encoding procedure was applied to
obtain a contour string associated to each silhouette. The metric used was the
same post-normalized edit distance, and weights of edit operations were 0 for
identical substitutions (matching) and 1 for the others.

A 5-fold cross validation experiment was carried out. The average number of
samples of the training partitions was 357 and, using them as reference sets, the
accumulated error of the 1-NN classification on test partitions was 18.6%. Each
training partition was condensed by the GMCA method [5], which can be used to
select a subset of good prototypes that classify without errors the initial set. The
average cardinality of condensed sets was 117 and when used as reference sets, the
1-NN error rate at classifying test sets was 24.7%. Finally, condensed sets were
used as initial sets of prototypes to be adapted by the learning scheme of Fig. 2
with respect to their original training partitions. The parameters selected (after
a few tries) were β = 0.65 and as {αt}, a geometric series starting at 0.5 with
a ratio 1.05. The 1-NN error rate considering the optimized set of prototypes is
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21.7%. These results are shown in Fig. 3b). The error rate obtained from adapted
prototypes is notably lower than that of initial prototypes (which classify without
errors the training partitions). The adapted solution is then a trade-off between
cardinality (the average number of prototypes is the third part of the average
cardinality of training partitions) and classification performance, which is not as
good as that obtained from training partitions.

6 Conclusions and Further Work

A new LVQ-inspired adaptive algorithm is introduced to learn string prototypes
for 1-NN classification. The learning strategy is based on the edit distance com-
putation [7], and the update rule consists of performing on each prototype the
most frequent edit operations with respect to a number of close training samples.
The process iterates until prototypes converge. Experiments were intended for
the improvement of initial prototypes which were already good for classification,
what made the task more difficult. Results show a clear trend to obtain adapted
prototypes with a better 1-NN performance. A natural extension could involve
the definition of a punishment rule to “move” prototypes away from samples of
different classes. Another future line of work could be an integrated approach to
adapt both prototypes and weights of edit operations.
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Jaume I Univerisity, Campus Riu Sec s/n 12071 Castellón, Spain

{montoliu,pla}@uji.es
http://www.vision.uji.es

Abstract. This paper presents a new framework for the motion seg-
mentation and estimation task on sequences of two grey images without
a priori information of the number of moving regions present in the
sequence. The proposed algorithm combines temporal information, by
using an accurate Generalized Least-Squares Motion Estimation process
and spatial information by using an inlier/outlier classification process
which classifies regions of pixels, in a first step, and the pixels directly, in
a second step, into the different motion models present in the sequence.
The performance of the algorithm has been tested on synthetic and real
images with multiple objects undergoing different types of motion.

1 Introduction

Segmentation of moving objects in a video sequence is basic task for several ap-
plications of computer vision, e.g. a video monitoring system, intelligent-highway
system, tracking, airport safety, surveillance tasks and so on. In this paper, Mo-
tion Segmentation, also called spatial-temporal segmentation, refers to labelling
pixels which are associated with different coherently moving objects or regions
in a sequence of two images. Motion Estimation refers to assigning a motion
vector to each region (or pixel) in an image.

Although the Motion Segmentation and Estimation problem can be formu-
lated in many different ways ([4], [10], [5], [2]), we choose to approach this prob-
lem as a multi-structural parametric fitting problem. In this context, the segmen-
tation problem is similar to robust statistical regression. The main difference is
that robust statistical regression usually involves statistics for data having one
target distribution and corrupted with random outliers. Motion segmentation
problems usually have more than one population with distinct distributions and
not necessarily with a population having absolute majority.

The problem of fitting an a priori known model to a set of noisy data
(with random outliers) was studied in the statistical community for a num-
ber of decades. One important contribution was the Least Median of Squares
(LMedS) robust estimator but it has the break down point of 50%. This means
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that LMedS technique needs the population recovered to have at least a majority
of 50% (plus 1). Other robust estimators have been developed in order to over-
come this problem, which is frequently encountered in different computer vision
tasks. They are Adaptive Least k-th Order residual (ALKS) [6] and Minimum
Unbiased Scale Estimator (MUSE) [7]. These techniques minimize the k-th order
statistic of the square residuals where the optimum value for the k is determined
from the data. The problem of both techniques is the estimation of the correct
value of k suffers high computation effort. Bab-Hadiashar and Suter presented
a method named Selective Statistical Estimator (SSE) [1] which is a variation
of the Least K-th order statistic data regression where the user proposes the
value k as the lower limit of the size populations one is interested in. All the
Motion Segmentation LKS-based algorithms start selecting an initial model us-
ing random sampling, and classifying all the pixels into this model using a scale
measure. With the remaining pixels the process is repeated until all the pixel
have been classified. The main problem of these algorithms is that there are
frequently pixels that can be more suitable to belong to a model but they have
been classified in an earlier model.

Danuser and Stricker [3] presented a similar framework for parametric model
fitting. Their algorithm has a fitting step that is one component of the algo-
rithm which also collect model inliers, detects data outliers and determines the
a priori unknown total number of meaningful models in the data. They apply
a quasi simultaneous application of a general Least Squares fitting while classi-
fying observations in the different parametric data models. They applied their
algorithm to multiple lines and planes fitting tasks. The most important advan-
tages with respect to LKS-based algorithms are the use of an exchange step, that
permits change of observations among models, and the use of a inliers/outliers
classification process, which increases the accuracy of the segmentation.

In [8] a quasi-simultaneous motion segmentation and estimation method
based on a parametric model fitting algorithm was presented. The method accu-
rately estimates the affine motion parameters using a generalized least squares
fitting process. It also classifies the pixels into the motion models present in two
consecutive frames. This algorithm uses each pixel of the image as observation.
It suffers from problems of isolated points because it does not use neighbour-
hood information and need given good initial models to obtain the final motion
segmentation. Nevertheless, it indicates that the quasi-simultaneous application
of the inliers/outliers classification algorithm and the accurate motion estimator
can be useful to be applied in Motion Segmentation tasks.

This paper presents a Motion Segmentation and Estimation algorithm that,
in a first step uses regions of pixels as observations in order to obtain good initial
models that in a second step will be improved using each pixel as observation.
The use of regions in the first step makes the segmentation more spatial consis-
tent. In addition, the algorithm uses neighbourhood constraints to collect new
inliers to the model, only regions (or pixels) that are neighbour of the model are
considered to be inliers. This algorithm overcomes the need of a good enough
previous segmentation of the models (they are obtained in the first step) and al-
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lows extracting the models without a priori information of the number of moving
regions present in the sequence.

The rest of the paper is organized as follows: Section 2 explains the complete
Motion Segmentation and Estimation algorithm. Section 3 presents a set of
experiments in order to verify the results obtained with our approach. Finally,
some conclusions drawn from this work are described.

2 Algorithm Outline

In this paper we use the term Model as a structure with two elements, the first
is a parametric motion vector and the second is a list of regions of the image
that support the parametric motion vector. We refer asRegion to a set of pixels
with grey-level coherence.

The input of the algorithm are two consecutive images of a sequence, the
first one I1 captured at time t and the second one I2 captured at time t+1. The
output of the algorithm are a motion-based segmentated image Is and a list of
motion parameters corresponding at each region in Is. For the sake of clarity,
we describe the first part of the proposed algorithm in 6 steps:

1. Preliminaries: In this step, I2 is segmented using a given grey level segmen-
tation algorithm. The regions obtained are used as input of the algorithm.
An adjacency graph of the previous segmentation is created. In addition the
spatial derivates of the images I1 and I2 are estimated.
The purpose of the grey-level segmentation process is to classify the pixels
into regions. Our Motion Segmentation algorithm requires that each seg-
mented region should not have pixels belonging to more than one final mo-
tion models. Any grey level segmentation algorithm that wherever possible
tries to fulfil the previous constraint can be used.

2. Get Initial Model: The aim of this process is find the best possible start
point to the global Motion Segmentation and Estimation algorithm. A good
initial model is make up of a set of regions that have a high likelihood to
belong to the same model. The process starts selecting a region randomly.
A model with this region and its neighbours is formed. The motion is esti-
mated for this model using the process in subsection 2.1. A goodness measure
GM is calculated for this model. The previous step is repeated q times. The
model with the best goodness measure is selected as the initial model.
The goodness measure is calculated using the following expression: GM =
((1 − lavg) ∗ 2 + (lbest − lworst)) where lavg is the average of the likeli-
hood LMn(R) for each region R using the motion model Mn (see point
3), lbest is the highest likelihood of the regions and lworst is the lowest like-
lihood of the regions. Therefore, the best initial model is the one which has
the less GM .

3. Improve the Model: An iterative classification process is started in order
to find the inliers and to reject outliers between the k regions that make
up the initial model. With the set of resulting regions, we start another
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classification process with the neighbours of the last inserted regions not yet
processed. This process continues until there are not more new neighbour
regions to be processed.
The loop of the inliers/outliers classification consists of:
(a) Estimate the motion parameters using all the pixels belonging the regions

of the model (see subsection 2.1).
(b) Look for outliers into the regions of the model, if there are outliers, im-

prove the motion parameters. A region R is considered outlier (with re-
spect to model Mn) if the likelihood of region R belonging to a model Mn

is lower than a threshold.
(c) Test each outlier if it can be now considered inlier according the new

estimated parameters. If there are new inliers, the parameters are im-
proved again. A region R is considered inlier (with respect to model Mn)
if the likelihood of the region R belonging to a model Mn is higher than
a threshold.

(d) Go to step b and repeat until there are not changes in the set of regions
of the model.

In order to estimate a likelihood of a region R belonging to a model Mn, the
next expressions are used:

LMn(R) = (
∑
pi∈R

LMn(pi))/NR

LMn(pi) = e
−0.5∗

F2
Mn

(pi)

σ2

(1)

where NR is the number of pixels of the region R. For each pixel pi belonging
to the regionR the likelihood LMn(pi) of the pixel belonging to a modelMn is
calculated. This likelihood ([2]) has been modelled as a Gaussian like function
where FMn(pi) is the residual for the pixel pi of the objective function using
the motion parametric vector of the model Mm.

4. Exchange of Regions: If a valid model Mn has been extracted, then a re-
gion exchange procedure is started. The goal of this procedure is to reclassify
regions that have been captured by an early model Mm where m < n. A re-
gion is moved if it lies closer to the new extracted model and there is a
neighbour relationship between the region and the new model. If all the re-
gions of the model Mm lie closer to the new Model Mn then the model Mm

is deleted. When for each region of model Mm we can not decide if it lies
closer to the model Mm or to the model Mn, then the models are merged,
that is, it is considered both models have similar motion parameters.

5. Repeat: Go to step 2 and repeat the same process with another initial model
if any. If there is any problem estimating the motion of some model, e.g. not
enough texture information, not enough number of observations, etc., the
regions of this model are moved to a set called regions with problems (RWP).

6. End: When all possible models have been extracted, the models that only
have one region are tested in order to try to merge them with their neighbour
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models. In addition, each region in the RWP set is tested in order to move
it into some of the models in its neighbourhood.

At the end of the first part of the algorithm, a set of NM motion models have
been extracted. Each motion model is made up of a vector of parametric motion
models and a set of regions which support the motion. Our Motion Segmenta-
tion algorithm requires that each region from the given grey-level segmentation
should not have pixels belonging to more than one final motion model. It is
very likely that some regions will not fulfill this constraint. The second part of
the algorithm is performed in order to improve motion segmentation in these
regions. In this step, instead of using a region of pixels as observation, each pixel
is considered as observation. This process consists of:

1. Find Outliers: For each extracted model Mn (n = 1 . . .NM), find all the
pixels that can be considered as outliers. They are the pixels pi which their
likelihood respect to the model Mn, LMn(pi) is less than a threshold. All the
outlier pixels are included in a set, together with the pixels belonging to the
region which have been considered outliers in the previous part.

2. Improve Parameters: The motion parameters for the motion models that
have new outliers are improved (see subsection 2.1).

3. Find Inliers: For each outlier, test if it can be included in some of the
motion models. A pixel pi will be included in the model with the greatest
likelihood LMn(pi), n = 1 . . .NM , if it is bigger than a threshold and there
is a neighbourhood relationship between the pixel pi and the model Mn.

4. Improve Parameters: The motion parameters for the motion models that
have new inliers are improved (see subsection 2.1).

5. Repeat: Repeat 1 to 4 while there are changes in the set of pixels.

At the end of the two parts of the algorithm the pixels have been classified
into the different motion models corresponding to the moving objects in the
scene. The pixels that could not be included in any model will be considered as
outliers.

2.1 Motion Estimation

The Generalized Least Squares (GLS) algorithm is used in order to obtain the
motion parameters of a model. The GLS algorithm [3] is based on minimizing
an objective function O over a set S of r observation vectors, S = {L1, . . . , Lr}.

O =
∑
Li∈S

(Fi(χ,Li))2 (2)

where χ = (χ1, . . . , χp) is a vector of p motion parameters and Li is a vector
of n observation Li = (L1

i , . . . , L
n
i ), i = 1 . . . r.

The equation (2) is non-linear, but it can be linearized using the Taylor ex-
pansion and neglecting higher order terms. This implies that an iterative solution
has to be found. At each iteration, the algorithm estimates Δχ, that improves
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the parameters as follows: χt+1 = χt + Δχ. The increment Δχ is calculated
(see [3]) using the following expressions:

ΔX =
(
AT (BBT )−1A

)−1
AT (BBT )−1W

B =

⎛⎜⎜⎝
B1 0 0 0
0 B2 0 0
... ... ... ...
0 0 0 Br

⎞⎟⎟⎠
(r×(r×n))

A =

⎛⎜⎜⎝
A1

A2

...
Ar

⎞⎟⎟⎠
(r×p)

W =

⎛⎜⎜⎝
w1

w2

...
wr

⎞⎟⎟⎠
(r×1)

Bi =
(
∂Fi(χt, Li)

∂L1
i

,
∂Fi(χt, Li)

∂L2
i

, ...,
∂Fi(χt, Li)

∂Lni

)
(1×n)

Ai =
(
∂Fi(χt, Li)

∂χ1
,
∂Fi(χt, Li)

∂χ2
, ...,

∂Fi(χt, Li)
∂χp

)
(1×p)

wi = −Fi(χt, Li)

(3)

In motion estimation problems ([9]) the objective function is based on the
assumption that the grey level of all the pixels of a region remains constant
between two consecutive images. The motion parameters vector, χ, depends on
the motion model being used. For each point i, the vector of observation Li has
three elements: column, row and grey level of second image at these coordinates.
The objective function is expressed as follows:

O =
∑
Li∈S

(Fi(χ,Li))2 =
∑
Li∈S

(I1(x′i, y
′
i)− I2(xi, yi))2 (4)

where I1(x′i, y
′
i) is the grey level of the first image in the sequence at the trans-

formed point x′i, y
′
i, and I2(xi, yi) are the grey level of the second image in the

sequence at point xi, yi. Here, Li = (xi, yi, I2(xi, yi)).
The affine motion model is used in this work, which is able to cope with

translations, scaling, rotation and shear of images and is defined with a vector
of χ = (a1, b1, c1, a2, b2, c2).

3 Experimental Results

In order to show the performance of the approach presented, two types of ex-
periments have been carry out. In the first experiment, synthetic sequences have
been used, where the final motion segmentation and the motion parameters of
each model are known. In the second experiment real scenes are used, where the
final motion segmentation and the motion parameters are unknown.
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(a) Original image (b) Result after first
step

(c) Final Result

(d) Original image (e) Result after first
step

(f) Final Result

Fig. 1. Second Image and Results obtained with synthetic and real sequences

Figure 1a shows the second image of an example of synthetic sequence. In
this synthetic sequence three different motion models can be found. The first
one is the background, which performs a null-motion. The second motion model
performs a change of scale and the third one corresponds to a rotational motion.
Figure 1d shows the second image of an example of real sequence.

Figures 1b,c,e,f show the result after the first step of the algorithm and the
final results for both sequences. The white pixels in figures 1b and 1e, are the
ones that have not been classified in any model. These regions correspond mainly
to areas that include pixels from different models.

Figures 1c and 1f show the segmentation performed after the second step
showing how segmentation has been improved in previous regions. Now, white
pixels are the ones considered as outliers. They are mainly pixels belonging
to occluded areas due to the motion and pixels where our algorithm could not
estimate the motion due to lack of texture or to the presence of too large motions.
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4 Conclusions

In this paper, a motion segmentation and estimation algorithm has been pre-
sented, which can extract different moving regions present in the scene quasi-
simultaneously and without a priori information of the number of moving ob-
jects. The main properties of our approach are:

– A GLS Motion Estimation is used, which produces accurate estimation of
the motion parameters.

– A classification process which collects inliers, rejects outliers and exchanges
regions among models allows to improve motion segmentation.

– It uses, in the first step, regions of pixels and neighbourhood information,
that improves the spatial consistency and provides a good initial point to
start the second step of the algorithm, which using pixels as observations
improves the segmentation in the regions.

– The pixels considered as outliers are mainly pixels belonging to occluded
areas due to the motion, thus, detection of outliers provides valuable infor-
mation about occluded areas.

Future work must study hierarchical techniques in order to improve the speed
of the algorithm and to cope with larger motion. The possibility of using se-
quences with more than two images will be also studied.
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Abstract. In this paper a new technique to perform tracking in clut-
tered scenarios with varying illumination conditions is presented. The
robustness of the approach lies in the integration of appearance and
structural information of the object. The fusion is done using the CON-

DENSATION algorithm that formulates multiple hypothesis about the esti-
mation of the object’s color distribution and validates them taking into
account the contour information of the object.

1 Introduction

Color represents a visual feature commonly used for object detection and track-
ing systems, specially in the field of human-computer interaction [1][5]. For such
cases in which the environment is relatively simple, with controlled lighting con-
ditions and an uncluttered background, color can be considered a robust cue.
The problem appears when we are dealing with scenes with varying illumination
conditions and confusing background. For example, in the upper row of Fig. 1 we
can see some frames from a motion sequence of a Lambertian surface, in which
the object of interest revolves around the light source. In the lower row, we show
the corresponding color distributions, (in RGB color space) that belong to the
reddish rectangle. Last image shows the path followed by the color distribution
for the entire sequence.

Thus, an important challenge for any color tracking system to work in real
unconstrained environments, is the ability to accommodate variations in the
amount of source light reflected from the tracked surface.

The choice of different color spaces like HSL, normalized color rgb ([10],[7]),
or the color space (B −G,G−R,R+G+B), can give some robustness against
varying illumination, highlights, interreflections or changes in surface orientation
(see [2] for an analysis of different color spaces). But none of these transforma-
tions is general enough to cope with arbitrary changes in illumination.

Instead of searching for color constancy, other approaches try to adapt the
color distribution over time. In [6], for example, Gaussian mixtures models are
used to estimate densities of color, and under the assumption that lighting con-
ditions change smoothly over time, the models are recursively adapted. In [8],
the color distribution is parameterized as a random vector and a second order
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Fig. 1. Example frames of a time-varying color illuminant

Markov model is used to predict the evolution of the corresponding color his-
togram. These techniques perform much better than the mere change of color
space representation, but have the drawback that they do not check for the
goodness of the adaptation, which can lead to a failure.

The fusion of several visual modules using different criteria offers more reli-
ability than methods that only use one feature. In this sense, the real-time head
tracking system presented in [1], models the head of a person by an ellipse and
uses intensity gradients and color histograms to update the head position over
time. In [5], color histograms are fused with stereovision information in order to
dynamically adapt the size of the tracked head. These real time applications are
constrained to tracking of elliptical shapes.

In this paper, we present a new methodology that addresses the problems
presented by the approaches described above, that results in a robust tracking
system able to cope with cluttered scenes and varying illumination conditions.
The robustness of our method lies in the fusion of color and shape information,
which are iteratively adapted using the CONDENSATION algorithm [3].

Section 2 presents the main features of our method and the advantages of
fusing color and shape. In Section 3 a detailed description of the method is given.
Results and conclusions are presented in Sections 4 and 5, respectively.

2 Overview

Before entering into a detailed description of the proposed method we give a short
glimpse of its main features:

– Integration of Color and Shape Information:fusion of both vision mod-
ules makes our method appropriate to work in cluttered scenes. In Fig. 2 we
can see an example of the power of this fusion in the tracking of a snail shell.
Fig. 2b illustrates the clutter of the scene difficulting the tracking procedure
when only using edge information. If the color distribution of the shell is
known, the image can be segmented via color histograms [9] (see Fig. 2c),
and use this information to discriminate many false edges (Fig. 2d).
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Fig. 2. Clutter in edge-map is reduced using the information from the object’s
color

– Ability to Adapt Shape Deformation and Varying Illumination:
accommodation to varying illuminating conditions is needed to get a good
color segmentation of the tracked object. As shown above (Fig. 2d), color
segmentation is used to eliminate many false edges from the region of in-
terest, simplifying a final stage of adapting a snake (maintaining affinity) to
the contour of the object (assuming that the set of possible shapes of image
contours do indeed form affine spaces). We introduce a restriction to the clas-
sical snake minimization procedure [4], to obtain affine deformations only.
This feature makes our system robust to partial occlusions of the target.

– Fusion of Color and Shape in a Probabilistic Framework: the CON-

DENSATION algorithm offers the appropriate framework to integrate both
color and contour information, and to perform tracking of the object color
distribution in color space, and that of the object contour in image space,
both simultaneously. That is, using the predictive filter, multiple estimates
of the object color distribution are formulated at each iteration. These es-
timates are weighted and updated taking into account the object shape,
enabling the rejection of objects with similar color but different shape than
the target. Finally, the best color distribution is used to segment the image
and refine the object’s contour.

3 The Tracking Algorithm

In this section a detailed description of the steps used in the method is presented.
For ease of explanation these steps are divided as in the CONDENSATION algorithm
(Fig. 3 shows the one dimensional case):

3.1 Parameterization and pdf of Color Distribution

It has been pointed out that an interesting feature of the presented method is
that tracking is performed simultaneously in both color and image spaces. In fact,
the element being directly tracked by the filter is the object color distribution
C, that at time t is the collection of all image pixel color values It that belong
to the target, i.e, Ct = {(Ri, Gi, Bi) | i = 1, . . . ,Mt}, where Mt is the number
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Fig. 3. One iteration of the CONDENSATION algorithm for the one-dimensional
case. The weight of each sample is represented by its gray level

of object points at time t, and 0 ≤ Ri, Gi, Bi ≤ 1 (we assume without loss
of generality, that the color space is RGB, but it is extensible to any color
space). As the set of object points can be arbitrarily high, the state vector
xt will be a parameterization of Ct with components (adapted from [8]) xt =[
m�t ,λ

�
t , θt, φt

]�
, wheremt =

[
R̄, Ḡ, B̄

]� is the centroid of Ct , λt = [λ1, λ2, λ3]
�

are the magnitudes of the principal components of Ct; and θt, φt are the angles
centered at mt that align the two most significant principal components of Ct
with respect to the principal components of Ct−1 (see Fig. 4).

At time t, a set of N samples s(n)t−1 (n = 1, . . . , N) of the form of x, param-
eterizing N color distributions C(n)t−1 are available (step (a) from Fig. 3). Each
distribution has an associated weight π(n)t−1. The whole set represents an approx-
imation of the a posteriori density function p (xt−1|Zt−1) (see Fig. 5), where
Zt−1 = {z0, . . . , zt−1} is the history of measurements.

Fig. 4. Principal directions of two consecutive color distributions. The param-
eter θt is the angle that aligns e1t−1 with respect to e1t . The parameter φt is the
angle that aligns e2t−1 with respect to e2t after having rotated e2t−1 an angle θt
around the axis e1t−1 × e1t
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Fig. 5. Four samples of color distribution from the set
{
s(n)t−1

}
(in the last image,

samples are shown together). Gray level is proportional to the sample weights.
The set of all these distributions approximates the a posteriori pdf p (xt−1|Zt−1)

3.2 Sampling from p (xt−1|Zt−1)

The next step in the estimation of p (xt|Zt) consists of sampling with replace-
ment N times the set

{
s(n)t−1

}
, where each element has probability π

(n)
t−1 of being

chosen (step (b) from Fig. 3). This, will give us a new set
{
s′(n)t

}
of color dis-

tribution parameterizations. Those distributions having higher weights may be
chosen several times, so the new set can have identical copies of elements. On
the other hand, those distributions having lower weights may not be chosen (see
Fig. 6a).

3.3 Probabilistic Propagation of Samples

Each sample s′(n)t of the set is propagated (see Fig. 3c and Fig. 6a) according to
the following dynamic model:

s(n)t = As′(n)t +Bw(n)
t

where A is the deterministic part, assigned as a first order model describing the
movement of an object with constant velocity. Bw(n)

t is the stochastic compo-
nent, with w(n)

t a vector of standard normal random variables with unit standard
deviation, and BB� is the process noise covariance. The parameters A and B
are estimated a priori from a training sequence.

Each predicted sample s(i)t represents the set of parameters defining the rigid
transformations that will be used to warp the color distribution C′(i)t associated
with the sample s′(i)t , in order to obtain the new estimated distribution C(i)t (with
parameters s(i)t ).

3.4 Measure and Weight

In this step, each element s(n)t has to be weighted according to some measured
features, and is precisely at this point where we integrate the structural infor-
mation of the object’s contour. From the propagated color distributions C(n)t , we
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Fig. 6. (a) Sampling and probabilistic propagation from color distributions C(n)t ,
of Fig. 5. Observe that the sample having the highest weight has been chosen
two times, while another sample with lower weight has not been chosen. (b) Con-
struction of the histograms H(n)

t and results of the corresponding segmentations
S(n)t

construct the color histograms H(n)
t with R · G · B bins:

H(n)
t (r, g, b) = #

{
(R,G,B) ∈ C(n)t | r − 1

R
< R ≤ r

R
,
g − 1

G
< G ≤ g

G
,
b − 1

B
< B ≤ b

B

}

and where r = [1, . . . ,R], g = [1, . . . ,G], b = [1, . . . ,B], with {r, g, b,R,G,B} ∈
N. This histogram is used to generate a segmentation S

(n)
t from the entire

image It. That is, given a pixel It(u, v) with color value (R,G,B) the corre-
sponding value of the segmented image S

(n)
t (u, v) will be assigned a value 1

if H(n)
t (r, g, b) > 0, where r = "R · R#, g = "G · G# and b = "B · B# (Fig. 6b).
The goal is to assign higher weights to the samples s(n)t generating “better”

segmentations of the tracked object. To this end, simple morphological opera-
tions are performed on S

(n)
t to extract a blob corresponding to the segmented

object (Fig. 7a). After adjusting a snake along the contour of this blob, the
weight assigned to s(n)t is computed according to the function:

π
(n)
t = e−

ρ2

2σ2

and ρ = μ1(1 − Φaffine) + μ2(1− Φarea) + μ3(1− Φquality).
Functions Φaffine, Φarea and Φquality return a value in the range [0, 1] and

represent a measure of the following features:

– Affine Similarity: let∇S(n)
t be a binary image of the edges of S(n)

t , and rt−1
a collection of image points along the snake adjusted to the contour of the
object in the iteration t−1. rt−1 is used as initialization of an affine snake r(n)t
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that is adjusted to ∇S(n)
t . Φaffine, measures the similarity between r

(n)
t =

(ui,(n)t , v
i,(n)
t ) (i = 1, ..., Nr), and ∇S(n)

t :

Φaffine =
1
Nr

Nr∑
i=1

∇S(n)
t

(
u
i,(n)
t , v

i,(n)
t

)
– Congruent Value of Area: another factor to take into account when evalu-

ating the goodness of the segmentation S
(n)
t is how close is the area Area(n)t

of the snake r
(n)
t to the predicted area Ãreat = Areat−1 + μ(Areat−1 −

Areat−2), where Areat−i is the area of the refined snake at iteration t − i
(see Sect. 3.5). This is considered in the function:

Φarea = |Ãreat −Area
(n)
t |/max

{
Ãreat, Area

(n)
t

}
– Quality of the Segmentation: the function Φquality is introduced to pe-

nalize those segmentations of “low” quality that present some holes into the
area of the segmented object. Φquality is a linear function of the Euler number
of the processed S(n)t .

Finally, the set of N weights π(n)t associated to each of the samples s(n)t , repre-
sents an approximation to the a posteriori density function p (xt|Zt).

3.5 Contour Updating

The last step of our algorithm, consists in refining the fitting of the object
boundary, in order to obtain rt. This is done by taking the contour of the seg-
mented image corresponding to the best sample (∇S(i)

t | π(i)t ≥ π
(j)
t ∀j �=

i, 1 ≤ j ≤ N), and instead of adjusting the snake rt−1 to ∇S(i)
t , it is adjusted

Fig. 7. (a) Segmented image S(n)
t after postprocessing operations (the example

from Fig. 2) (b) The red curve is the initial snake (rt−1). The black curve is
the boundary (∇S(n)

t ) of the segmented image. (c) Intermediate steps of the
affine snake fitting. (d) Final result of the snake fitting (r(n)t ). Observe that if
the deformations were not affine, the snake may have erroneously evolved to
encompass the neck of the snail
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Fig. 8. Results of the 4 experiments

to ∇I∗t = ∇It · dil(∇S(i)
t ), where ∇It is the gradient of It, and the function

dil(·), refers to a morphological dilate operation. ∇I∗t is in fact the original edge
image, from which all the clutter and disturbing edges have been eliminated (see
Fig. 2).

4 Experimental Results

In this Section four sets of sequence results are presented (summarized in Fig. 8)
to illustrate the robustness of our system under different conditions. As the
algorithm has been implemented in an interpretative language (MATLAB), speed
results will not be analyzed. Attention will be focused on the effectiveness of the
method. In the first experiment we show how our system is able to accommodate



588 Francesc Moreno-Noguer et al.

color by applying it over a synthetic sequence of circles moving around and
changing randomly its color. In the upper left image of Fig. 8 the path of the color
distributions for the tracked circle is shown. The second experiment (tracking of
a colored rectangle) corresponds to the sequence introduced in Fig 2. It has to
be pointed out that in the previous experiment we used the RGB color space,
but in the present and subsequent experiments the color space used was the
(B −G,G−R,R+G+B) in order to provide robustness to specular higlights.
The last two experiments, correspond to outdoor scenes, where although the
change in illumination conditions is limited, they are useful to show that our
method works with non-uniform shapes (third experiment of a beatle tracking),
and in cluttered scenarios (fourth experiment of a snail tracking).

5 Conclusions

In this paper we have presented a new approach to the color object tracking
under cluttered and varying illumination environments that dynamically accom-
modates the color distribution and shape of the object. The robustness of the
method lies in the fusion of both modules in the probabilistic framework pro-
vided by the CONDENSATION algorithm. Results demonstrate the reliability of
the tracking system in several experiments.
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Abstract. The size of retinal vascular caliber in eye fundus images is a funda-

mental diagnosis parameter in the study of systemic vascular pathologies, like 

arterial hypertension or arteriosclerosis. ART-VENA is a semiautomatic system 

to measure the retinal vascular caliber. From the medical point of view, its re-

peatability (coefficients of variation under 1.5%) turns it into a reliable tool to 

objectify vascular changes which previously depended on the observer’s sub-

jectivity. 

1   Introduction 

The automatic computerized analysis of blood vessels from medical images has 

played, in the last years, an important role in many clinical and research studies on a 

large number of diseases. The presence of noise, the variability of the anatomical 

fundus and the low and changing contrast of vessels in many image modalities make 

the reliable vessel detection a difficult task. Therefore, automatic detection becomes a 

key starting point. Particularly, retinal vascular caliber is a fundamental parameter in 

the study of systemic vascular pathologies, like arterial hypertension or arteriosclero-

sis. Vessels present in the eye are the first to manifest the symptoms of the arterial 

hypertension [1]. The abnormalities in the retinal vascularization can reflect the de-

gree of damage provoked by these diseases, an aspect that decisively influences the 

development of brain and cardiovascular complications. 

Before the analysis of the alterations in the retinal vascular caliber due to these 

systemic diseases, it is necessary to study the variations caused by age in normal 

patients. This is a controversial topic in the medical field. Several classic authors have 

observed that old age is directly related to arteriolar caliber alterations in normal 

patients, though there is not an agreement on the causes of this relation [2, 3, 4]. On 

F.J. Perales et al. (Eds.): IbPRIA 2003, LNCS 2652, pp. 598-605, 2003. 
c Springer-Verlag Berlin Heidelberg 2003



the contrary, other authors do not find retinal vascular caliber changes in old patients 

[5, 6, 7]. It has to be taken into account that these descriptions are highly subjective. 

It would be very useful, therefore, to develop an effective and reproducible method 

to objectively evaluate the retinal vascular caliber. This objective measure could de-

finitively determine whether observed alterations are related to age in normal patients, 

and, in case that this relation exists, it could distinguish between these changes and 

those originated by general diseases, like arterial hypertension or arteriosclerosis. 

1.1   Retinal Vascular Caliber Measurement 

Retinal vascular caliber measurement has been a widely studied subject in the area of 

Ophthalmology. In the middle of the 20th century many works begin to be carried out 

with the aim of predicting, from these measures, the state and prognosis of diseases 

like arterial hypertension or arteriosclerosis.  

In a first stage, from the 50’s to the 80’s, vascular width measurement from eye 

fundus photographs was manually made by means of retinal image projections [8, 9, 

10, 11, 12, 13]. Several works prove that these measures can be performed with an 

error inferior to 3 m at the retina level [11, 14]. Obtained results turned out to be 

contradictory in many cases, probably as a result of the high subjectivity of the analy-

sis and the lack of statistical studies on the acquired data. Brinchmann-Hansen and 

col. realized the first studies statistically analyzed [15]. They found the caliber of 

three arteries and three veins, achieving a coefficient of variation of 3.6 %. Posterior 

studies reach a decrease in the coefficient of variation down to 2.3% [16, 17]. 

At the end of the 80’s decade, computerized vessel measurement techniques ap-

peared. In the main, these techniques use the computer just to visualize and store the 

data. The spotting of blood vessel boundary points is made manually by the specialist. 

Some works reached coefficients of variation between 0.6% and 4.0%, with mean 

value around 2.2% [18, 19, 20]. Especially important are the works of Polak and col. 

on the reproducibility and sensitivity of the Zeiss’ analyzer of retinal vessels (Zeiss 

RVA) [21]. In size measurements of arteries and veins they obtained coefficients of 

variation values of 1.3% and 2.6% respectively. These data place the Zeiss’ vessel 

analyzer among the reference commercial instruments in this area. 

1.2   Vessel Detection 

Automatic detection of vessels has involved much research in the field of digital 

image processing during the last years. Many works in the literature address the prob-

lem of automatic detection of blood vessels in various domains.  

Tracking of vessels has been one of the more studied techniques in recent years 

[22, 23]. In general, given a starting vessel contour point and one search direction, 

vessel tracking involves exploring the image to find other contour points. The crite-

rion to define boundary points is based on the analysis of the pixel gray level values 

on a section that is orthogonal to the tracking direction. More sophisticated versions 

of this idea transform the problem of vessel contour detection in that of graph optimal 

path search [24]. Other artificial intelligence or computer vision methods have been 
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also proposed to obtain a complete automation of the detection procedure, exploiting 

in a more exhaustive way the available anatomical knowledge [25, 26]. 

The majority of the developed methods adopt boundary detection as the basic tool 

for vessel detection. Since vessel contours are usually smooth and fuzzy and the fun-

dus is noisy, a number of authors have applied, as an initial strategy, the maximiza-

tion of vessel enhancement. Some approaches are based on rotation invariant opera-

tors or linear morphological operators of suitable size and orientation, which are 

applied to the image to minimize noise [25, 27]. Alternative approaches involve im-

age convolution with multiple filters per model, each of them designed to detect ves-

sels of given size and orientation [28]. The main drawback to these methods is their 

high computational cost, which renders them practically unusable for on-line diagno-

sis assistance systems or systems requiring relatively short response times. Zana and 

Klein developed a vessel bifurcation detection method as a previous step to image 

registration [29]. Quek and Kirbas carried out a method for vessel extraction from 

angiographies based on wave propagation [30]. 

2   Retinal Vascular Caliber Measurement 

The measurement method developed in this work is nearly completely automatic. The 

operator is initially required just to mark the optic nerve, though high accuracy is not 

necessary. Once this initial reference is set, the automatic sequence of detection and 

measurement of the vessels on the image starts. The method output is a list of the 

structures identified as vessels and their widths, ready to be analyzed by the expert.  

As the fundus vascular structures are inherently radial, the width measurement of 

retinal vessels will be performed over various circumferences centered at the optic 

nerve, at distances that are multiple of the optic disk radius, depicted by the operator 

(a common procedure in Ophthalmology). Using a polar coordinate space, a linear 

representation of the gray level profiles is obtained for each of the analyzed circum-

ferences, as shown in left side of Fig. 1. The gray level profile along each circumfer-

ence is characterized by the presence of valleys, which are potential vessels. They are 

placed over the noise of the anatomical fundus that is nearly uniformly distributed. 

Before its detection, a preprocessing stage is needed to minimize noise effects. 

The employed filter for noise reduction must not modify the location of the profile 

transition regions, which determine vessel widths in the measurement phase. To 

minimize noise, a median filter has been chosen. It permits to remove gray level val-

ues that differ too much from the surrounding values. This filtering reduces the detec-

tion of valleys caused by noise perturbations induced by the anatomical fundus. The 

median filter used in this work has a window size of 11 pixels centered at the pixel 

under analysis. One important property of this filter is that it does not alter the magni-

tude of the gray level gradient and, therefore, respects the position of transitions. The 

right side of Fig. 1 shows the profile obtained after the filtering process.  

Although the median filter eliminates many noise valleys, some of them, produced 

by illumination variations and the presence of fundus anatomical structures other than 

vessels, still remain, together with the blood vessel valleys. For that reason, the sim-

ple detection of filtered sequence minima does not warranty correct identification of 
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vessels. The definitive detection of blood vessels valleys is established as a function 

of their 1D and 2D morphology. In this work the hypothesis that the traversal vessel 

profiles are deep is assumed (1D model), i.e., their gray levels are much smaller than 

the surrounding fundus ones. Consequently, the intensity differences between vessel 

valleys and fundus are greater than those of noise valleys. Moreover, the vessel valley 

structure is stable in the radial direction regarding the optic disk (2D model). 

Fig. 2 shows the 1D vessel model. Points x1, x2 and x3 correspond respectively to 

the sites of the previous maximum, the minimum and the posterior maximum on the 

valley structure. Parameters y1, y2 and y3 are the profile heights (gray levels) meas-

ured at x1, x2 and x3 respectively. Using the three height parameters, a valley quality 

measure reflecting relative depth is established. This measure is given by the expres-

sion 

31

22
1

yy

y
Q . (1) 

Valleys with Q values greater than 0.06 are considered candidates to form blood 

vessels. This process is realized individually over 2n+1 circumferences, with n posi-

tive integer and with their radius differing in one pixel, being the innermost circum-

ference radius selected by the specialist. The n value, which can be modified by the 

operator, is recommended to be set between 5 

and 9. Smaller values do not warranty the 

straight vessel hypothesis which will be applied 

in the width measurement stage. These data are 

the input to the 2D modeling phase. For a re-

gion to be considered a true vessel, a valley 

must appear in 2/3 of the analyzed circumfer-

ences. In addition, the angular distance between 

valleys associated to consecutive circumfer-

ences must be lesser than 0.089 radians. In the 

top left hand side of Fig. 3, a sequence of 11 

valleys (n=5) can be observed, which verifies 

the 1D and 2D imposed conditions, so that they 

determine the existence of a blood. 

When the vessel positions are located, the 

next step is width measurement. This task is 

 

Fig. 1. Left: Gray level profile along one circumference centered at the optic nerve. Right: 

Gray level profile after median filter application.  

 

Fig. 2. Vessel model 
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accomplished by locating the extremes of the gray level derivative along the angular 

direction, i.e., along the profiles. Hence, positions of vessel walls are set at the maxi-

mum transition points of the intensity profile. These extreme points are obtained by 

means of quadratic interpolation (fit to a parabola) of the derivative values, to obtain 

subpixel accuracy. In this way, potential image quantization ambiguities are avoided 

and results are better assessed. Assuming the hypothesis of the analyzed vessel seg-

ment is straight, the available points can be fitted to a straight line, as shown on the 

bottom left hand side and on the right hand side images in Fig. 3. Caliber is finally 

estimated over a line perpendicular to the bisector of the lines fitted to both vessel 

borders, as can be seen in Fig. 3.  

3   Results 

In order to validate the developed procedure, a reproducibility/reliability study has 

been designed in three stages. These phases are intended to evaluate the reproducibil-

ity/reliability of the method against diverse factors that can influence the study. These 

factors include variability on the measurements made by an observer, variability 

among different observers and variability due to the patient under study. 

Once the goals of this experience were explained to the volunteers, chosen from 

the companion of the patients that came to the Servicio de Urgencias de Oftalmología 

of the Complejo Hospitalario Universitario de Santiago de Compostela (Spain) and 

after they had signed the informed consent to proceed with pupil dilation and an oph-

thalmologic exam, the volunteer pupil was dilated using an instillation of two drips of 

tropicamide and two drips of phenylephrine. After a period of 20 to 30 minutes, an 

eye fundus photograph was taken from both eyes of each subject at 50 degrees, with 

aneritra light (540 nanometers) and centered at the papilla. The camera used to take 

the fundus photographs was the Topcon TRC-50 IA connected to the IMAGEnet 

1024 Digital Imaging Systems by Topcon Instruments, Paramus, NJ. All captured 

images were directly stored in optical disks and displayed on a high resolution moni-

tor (1280x1024 pixels) for their visualization and posterior analysis. The direct digi-

 

Fig. 3. Left: Sequence of profiles verifying 1D and 2D modeling conditions. Right: Geomet-

ric calculus of the straight line that is used to determine de the blood vessel width. 
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talization of the captured image was made by means of a digital camera connected to 

the aforementioned fundus camera. The elimination of the intermediate step, usually 

included in many other procedures, avoids the introduction of error factors [31]. 

To achieve the objectives of this work, a basic population sample was formed by 

120 normotensive volunteers (240 fundus images), without any known vascular pa-

thologies. A subject is classified as normotensive in the absence of a previous diagno-

sis of arterial hypertension and the presence of PAS/PAD quantities under 140/90, 

following the procedures of the American National Committee of HBP [32]. Subject 

ages ranged from 10 to 69 years, with a 1:1 ratio between sexes. Each age group (10-

19; 20-29; 30-39; 40-49; 50-59; 60-69) is constituted by 20 individuals, 10 males and 

10 females. In all cases the volunteers had transparent media in both eyes and a re-

fractive defect inferior to 3 diopters of hypermetropia, myopia and astigmatism.  

Table 1 shows the results obtained for the coefficient of variation over the individ-

ual measures and the Pearson’s momentum correlation coefficient (p<0.001) over the 

global measures. The intraobserver reproducibility indicates agreement in measure-

ments made by the same observer when repeating the measure over the same set of 

images. To analyze this factor, one single observer evaluated 40 images correspond-

ing to 40 eyes of 20 individuals (20 left eyes and 20 right eyes) two times, separated 

from each other by an interval of 24 hours, without knowing nor the results neither 

the measurement points in the previous attempt. The interobserver reproducibility 

indicates agreement in measurements realized independently by two different observ-

ers. In this case, two observers evaluated, without information exchange, 30 images 

corresponding to 30 eyes of 15 individuals (15 left eyes and 15 right eyes). Intraindi-

vidual reproducibility indicates concordance in measurements, realized in a blind 

fashion, by the same observer over images of the same subject and same eye taken 

with a difference in some time interval. To analyze this factor, one single observer 

evaluated two images of the same eye, separated by a time period of one month, re-

peating the process for 30 eyes of 15 individuals (15 left eyes and 15 right eyes), 

without knowing nor the results neither the measurement points in the previous trial.  

Table 1. Coefficient of variation (CV) and Pearson’s momentum correlation coefficient (r) 

obtained in the various planted experiments.  

 CV (r) C 

 Intraobserver Interobserver Intraindividual Polak, 2000 

Artery 1.10 % (0.96) 1.30 % (0.94) 1.08 % (0.93) 1.3 % 

Vein 0.98 % (0.91) 1.47 % (0.86) 1.12 % (0.93) 2.6 % 

Arteriovenous index 0.50 % (0.99) 0.99 % (0.95) 0.40 % (0.99)  

4   Discussion 

Reproducibility of measurement methods is a crucial aspect in Medicine [31]. For this 

reason, the first planted goal in this work is to demonstrate that repeated vascular 

caliber measurements over the same photograph without knowing the reference 

points bring the same results. As a second objective, it has been proposed to demon-
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strate that the same thing happens when one certain photograph is measured by two 

different observers. As a third objective, to demonstrate also that vascular caliber 

measurements from two photographs of the same individual with a time difference of 

one month do not present significant variations.  

Intraobserver, interobserver and intraindividual variabilities are small in our 

method and the measurement reproducibility in the three groups presents a very high 

degree of concordance, with a Pearson’s momentum correlation coefficient (equiva-

lent to the intraclass correlation coefficient) over 0.86 and a coefficient of variation 

inferior to 1.47% in all cases, while Polak et col. obtained coefficient of variation 

values between 1.3% and 2.6% in their work with the Zeiss’ retinal vessel analyzer 

(Zeiss RVA) [21]. In particular, this coefficient of variation superior bound is the best 

obtained by the whole of the previously commented methods. These results render the 

presented method a secure tool to objectify microvascular changes which previously 

depended on the observer’s subjectivity. 

The research project “Desarrollo y Validación de un Método de Medida del Cali-

bre Microvascular Retiniano en la Población Normal” carried out using ART-VENA 

(inscribed in the Spanish IP Register, with number 2001/15/934) was prized with the 

Premio de Investigación Academia Médico-Quirúrgica /Consellería de Sanidade of 

the Xunta de Galicia (Spain).  
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Abstract. In the recent years, many authors have begun to exploit the
extra information provided by color images to solve many computer vi-
sion problems. Among these problems, we find the texture classification
field, which traditionally has used grayscale images, primarily due to the
high hardware and processing costs.
In this paper, a new approach for enhancing classical texture analysis
methods is presented. By means of the band ratioing technique, we can
extend any feature extraction algorithm to take advantage of color in-
formation and achieve higher classification rates. To prove this extreme,
three standard techniques has been selected: Gabor filters, Wavelets and
Cooccurrence Matrices.
For testing purposes, 30 color textures have been selected from the Vistex
database. We will perform a number of experiments on that texture set,
combining different ways of adapting the former algorithms to process
color textures and extract features from them.

1 Introduction

Texture classification is a key field in many computer vision applications, rang-
ing from quality control to remote sensing. Briefly described, there is a finite
number of texture classes we have to learn to recognize. In the first stage of the
development of such kind of systems, we extract useful information (features)
from a set of digital images, known as the training set, containing the textures we
are studying. Once this task has been done, we proceed to classify any unknown
texture into one of the known classes.

Since the earlier approaches to the problem, grayscale images has been widely
used, primarily due to acquisition hardware limitations and/or limited processing
power. In the near past, much effort has been done to develop new feature extrac-
tion algorithms (also known as texture analysis algorithms) to take advantage of
the extra information contained in color images. On the other hand, many clas-
sical grayscale algorithms has been extended to process color textures [1, 2, 3].

Texture analysis algorithms can be divided into statistical and spectral ones.
The former methods extract a set of statistical properties from the spatial dis-
tribution of intensities of a texture. Common examples of this approach are the

F.J. Perales et al. (Eds.): IbPRIA 2003, LNCS 2652, pp. 606–615, 2003.
c© Springer-Verlag Berlin Heidelberg 2003
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histogram method and the family of algorithms based on cooccurrence matri-
ces [4, 5]. The latter techniques, on the other hand, compute a number of features
obtained from the analysis of the local spectrum of the texture. In the following
sections we will give an overview of two spectral methods (Gabor filters and
Wavelets) and a statistical one (Cooccurrence matrices).

2 Gabor Filters

Gabor filters have been extensively used for texture classification and segmen-
tation of grayscale and color textures [6, 1, 3, 7, 8]. These filters are optimally
localized in both space and spatial frequency and allow us to get a set of filtered
images which correspond to a specific scale and orientation component of the
original texture. There are two major approaches to texture analysis using Ga-
bor filters. First, one can look for specific narrowband filters to describe a given
texture class, while the other option is to apply a bank of Gabor filters over the
image and process its outputs to obtain the features that describe the texture
class.

2.1 2D Gabor Filterbank

The Gabor filter bank used in this work is defined in the spatial domain as
follows:

fmn(x, y) =
1

2πσ2m
exp

[
−x

2 + y2

2σ2m

]
· cos 2π(umx cos θ + umy sin θ) . (1)

where m and n are the indexes for the scale and the orientation, respectively,
for a given Gabor filter. Depending on these parameters, the texture will be
analyzed (filtered) at a specific detail level and direction.

As in [1], we define a filterbank with three scales and four orientations. The
bandwidth Bθ [6] is taken to be 40◦ in order to maximize the coverage of the
frequency domain and minimize the overlap between the filters.

2.2 Gabor Features

To obtain texture features we must filter the texture images using the generated
FIRs. This is achieved by convolution on the frequency domain (2), due to the
size of the filters used. For each filtered image, we extract a single feature μmn

which represents its energy, as shown below.

Gmn(x, y) = I(x, y) ∗ fmn . (2)

μmn(x, y) =
√∑

x,y

(Gmn(x, y))
2
. (3)
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This approach is only valid when grayscale images are used. If we want to
filter a color image, we have to preprocess it before this method can be ap-
plied. The more obvious solution for this problem is to transform the image by
a weighted average of the three color bands.

Using this transformation, different colors can give the same grayscale inten-
sity, so color information is lost. To overcome this obstacle, (2) can be applied
on each of the RGB color bands of the image to obtain unichrome features [1].
With this approach, we obtain a set of energies from each spectral band, so the
information extracted from textures, grows by a factor of three. Another disad-
vantage of this technique is that color information is not correlated because it is
simply concatenated. A good idea to solve this independency was proposed by
Palm et al. in [3]. They convert the RGB image to HSV, discarding the intensity
value, and taking the Hue and Saturation to form a complex number, which can
be used to compute the convolution between the image and the gabor filter by
means of a complex FFT.

3 Wavelets

3.1 Introduction

The name ”Wavelets” was first introduced by Morlet, a French geophysicists, in
the early 80’s. The kind of data he was studying couldn’t be properly analyzed
by Fourier analysis, due to the fast change of their frequency contents. For this
reason, he looked for a family of functions suitable for the analysis of that kind
of signals and he found the wavelets.

A wavelet family is a set of functions derived from a single function with
special features, named the mother wavelet, by means of two parameters a and b:

ψa,b(t) =
1√
a
ψ

(
t− b

a

)
. (4)

The parameter a represents the dilation (which is inversely proportional to
frequency) and b the displacement (time localization).

Wavelets are rather complex and we would require a complete book [9] to
deal with them. In the following lines we will show only the basics of this kind
of analysis, focused on texture feature extraction.

3.2 2D Discrete Wavelet Transform and Multiscale Analysis

Wavelets allow to study a signal at different levels of detail. In the case of 2D
signals, this can be interpreted as analyzing the images at different resolutions
or scales. There are more than a single wavelet transform. For this work we
will focus on a non-redundant representation using quadrature mirror filters
(QMF), which consist in two decomposition filters, named h̃ and g̃, and their
mirrors h and g for signal reconstruction. In Figure 1 we can see an schema of
the decomposition stage. In each filtering step, a low resolution image Lj+1 and
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Fig. 1. 2D DWT using FIR filters

three detail images are produced. The detail images D1..3
j contain the details

(high frequency components) extracted from Dj that are not present in Dj + 1.
This scheme can be applied recursively until a given depth is reached.

3.3 Wavelet Features

Detail images obtained by applying 2D DWT can be used as a source for extract-
ing texture features. Since those images contain essentially edge information at
a specific direction (horizontal, vertical and diagonal), its energy is a very good
texture feature. It is defined as follows:

Eij(x, y) =
√∑

x,y

(Dij(x, y))
2
. (5)

where i = 1 . . . 3 and j = 0 . . . depth− 1.
As in the case of Gabor filters, we need some mechanism to be able to process

color images, such as grayscale conversion and independent color band feature
extraction. In this particular case we can use a set of correlation measures [2],
known as wavelet covariance signatures, which are defined as follows:

CBkBl
ij (x, y) =

∑
x,y

DBl
ij D

Bk
ij . (6)

where Bk and Bl represent a color band, and k, l = 1, 2, 3, k ≤ l.
Covariance signatures are, by definition, proportional to the energies. To get

rid of the redundant information, we can define a new set of measures, called
wavelet correlation signatures, defined as follows:

C̃Bk,Bl

ni =

⎧⎨⎩EBk

ni k = l
C

Bk,Bl
ni

E
Bk
ni E

Bl
ni

k �= l
. (7)

4 Gray Level Cooccurrence Matrices

4.1 Introduction

Gray level cooccurrence matrices (GLCM) were introduced for the first time by
Haralick [4] in the early 70’s. A GLCM is a matrix where each cell i, j contains
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the number of times a point having intensity i occurs in a position j located
at an angle θ and a distance d. If we want to make this approach not sensible
to orientation variations, we can use the neighbourhood located at a distance d
from the pixel with intensity i. Only the first quadrant of that neighbourhood
need to be explored, which is equivalent to take θ = 0, 45, 90 simultaneously for
the same matrix.

A final topic concerns the size of the GLCM. If we directly use the 256 gray
levels available in a image, the resulting matrix will be huge, so a mechanism
to reduce its dimensions is needed. There are some options to do this. In this
paper, we have used two different preprocessing tasks:

1. Use Sobel filters to detect the edges of the image. The resulting image will
have five different values: horizontal edge, vertical edge, diagonal edge, sec-
ondary diagonal edge, and no edge. The resulting matrix belongs to a class
of matrices known as Cooccurrence Generalized Matrices (CGM).

2. Reduce the gray levels to 16 using some quantization algorithm such as IGS.
In this case, the resulting matrices are named Spatial Gray Level-Dependent
Matrices (SGLDM).

4.2 Feature Extraction

From a cooccurrence matrix, a number of second order statistics can be com-
puted. The most popular ones are those known as Haralick features [4], followed
by the set of measures introduced by Conners et al. [5].

Obviously, a GLCM cannot be computed directly from a color image, but
from a grayscale one, so a modification is needed to be able to process that kind
of images. There are three ways for doing this:

1. Convert the color image to monochrome. This is straightforward, but it
discards the chromatic information from the images.

2. Process each RGB band separately. With this approach, a GLCM is com-
puted from each color band and the resulting feature vector fv is the con-
catenation of three feature vectors fR, fG, fB, obtained from each matrix
separately. The main disadvantage is that the computational cost increases
considerably and the obtained information is not correlated.

3. Use cross-cooccurrence matrices [10]. This technique follows to extend the
cooccurrence idea explained before to color images. The process consists
in, given a pixel from a color band B1 with intensity i, we will look for
the intensity of a pixel located in another color band B2 at a distance d
and orientation θ. As before, we can use three angles at the same time to
compute a single matrix. Obviously, if B1 = B2 then we are computing
a conventional GCLM. The main advantage of this class of matrices is that
features extracted from them contain color information, because color planes
are processed in pairs, but the feature vector length is increased by a factor
of six.
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5 Band Ratioing

In the previous sections, we have given a brief introduction to three of the most
commonly used feature extraction algorithms, and we have seen the way many
authors are extending them to process color textures. In this section, we will
show a novel approach to do that, obtaining in many cases the highest classifier
performance, while keeping a low number of features.

5.1 Introduction

Band ratioing is a enhancement technique mainly used in the field of remote
sensing. It is usually applied to process LANDSAT TM images1 to enhance
details such as vegetation, grass, soil, etc. It is defined as follows:

I(x, y) =
B1(x, y)
B2(x, y)

. (8)

where B1(x, y) and B2(x, y) are two different spectral bands of the color image.
Its computation is extremely easy, but the bands involved must be processed to
avoid the case when B2(x, y) = 0. To accomplish this, we only have to increase
every pixel from both bands by 1. Theoretically, ratios will be in the interval
(0,256], but in practice most values will be rather small. For this reason, it is
advisable to use logarithm compression to enhance small ratios over larger ones,
so (8) can be rewritten as follows.

I ′(x, y) = log
(
B1(x, y)
B2(x, y)

)
. (9)

It can be easily seen that this technique tends to enhance what is different
in two spectral bands, and as it will be seen in the following section, its output
is suitable for feature extraction.

5.2 Feature Extraction from Rationed Color Textures

In the previous section, we saw that Band Ratioing enhances what is different
in two color bands. If a pixel contains a grayscale value (R = G = B), its ratio
will be 1, but if at least two color components are not equal, the band ratio
will encode the color information in a single value. This is very interesting for
feature extraction from color textures, since we can directly use any grayscale
feature extraction method available. In the following lines, we will show the way
to enhance the Gabor filtering method using band ratioing.

To apply Gabor filtering on a rationed image, we can combine (9) and (2) to
get the following expression:

G′mn(x, y) = log
(
B1(x, y)
B2(x, y)

)
∗ fmn(x, y) . (10)

1 http://rst.gsfc.nasa.gov/Sect1/Sect1 15.html
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Note that (10) directly convolves the band ratios with the Gabor filter, so it
is not necessary to scale the ratios to fit in a byte value.

A very interesting topic is about the implementation of the previous scheme.
When we compute a band ratio, the operands are both eight-bit numbers, i.e,
ranging from 0 . . . 255, but the result will be a real number. There are two dif-
ferent ways to deal with this value:

1. Adjust the result to fit in a byte value (some information is lost).
2. Use the real ratio directly as input to the FFT.

It is easy to see that the second approach is much better since no information
is lost. In our experiments, we have observed a 10% of performance increase
compared to the case when byte values are used. Nevertheless, this option is
only applicable to feature extraction algorithms that make use of the FFT, since
we can not use real numbers to compute cooccurrence matrices, for example.

6 Experiments

For testing the performance of the band ratioing technique combined with the
three feature extraction algorithms presented before, we have used the texture
set defined in [2] which is composed of 30 color textures taken from the Vistex
database2 (Fig. 2). As in [3] we divide each 512x512 image into 64 disjunct
images of 64x64 pixels each, which give us a total of 1920 texture samples. For
each texture class, we randomly select a 80% of the samples for training, and
the rest for testing purposes (hold-out method).

We have performed a number of experiments, applying different color pro-
cessing techniques to be able to process color images. The tables showed in the
next section, gather the classifier performance in all cases.

7 Results

For evaluating the performance of the feature sets obtained in each case, we
have used a Knn classifier, taking K = 5. To measure the distance between two
feature vectors in R

n, the 1-norm is used. To be able to compare the computa-
tional efficiency of each color processing technique, we provide execution time
(in seconds), measured in a PC powered by an AMD Athlon XP 1800+, which
is a very common configuration nowadays. This time obviously depends on the
implementation of each algorithm, which may be more or less optimized, but it
will serve us to have a general idea in terms of performance.
2 http://www-white.media.mit.edu/vismod/imagery/VisionTexture/vistex.html



Use of Band Ratioing for Color Texture Classification 613

Fig. 2. 30 color textures: Bark0, Bark4, Bark6, Bark8, Bark9, Brick1, Brick4,
Brick5, Fabric0, Fabric4, Fabric7, Fabric9, Fabric11, Fabric13, Fabric16, Fab-
ric17, Fabric18, Food0, Food2, Food5, Food8, Grass1, Sand0, Stone4, Tile1,
Tile3, Tile7, Water6, Wood1, Wood2 (left/right,top/bottom)

7.1 Gabor Results

Gabor features were extracted by filtering the textures at 3 scales and 4 different
orientations. This give us a total of 12 gabor energies for each texture sample. As
it can be seen in Table 1, the best performance is achieved by the concatenation
of two band ratios. These results are not only interesting for this topic, but for
the reduced number of features used. If we look at the RGB row, we see that by
using raw color information, 36 features are extracted and the performance is
worse. It is also remarkable the fact that using band ratios, we can even improve
the performance of the Complex Gabor Features introduced in [3], not only in
terms of classification success, but in execution time, due to the higher processing
requirements of the complex FFT.

7.2 Wavelet Results

For Wavelet features we have set the analysis depth at 4, which produces a total
number of 12 features for each texture sample. The wavelet functions used for
this analysis were the biorthogonal Wavelets Bior6.8 available in MatLAB v6.5.
In this case, the performance of the concatenation of two band ratios is not the
best at all, but the classification success is only 1.67% less than the case when
correlation signatures are used, computing three times less features, so classifier
performance is better.
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7.3 Cooccurrence Matrices Results

GLCM features were obtained by computing two coocurrence matrices at dis-
tances 2 and 4. For each matrix, we have calculated Haralick features f1 . . . f12
that give us a total number of 24 texture measures for each sample. The overall
performance in this case is worse than for the case where spectral methods are
used, but we still see a performance increase when band ratios are involved. It
is remarkable to notice how the concatenation of two band ratios still providing
the best results while keeping the number of used features low. In this case, we
only provide the execution time for the SGLDM data, since it is proportional to
the CGM case.

Table 1. Classification rates for Gabor & Wavelet data

Preprocessing algorithm Feat. # Hits Gabor (exec. time) Hits Wavelets (exec. time)

Grayscale 12 89.05% (72.59 s) 88.10% (30.47 s)
Red band 12 89.52% (67.1 s) 90.48% (29.44 s)
Green band 12 90.24% (67.1 s) 85.24% (29.44 s)
Blue band 12 87.38% (67.1 s) 86.19% (29.44 s)
R+G+B 12× 3 93.5 % (201.3 s) 91.19% (88.32 s)
Ratio R/G 12 86.67% (60.7 s) 83.33% (31.53 s)
Ratio R/B 12 90.24% (60.7 s) 87.62% (31.53 s)
Ratio G/B 12 85.48% (60.7 s) 80.95% (31.53 s)
Rat. R/G & R/B 12× 2 95.24% (121.4 s) 93.57% (62.86 s)
Rat. R/G, R/B & G/B 12× 3 95.24% (182.1 s) 93.81% (94.59 s)
Complex color features 24 94,05% (605.94 s) N/A
Correlation signatures 72 N/A 95.24% (89.45 s)

Table 2. Classification rates for CGM and SGLDM data

Preprocessing algorithm Feature # Hits CGM Hits SGLDM (execution time)

Grayscale 24 77.62% 81.43% (104.34 s)
Red band 24 78.57% 83.10% (91.39 s)
Green band 24 79.29% 84.05% (91.39 s)
Blue band 24 79.05% 85.24% (91.39 s)
R+G+B 24× 3 84.76% 93.1% (274.17 s)
Ratio R/G 24 72.38% 74.76% (130.51 s)
Ratio R/B 24 70.24% 76.43% (130.51 s)
Ratio G/B 24 64.29% 70% (130.51 s)
Ratios R/G & R/B 24× 2 85.24% 89.28% (274.17 s)
Ratios R/G, R/B & G/B 24× 3 85.71% 91.67% (391.53 s)
Cross-coocurrence 24× 3 81.19% 90.24% (274.17 s)
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8 Conclusions

In this paper, a new method for extracting color texture features has been pre-
sented. Using band ratioing technique, we have combined RGB color bands to
produce monochromatic images suitable to use as input to any feature extraction
algorithm currently available. From an implementation point of view, feature ex-
traction algorithms that can use real images are preferred since no information
is lost from band ratios. The most important conclusion is the fact that this
technique allows us to compress textural color information which leads to higher
classification performance while keeping the number of features low. It is inter-
esting to see how the use of three band ratios does not lead to better performance
(or very little increase) than the case where only two ratios are involved. This is
obvious since the third one is a linear combination of the other two, so the extra
features do not contain additional information.
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Abstract. Independent Component Analysis (ICA) have recently been
proposed as a tool to unmix hyperspectral data. ICA is founded on
two assumptions: i) The observed data vector is a linear mixture of the
sources (abundance fractions); ii) sources are independent. Concerning
hyperspectral data, the first assumption is valid whenever the constituent
substances are surface distributed. The second assumption, however, is
violated, since the sum of abundance fractions associated to each pixel
is constant due to physical constraints in the data acquisition process.
Thus, sources cannot be independent.
This paper gives evidence that ICA, at least in its canonical form, is
not suited to unmix hyperspectral data. We arrive to this conclusion by
minimizing the mutual information of simulated hyperspectral mixtures.
The hyperspectral data model includes signature variability, abundance
perturbation, sensor Point Spread Function (PSF), abundance constraint
and electronic noise. Mutual information computation is based on fitting
mixtures of Gaussians to the observed data.

1 Introduction

The development of high spatial resolution airborne and satellite sensors have
improved the capability of ground-based data collection in the fields of agricul-
ture, geography, geology, mineral identification, and detection and classification
of targets activities [1], [2].

Hyperspectral sensors use many contiguous bands of high spectral resolution
in optical and infrared spectra [3], [4]. The signal read by the sensor on a given
band at a given pixel is a mixture of substances reflected energy (on the same
band) presented in the respective pixel spatial coverage.
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Hyperspectral unmixing is the decomposition of the pixel spectra into con-
stituent ground cover substances, also called endmembers, and their correspond-
ing fractional abundances.

Depending on the substance distribution at each pixel, the observed mixture
is either linear or non-linear. Linear mixing model assumes that substances are
surface distributed in the scene and the incident solar radiation is scattered by
surface through a single bounce. Non-linear model assumes that substances are
volume distributed in the scene and the incident solar radiation is scattered by
scene through multiple bounces [5].

Under the linear mixing model, and assuming that the number of substances
and their reflectance spectrum are known, hyperspectral unmixing is a simple
linear problem, which can be addressed, for example, under the maximum like-
lihood setup. In practice this knowledge is very difficult, if not impossible, to
obtain. Hyperspectral unmixing falls, therefore, into the class of blind source
separation problems [6].

Recently, blind source separation, feature extraction, and unsupervised recog-
nition has been addressed under the Independent Component Analysis (ICA)
framework [7]. ICA consists in finding a linear decomposition of observed data
into independent components.

Given that hyperspectral data are, in given circumstances, linear mixtures,
ICA come to mind as a possible tool to unmix this class of data. In fact the
application of ICA to hyperspectral data has been proposed in [8], [9], [10], [11].
However, ICA is based on the assumption of mutually independent sources,
which is not the case of hyperspectral data, since the sum of abundance frac-
tions is constant, implying dependence among abundances. These dependence
compromises ICA applicability to hyperspectral images.

This paper address hyperspectral data source dependence and its impact on
ICA performance. The study is based on mutual information minimization. Hy-
perspectral observations are obtained by a generative model. This model takes
into account the degradation mechanisms normally found in hyperspectral appli-
cations, namely signature variability, abundance perturbation, abundance con-
straint and system noise. Mutual information is computed based on mixture of
Gaussians whose parameters (number of components, means, covariances and
weights) are inferred using the Minimum Description Length (MDL) based al-
gorithm [12]. We study the behaviour of the mutual information as function of
the unmixing matrix. The conclusion is that the unmixing matrix minimizing
the mutual information might be very far from the true unmixing matrix.

The computation of mutual information is based on simulated sample data
because the analytical determination of mutual information is very hard, if not
impossible, even though we know the probability density functions of the sources
(they are simulated).

This paper is organized as follows. Section 2 formulates the mixed pixel classi-
fication problem as a linear mixture model and introduces a model accounting for
data dependence, signature variability, and abundance perturbation. Section 3
presents a brief resume of ICA. In Section 4 performance analysis of ICA on
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Fig. 1. Surface distributed substances in spatial cover area

hiperspectral data are studied based on simulations results. Section 5 concludes
with some remarks.

2 Linear Spectral Mixture Model

Linear mixture model considers that substances present in the scene are surface
distributed according to their abundance fractions (see Figure 1). Thus, each
mixed pixel vector is a linear mixture of endmember spectra presented in the
covered area. Let rj be the sensor received signal at the jth frequency and h(x, y)
the point spread function (PSF) of the sensor. Then, rj at the origin is

rj =
∫
A

mj(x, y)h(−x,−y) dxdy, (1)

where mj(x, y) is the backscattered signal at jth frequency of a point with
coordinates (x, y) in the spatial cover area of the sensor denoted by A. Assuming
that

mj(x, y) = mji, (x, y) ∈ Ai, (2)

where Ai is the area occupied by the ith endmember, we then have

rj =
∑
i

∫
Ai

mjih(−x,−y) dxdy, (3)

since mji does not depend on the surface coordinates (x, y). Assuming that
h(x, y) = 1 in the covered area, it follows that

rj =
∑
i

mjiAi. (4)

If PSF is not a constant then expression (4) should be replaced by

rj =
∑
i

mjiβiAi, (5)
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where

βi =

∫
Ai
h(−x,−y) dxdy

Ai
. (6)

Denoting αi ≡ βiAi, it follows that∑
i

αi =
∫
A

h(−x,−y) dxdy = c, (7)

where c is a constant.
Let r be an L × 1 vector where L is the total number of bands and mi =

[m1i,m2i, . . . ,mLi]T is the so-called signature of the ith endmember. Equation
(5) can be written as

r = Mα, (8)

where M = [m1,m2, . . . ,mp] is a matrix with signatures of the endmembers
present in spatial cover area and α = [α1, α2, . . . , αp]T . The notation (·)T indi-
cates vector transposed.

In hyperspectral applications endmembers signature may vary from pixel to
pixel. These perturbations has been studied and accounted for in the unmixing
algorithms [13], [14], [15]. In this paper we model signature variability by

mi = θi ∗mo
i + ni, (9)

where mo
i is a reference endmember signature, θi is a scale parameter centered

about one and ni a zero-mean white random vector. Model (9) does not describe
all the possible variations of endmember signatures. Nevertheless, by choosing
θi with a small variance and a unitary mean and an appropriate variance for
the components of random vector ni, we can approximate many real signature
variations.

Illumination may vary from pixel to pixel and affect all bands equally. We
model this by a random variable γ according to

r =M γθα︸︷︷︸
s

+n. (10)

where θ is a p× p diagonal matrix and n is additive white Gaussian noise with
zero-mean and covariance matrix σ2I (I is the identity matrix) resulting from
electronic noise and signature variability.

Apart from noise vector n, model (10) has a canonical mixture form, i.e.,
r = Ms, where s = γθα.

A spectral linear unmixing method estimates the unknown sources s. If
M is known, estimation of s is an ordinary linear problem. If M is unknown
the problem is more difficult, and has been addressed under ICA framework
in [16], [17], [18].
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3 Independent Component Analysis

ICA [7] is an unsupervised source separation process, which has been successfully
applied to blind separation problems [19], [20], [21]. Let x be an L×1 observation
column vector, such as

x = Ms, (11)

where M is an unknown L× p (L ≥ p) mixing matrix and s = [s1 s2 ... sp]T an
unknown random data vector of mutually independent components and unknown
distributions, although at most one αi might be Gaussian distributed. ICA finds
a p× L separating matrix W, such that

y = Wx = PCs, (12)

where y is a vector of independent components, and P and C are permutation
a scale matrices, respectively.

Separating matrix W minimizes the mutual information of y given by

I(y1, y2, . . . , yp) =
∑
i

H(yi)−H(y), (13)

where H(y) is the entropy (see, e.g., [19], [20]). The Negentropy (see, e.g., [21]),
an entity close related with the mutual information, is also used as objective
function to obtain y.

In applying ICA to hyperspectral data, one is faced with the following differ-
ences with respect to model (11):

– Presence of noise n;
– Source dependence due to the constraint,

p∑
k=1

sk = c, (14)

where c is a constant. In spite of this, ICA has recently been applied to hyper-
spectral imagery (see [8], [9], [10], [11]).

In what follows, we give evidence that constraint (14) compromises the ap-
plication of ICA to hyperspectral data.

Positivity and normalization constraints (see Eq.14) of the abundance frac-
tions are incorporated as priors in [22], where the authors propose a unsupervised
Bayesian approach to unmix hyperspectral data.

3.1 Minimization of Mutual Information

Given a matrix W, the entropy of y = Wx is H(y) = H(x) + log(W). The
mutual information, as function of W, is then given by

I(y1, y2, . . . , yp,W) =
∑
i

H(yi)−H(x) − log |W|. (15)
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Fig. 2. Rayleigh probability density function (dashed line) fitted with a Gaus-
sian mixture (solid line). Left: Initial Gaussian modes parameters (ten Gaussian
modes). Center: solution of [12] with five Gaussian modes. Right: Solution of [12]
constrained to three Gaussian modes

Assuming |W| constant, the mutual information minimization reduces to finding

Ŵ = argmin
W

I(y1, y2, . . . , yp,W) = min
W

∑
i

H(yi), (16)

where

H(yi) = −
∫ +∞

−∞
fyi(u) log fyi(u)du (17)

To compute (17), we need to know fyi , the source probability density function
of yi. To obtain an estimate of fyi , we fit sample data with a mixture of Gaus-
sians [23]. The number of Gaussians modes and respective parameters (means,
covariances and weights) are calculated by the MDL-EM algorithm [12]. The
entropy (17) is computed via numerical integration.

Figure 2, shows an example of a Rayleigh probability density function fitted
with a Gaussian mixture using algorithm [12]. On the left, center, and right are
presented probability density functions obtained with, respectively, the initial
parameters, the solution, and the solution constrained to three Gaussian modes.

Various authors [21], [24] have referred to that maximum of I(y1, y2, . . . , yp,
W) is not very sensitive to the shape of fyi . For example [24] uses only three
Gaussian modes to fit whatever density shape. Herein, however, we use all modes
given by the MDL-EM algorithm [12], as we are interested, not only in the separt-
ing matrixW, but also in computing the mutual information I(y1, y2, . . . , yp,W)
as function of W.

4 Experimental Results

In the next five experiments, we study the behavior of the mutual information
I(y1, y2, . . . , yp,W), for W in the neighborhood of the true unmixing matrix. In
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Fig. 3. Mutual information as function of the rotation angle φ for independent
sources

all experiments we assume that W is a rotation matrix. This is always possible
by spherizing the observed data [21].

Experiment I The first experiment consider independent sources with uniform
distribution to test our setup under canonical mixing conditions. This experiment
assume p = 2 (number of sources), L = 2 (number of bands), M = I, θ = I,
γ = 1 and n = 0T .

Figure 3 shows the mutual information as function of the rotation angle φ in
the interval [−π/2 , π/2]. The minimum is global in this interval and occurs for
φ = 0, i.e., W = I. As expected the true unmixing matrix was recovered.

Experiment II Second experiment is similar to the previous one. It takes
now three independent sources with uniform distribution and parameters p = 3,
L = 3, M = I θ = I, γ = 1, and n = 0T .

Figure 4 (top left) shows the Mutual information as function of φ1 (azimuth
angle) and φ2 (elevation angle) in a gray scale. The minimum is global and occurs
for φ1 = 0 and φ2 = 0, i.e., W = I.

As mentioned above abundance fractions in hyperspectral data are not inde-
pendent. In order to test ICA with these constraints, we choose for the following
experiments a Dirichlet distribution parameterized by μ1 = 1, μ2 = 1 and μ3 = 1
(μi is the expected value) for the sources. Such distribution constraints sources
to 0 ≤ αi ≤ 1 and

∑
αi = 1.

Experiment III In this experiment, we assume that p = 3, M = I, θ = I,
γ = 1, n = 0T .

In Figure 4 (top right) we present the mutual information as function of
angles φ1 and φ2. It shows that ICA do not separate the original dependent
data correctly. We obtain (φ̂1 = −π/4 , φ̂2 = −π/5), far from the true unmixing
matrix (φ1 = 0 , φ2 = 0).
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Experiment IV In this experiment the sources are dependent and Dirichlet
distributed (μ1 = 1, μ2 = 1, μ3 = 1). The remaining parameters are M = I,
n = 0T , θi uniformly distributed with in the interval [0.9 1.1] and γ Beta
distributed (σ1 = 1, σ2 = 0.8).

Figure 4 (bottom left) presents the mutual information as function of angles
φ1 and φ2. Although there is a local minimum at φ1 = 0 and φ2 = 0, the absolute
minimum occurs at φ̂1 = −π/4 and φ̂2 = −π/5.

Experiment V Last simulation is similar to experiment IV, but now we add
white Gaussian noise with zero means and variance σ2 = 0.03.

Figure 4 (Bottom right) shows the obtained mutual information. Image ex-
hibits a more random pattern than top right and bottom left ones. The absolute
minimum occurs at φ̂1 = 7π/18, φ̂2 = π/36, again far from (φ1 = 0, φ2 = 0).

The pattern of behaviour described in experiment III, IV, and V was sys-
tematically observed in an array of experiments with differ source distributions
(different shapes and parameters).
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Fig. 4. Mutual information in function of parameters φ1 and φ2. Top left: three
independent sources; Top right: Sources are dependent; Bottom left: Sources
are dependent and parameters γ and θ are considered; Bottom right: Noise was
added
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5 Concluding Remarks

We have studied the applicability of Independent component Analysis (ICA) to
hyperspectral imagery. Results reveals that ICA in its canonical form is not well
suited to unmix hyperspectral sources (abundance fractions). Dependence due to
physical constraint and noise due to signature variability are the main violations
of ICA assumption.
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Abstract. Linear spectral mixture analysis, or linear unmixing, has
proven to be a useful tool in hyperspectral remote sensing applications.
It aims at estimating the number of reference substances, also called end-
members, their spectral signature and abundance fractions, using only
the observed data (mixed pixels).
This paper presents new method that performs unsupervised endmem-
ber extraction from hyperspectral data. The algorithm exploits a simple
geometric fact: endmembers are vertices of a simplex. The algorithm
complexity, measured in floating points operations, is O(n), where n is
the sample size. The effectiveness of the proposed scheme is illustrated
using simulated data.

1 Introduction

Hyperspectral remote sensing exploits the fact that all substances scatter elec-
tromagnetic energy, at specific wavelengths, in distinctive patterns related to
their molecular composition [1], [2]. Hyperspectral sensors have been developed
to sample the scattered portion of the electromagnetic spectrum that extends
from the visible region through the near-infrared and mid-infrared, in hundreds
of narrow contiguous bands [3], [4]. The number and variety of potential civilian
and military applications for hyperspectral remote sensing is enormous [5], [6].

One of the most challenging task underlying many hyperspectral imagery ap-
plications is the spectral unmixing, which decompose a mixed pixel into a collec-
tion of reflectance spectra, called endmember signatures, and a set corresponding
abundance fractions [7], [8], [9].
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Due to the spatial resolution of the hyperspectral sensors, a single pixel in
a image is as a mixture of the substances present in the corresponding resolution
cell [3]. Depending on the substance distribution at each pixel, the observed mix-
ture is either linear or non-linear. Linear mixing model assumes that substances
are surface distributed in the scene and the incident solar radiation is scattered
by surface through a single bounce. Non-linear model assumes that substances
are volume distributed in the scene and the incident solar radiation is scattered
by the scene through multiple bounces [10]. Linear spectral unmixing is one of
the most important approaches for the analysis of hyperspectral data [11]. It
considers that a mixed pixel is a linear combination of endmembers signatures
weighted by correspondent abundance fractions. Linear unmixing approach re-
quire the determination of endmember signatures. Once these spectra are found,
hyperspectral data can be unmixed into the abundance fractions of each material
at each pixel.

Different endmember determination algorithms based on the notion of spec-
tral mixture model have been proposed [12], [13], [14]. One of the most successful
approach is the pixel purity index (PPI) [13], [15], which is based on the geometry
of convex sets [16]. several recent efforts pursue the fully automated identification
of endmembers in hyperspectral data sets without dimensionality reduction [17].
The N-FINDR algorithm [18] is based on the fact that in N spectral dimensions,
the N -volume contained by a simplex formed by the purest pixels is larger than
any other volume formed from any other combination of pixels. This algorithm
finds the set of pixels with the largest volume by “inflating” a simplex inside the
data. Other works take into account endmember variability in unmixing pro-
cess using extensive libraries [19], multiple endmembers [20] or use spatial and
spectral information [21].

Independent Component Analysis (ICA) have also recently been proposed
as a tool to unmix hyperspectral data [22], [23], [24], [25]. ICA is based on the
assumption of mutually independent sources, which is not the case of hyperspec-
tral data, since the sum of abundance fractions is constant, implying dependence
among abundances. These dependence compromises ICA applicability to hyper-
spectral images [26].

In this paper we introduce the vertex component analysis (VCA) to unmix
linear mixtures of hyperspectral sources. The algorithm is unsupervised and
exploits the fact that endmembers occupy vertices of a simplex.

This communication is structured as follows. Section 2 describes fundamental
principles in the proposed method. In Section 3 proposed method is evaluated
with simulated data. Section 4 ends the paper by presenting some concluding
remarks.

2 Vertex Component Analysis Algorithm

Assuming the linear mixture scenario, each pixel is a linear combination of end-
member spectra present in the covered area.



628 José M. P. Nascimento and José M. B. Dias

Let r be an L× 1 vector, where L is the total number of bands, and mi the
so-called signature of the ith endmember. Thus

r = Mα, (1)

where M = [m1,m2, . . . ,mp] , α = [α1, α2, . . . , αp]T is the abundance fractions
of each endmember, and p is the number of endmembers present in spatial cover
area. The notation (·)T stands for vector transposed.

Due to physical constraints [11], abundance fractions satisfy

0 ≤ αk ≤ 1, (2)

p∑
k=1

αk = 1. (3)

Each pixel can be viewed as a vector in an L-dimensional Euclidean space,
where each channel is assigned to one axis of space, all being mutually orthog-
onal. Due to constraints (2) and (3) the observed vector r belongs to a simplex
with pure pixels in the vertices. For instance, Figure 1 (left) illustrates a projec-
tion of a simplex defined by a mixture of three endmembers into a plane defined
by two bands. As result we have a triangle whose vertices are the endmembers
projections on the same plane.

The pseudo-code for the VCA algorithm is shown in Algorithm 1. Symbols
[M̂]:,j and [M̂]:,i:k stands for the jth column of M̂ and the columns i to k of
M̂, respectively. Symbol M̂ stands for the estimated mixing matrix and [z]:,k is
the kth column of matrix z.

Assume that there exists at least one pure pixel of each endmember in the
input sample z ≡ [r1, r2, . . . , rn]. In this case, each time the loop for is executed,
a vector f orthonormal to M̂ is generated and all input sample z are projected
onto f . Since we assume that pure endmembers occupy the vertices of a simplex,
then a ≤ fT ri ≤ b, where values a and b correspond to and only to pure pixels.

Band i

B
an

d 
j

Endmember a

Endmember c

Endmember b

first 
vector f

max|y|

Endmember a

Endmember b

second
vector f

Fig. 1. Left: Scatter-plot of 2-D spectral data illustrating a mixture model based
on endmembers. Right: Illustration of the VCA algorithm
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Algorithm 1 Vertex Component Analysis

INPUT: p and z ≡ [r1, r2, . . . , rn]
M̂ := 0 {L× p estimated mixing matrix};
f := [1, 0, . . . , 0︸ ︷︷ ︸

L

]T ;

for i := 1 to p do
y := fT z;
k := arg max

j=1,...,n
‖y(j)‖;

[M̂]:,i := [z]:,k;

{generate a vector f orthonormal to span
(
[M̂]:,1:i

)
}

f := orthonormal([M̂]:,1:i);
end for

We store the endmember signature corresponding to max(‖a‖, ‖b‖). The next
time loop for is executed, f is orthogonal to the space spanned by the signatures
already determined. Figure 1 (right) shows the input samples z and the first cho-
sen pure pixel, after the projection y = fT z. Then a second vector f orthonormal
to the endmember a is generated, and the second endmember is stored.

3 Evaluation of VCA Algorithm

In this section we evaluate the performance of the proposed algorithm by us-
ing simulated data based on laboratory spectra from the U.S. geological survey
(USGS) digital spectral library [27].

A 30× 30 pixel hyperspectral scene have been generated using three selected
signatures (p = 3 and L = 224). This scene has nine regions, each one, of 10×10
pixel, with different abundance fractions for each endmember (see Fig. 2).

In order to determine the accuracy of our method, we compare the estimated
abundances to the true abundances. Figure 3 (top), shows the abundance frac-
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Fig. 2. Left: Reflectances spectra used to generate simulated scene. Right: Re-
gions with endmembers abundances in simulated scene
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α3

α1 α2
α3

^ ^ ^

Fig. 3. Top: Abundance fractions of three endmembers. Bottom: Estimated
abundance fractions

tions of the three endmembers in a gray scale. The same figure (bottom) presents
the estimated abundance fractions by the algorithm. As we see, all regions have
the correct abundance values.

Based on the same signatures (see Fig. 2), two other experiments were made,
where abundance fractions follow the Dirichlet distribution with parameters
μ1 = 1, μ2 = 1, and μ3 = 1, for the first experiment and μ1 = 1, μ2 = 1,
and μ3 = .3 for the second (μi is the expected value). This choice takes into
account the constraints (2) and (3).

In order to illustrate the noise impact on the algorithm performance, sev-
eral experiments were made with different levels of signal-to-noise ratio (SNR),
which is defined as

SNR = 10 log
Σji‖mji‖2/L

σ2
, (4)

where σ2 is the noise variance of each band. Figure 4 (left), presents a scatter-
plot of data without noise in bands λ = 470nm and λ = 2070nm. It is also
plotted a triangle whose vertices represent the real endmembers (solid line) and
a triangle whose vertices represent the estimated endmembers (dashed line).
Figure 4 (right) presents a scatter-plot of data with noise (SNR = 30dB), in
the same bands.

A comparison of the proposed algorithm with PPI and N-FINDR algorithms
is shown in Figure 5, with different levels of noise, and different Dirichlet dis-
tributions to the abundance fractions. To evaluate the performance of the three
algorithms we adopt the mixing matrix error εM and the mean square recon-
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Fig. 4. Scatter-plot of data in bands λ = 470nm and λ = 2070nm, triangle
based on real endmembers (solid line) triangle based on estimated endmembers
(dashed line) Left: Without noise. Right: With noise

struction error εα [28], given by:

εM =
(

1
L2 − L

L∑
i=j=1

J2ij

)(
1
L

L∑
i=1

J2ii

)−1
, (5)

εα =
1
L

L∑
i=1

E(α̂i −αi)2, (6)

where J = M̂�M, M̂ is the estimated endmember signatures and α̂i the abun-
dance estimation of the ith endmember. The notation (·)� stands for the pseu-
doinverse matrix. This figure illustrates that in a noiseless scenario all the algo-
rithms can extract the true endmembers. The presence of noise in data degrades
the performance the algorithms. For SNR levels inferior than 15dB, the average
mean square error of the abundances is larger than 0.035. Figure 5 (Bottom)
present the results for abundance fractions with Dirichlet distribution ( μ1 = 1,
μ2 = 1, and μ3 = .3). We conclude that the mean square reconstruction error
is worse in this case. PPI algorithm is the most sensible to the distribution of
the abundance fractions. This is explained by the fact of one of the endmembers
does not have pure pixels.

In order to illustrate how the algorithm performance depends with the size of
the spatial covered area, several experiments were made with different number
of pixels. For this experiments we assume the signatures presented in Figure 2,
and the abundances fractions follow the Dirichlet distribution with parameters
μ1 = 1, μ2 = 1, and μ3 = 1, for the first set of experiments and μ1 = 1, μ2 = 1,
and μ3 = .3 for the second one. Figure 6 (top left) shows that VCA, PPI and
N-FINDR algorithm have identical performance, i.e., the mixing matrix error
is better as the number of pixels grows. Only with ten pixels the result for N-
FINDR algorithm is worse. When we change the distribution (see Fig. 6 top
right) PPI algorithm is better, but the main difference occurs when we have few
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0

0.05

0.1

0.15

0.2

0.25

35 30 25 20 15
SNR [dB]

M

0

0.01

0.02

0.03

35 30 25 20 15

SNR [dB]

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

35 30 25 20 15
SNR [dB]

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

35 30 25 20 15
SNR [dB]

Fig. 5. VCA algorithm (solid line) N-FINDR algorithm (dashed line) PPI al-
gorithm (dot line). Top left: Mixing matrix error, sources with Dirichlet distri-
bution ( μ1 = 1, μ2 = 1, and μ3 = 1) ; Top Right: Mean square reconstruction
error, sources with Dirichlet distribution ( μ1 = 1, μ2 = 1, and μ3 = 1); Bottom
left: Mixing matrix error, sources with Dirichlet distribution ( μ1 = 1, μ2 = 1,
and μ3 = .3); Bottom Right: Mean square reconstruction error, sources with
Dirichlet distribution ( μ1 = 1, μ2 = 1, and μ3 = .3)

pixels. The same experiments where made with noise (SNR = 30dB, see Fig. 6
Bottom). In those experiments, the PPI algorithm have the worse result, VCA
and N-FINDR algorithms are comparable.

Finally, we measured the number of floating point operation, in order to com-
pare the complexity of VCA, PPI, and N-FINDR algorithms. Table 1 presents
the result when the number of pixels in the image were 100, 1000, and 10000. The
VCA algorithm complexity is much lower than the other ones. In fact, N-FINDR
algorithm computes several times the determinant of a matrix (number of pixel
× number of endmembers), and PPI algorithm make several projections of data
into “skewers”. Another reason for PPI and N-FINDR have such complexity, is
the need to spherize data.

4 Conclusions

In this paper, we have proposed an algorithm to unmix linear mixtures of hy-
perspectral sources. The algorithm is unsupervised and exploits the fact that
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μ2 = 1, and μ3 = .3) without noise; Bottom left: Dirichlet distribution (μ1 = 1,
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Table 1. Floating point operations for VCA and N-FINDR algorithms with
100, 1000, and 10 000 pixels

100 pixels 1000 pixels 10 000 pixels

VCA 1 040 259 2 249 859 14 345 859
N-FINDR 109 095 369 200 367 011 1 116 791 923
PPI 208 861 351 796 126 721 6 671 079 586
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endmembers occupy the vertices of a simplex. In the performed tests, the PPI
and N-FINDR algorithms have a complexity four hundred and seventy times
higher than VCA algorithm, respectively, for a similar performance.
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Abstract. We present two novel bounds for the classification error that,
at the same time, can be used as practical training criteria. Unlike the
bounds reported in the literature so far, these novel bounds are based on
a strict distinction between the true but unknown distribution and the
model distribution, which is used in the decision rule. The two bounds we
derive are the squared distance and the Kullback-Leibler distance, where
in both cases the distance is computed between the true distribution
and the model distribution. In terms of practical training criteria, these
bounds result in the squared error criterion and the mutual information
(or equivocation) criterion, respectively.

1 Introduction

The classification error is the most important performance criterion in any pat-
tern recognition task. The goal of this work to establish a direct relationship
between practical training criteria and exact upper bounds for the classification
error. There are three novel contributions of this paper:

– All the considerations will be based on the model-based classification error
as opposed to the Bayes classification error. The Bayes error is only of theo-
retical value, because it requires the true but unknown distribution. Instead,
we will use the model distribution in the decision rule whose parameters
have to be learned from training data.

– Since the classification error is difficult to handle, we will derive two upper
bounds that are more convenient for mathematical analysis.

– Using these bounds, we derive two practical training criteria which are well
known in pattern recognition and show that they are related to upper bounds
of the model-based classification error.

The concept of using the classification error directly as training criterion
is widely known in pattern recognition [7, pp.46/47], [9, pp.106/107]. However,
these studies always use the Bayes classification error. In addition, upper bounds
are reported, but again only for the Bayes classification error [7, pp.46/47], [10].
In [6], the model-based classification error is studied, but only for two-class
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problems. Vapnik’s framework of empirical risk minimization [6, pp. 187],[18]
is more concerned with statistical fluctuations from one sample set to another
sample set, and the reference error rate is not the Bayes classification error.
To the best of our knowledge, the exact mathematical dependence between the
model-based classification error and the possible training criteria has not been
studied before.

2 Model-Based Decision Rule and Classification Error

2.1 Classification Task and True Distribution

In statistical pattern recognition, we consider the observation (or feature) vector
x ∈ X ⊂ IRD and the class index c = 1, ..., C to be random variables with a joint
distribution:

pair of random variables: (x, c)
with true distribution: pr(x, c) = pr(x) pr(c|x) (1)

The classification task is to determine for each observation vector x the associ-
ated class index c. For such a task, the minimum classification error is obtained
for the Bayes decision rule in which the class posterior distribution pr(c|x) plays
a crucial role. We will refer to it simply as the true distribution.

2.2 Model Distribution and Associated Decision Rule

In all practical applications, the true distribution pr(c|x) is not known, and we
can use only a so-called model distribution pϑ(c|x) instead. For such a model
distribution, the functional dependence of the class index c on the observation
vector x is fully specified using some unknown parameter set ϑ. The choice of
this functional dependence is very much application specific. A large number of
widely used techniques in pattern recognition fit into this interpretation. Exam-
ples are artificial neural networks or any type of discriminant functions, decision
tree (CART) approaches, the single Gaussian and Gaussian mixture classifiers
and maximum entropy (or log-linear) models. In case of observation vectors over
a time axis, Hidden Markov models are typically used.

To be more exact, the model distribution pϑ(c|x) is a posterior distribution
over the classes c = 1, ..., C:

model distribution: pϑ(c|x)
with: 0 ≤ pϑ(c|x)

∑
c

pϑ(c|x) = 1 (2)

We interpret it as the score of the hypothesis that the observation x has been
generated by the class c, and thus it is a natural requirement to normalize these
scores in such a way that, for each observation x, they sum up to unity. Note
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that, for non-negative scores pϑ(c, x), we can always satisfy this constraint by
simple re-normalization.

To find the unknown class identity of an observation x, we define the model-
based decision rule:

decision rule cϑ(·): cϑ : X → {1, ..., C}
x→ cϑ(x) := argmax

c

{
pϑ(c|x)

}
(3)

In order to avoid an awkward notation, we use only the parameter ϑ as index on
the decision rule to express the dependence on the fullmodel distribution pϑ(c|x).
We use the attribute model-based to distinguish this decision rule from the Bayes
decision rule where the true but unknown distribution pr(c|x) is needed. In the
following, the goal will be to study whether and how the classification error of
the model-based decision rule will get close to the minimum classification error.

2.3 Model-Based Classification Error

When using such a decision rule x→ cϑ(x), we have a classification error count
e(x, c) for a joint event (x, c):

e(x, c) := 1− δ(cϑ(x), c) (4)

where δ(·, ·) denotes the Kronecker delta. The local classification error Eϑ{e|x}
is the x-conditional expectation of e(x, c), which is obtained by using the true
class posterior distribution pr(c|x) in the point x of the observation space:

Eϑ{e|x} :=
∑
c

pr(c|x) ·
[
1− δ(cϑ(x), c)

]
= 1− pr(cϑ(x)|x) (5)

The global classification error Eϑ{e} is obtained by integrating over the whole
space of observations x:

Eϑ{e} =
∫
x

dx pr(x) Eϑ{e|x} (6)

Ideally, we would like to directly minimize this classification error in order to
learn the unknown parameter set ϑ. However, the direct solution to this optimiza-
tion problem is extremely difficult for two reasons: First, there are two extreme
nonlinearities, namely the maximum operations and the Kronecker delta. Sec-
ond, we have to compute the expectation over the true distribution pr(x) which
however is unknown and for which only a training sample is available.

3 Bounds for Local Classification Error

In this section, we will derive bounds for the local classification error when the
decision rule Eq.(3) is used with any type of model pϑ(c|x). We will start with
the x-conditional, i.e. local, classification error and consider the global classifi-
cation error later.
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3.1 Principle

It is well known that the global minimum of the error rate is obtained by the
Bayes decision rule:

x→ c∗(x) := argmax
c

{
pr(c|x)

}
(7)

i.e. when the true (but unknown) posterior distribution pr(c|x) is used as model
distribution pϑ(c|x). The associated local Bayes classification error E∗{e|x} is:

E∗{e|x} = 1− pr(c∗(x)|x) (8)

Therefore, the Bayes error is also the absolute minimum of any model pϑ(c|x)
(for a fixed type of observations x), and we will consider the difference be-
tween the model-based classification error Eϑ(e|x) and the Bayes classification
error E∗{e|x}. In the following, we will derive an inequality of the form:

Eϑ{e|x} − E∗{e|x} ≤ α ·
∣∣∣∣∣∣ pr(·|x) − pϑ(·|x)

∣∣∣∣∣∣ (9)

where we have a positive constant α and we use a suitable norm || · || of a C-
dimensional difference vector between the true distribution pr(c|x) and the model
distribution pϑ(c|x). Depending on the type of norm || · ||, we will refer to these
bounds as l1, l2 and l∞ bounds.

3.2 Basic Inequality

Using the basic definitions introduced so far, we can write down the following
sequence of equations and inequalities:

Eϑ{e|x} − E∗{e|x} :=

:=
[
1− pr(cϑ(x)|x)

]
−

[
1− pr(c∗(x)|x)

]
= pr(c∗(x)|x) − pr(cϑ(x)|x)
≤ pr(c∗(x)|x) − pr(cϑ(x)|x) + pϑ(cϑ(x)|x) − pϑ(c∗(x)|x) (10)

=
[
pr(c∗(x)|x) − pϑ(c∗(x)|x)

]
+

[
pϑ(cϑ(x)|x) − pr(cϑ(x)|x)

]
≤

∣∣∣pr(c∗(x)|x) − pϑ(c∗(x)|x)
∣∣∣ +

∣∣∣pr(cϑ(x)|x) − pϑ(cϑ(x)|x)
∣∣∣ (11)

Here, the first inequality Eq.(10) is true because, by the definition of the model-
based decision rule x→ cϑ(x), we must have for any class c:

pϑ(c|x) ≤ max
c̃

{pϑ(c̃|x)} ≡ pϑ(cϑ(x)|x) (12)

The second inequality Eq.(11) results simply from the application of the triangle
inequality.
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3.3 Local Bounds

From the inequality Eq.(11), we immediately obtain what will be referred to
as l1 bound:

Eϑ{e|x} − E∗{e|x} ≤
∑
c

|pr(c|x) − pϑ(c|x)| (13)

It is easy to verify that this bound is also correct in the special case: cϑ(x) =
c∗(x). In addition, we can also immediately establish the l∞ bound (or maximum
bound) and the l2 bound:

Eϑ{e|x} − E∗{e|x} ≤ 2 ·max
c

{
|pr(c|x) − pϑ(c|x)|

}
(14)

≤ 2 ·
√∑

c

[pr(c|x) − pϑ(c|x)]2 (15)

We would like to emphasize that each of these three local bounds is tight in
the following sense. When the model distribution pϑ(c|x) approaches the true
distribution pr(c|x), the bound goes to zero so that the model-based classification
error Eϑ{e|x} approaches the Bayes classification error E∗{e|x}.

4 Bounds for Global Classification Error

In this section, we will establish bounds for the global classification error that
have similar properties as the bounds for the local classification error.

4.1 From Local to Global Bounds

We consider the difference between the model-based classification error Eϑ{e|x}
and the Bayes classification error E∗{e|x}:

Eϑ{e|x} − E∗{e|x} ≤ g(x)

where g(x) stands for one of the local bounds derived so far. We move from local
to global bounds by integrating over the whole space of observations using the
true probability (density) distribution pr(x):

Eϑ{e} − E∗{e} =
∫

dx pr(x)
(
Eϑ{e|x} − E∗{e|x}

)
≤

∫
dx pr(x) g(x) (16)

In carrying out the integration, the local inequality is preserved and we obtain
a global inequality. Now it turns out that, in order to arrive at useful bounds, it
is helpful to consider the squared difference:(

Eϑ{e} − E∗{e}
)2
≤

(∫
dx pr(x) g(x)

)2

≤
∫

dx pr(x) g2(x) (17)
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The second inequality is true because for any function x → g(x) we have the
inequality: (∫

dx pr(x) g(x)
)2

≤
∫

dx pr(x) g2(x) (18)

since: 0 ≤ V ar{g(x)} := E{[g(x)− E{g(x)}]2}
= E{g2(x)} − E2{g(x)}

where E{·} denotes the statistical expectation using the distribution pr(x). The
ultimate justification for considering the squared difference in the classification
error will be the usefulness of the practical training criteria to be presented in
Section 5.

4.2 Squared Distance Bound

We start with the local bound Eq.(15) and immediately obtain the global bound
using Eq.(17):(

Eϑ{e} − E∗{e}
)2
≤ 4 ·

∫
dx pr(x)

∑
c

[pr(c|x) − pϑ(c|x)]2 (19)

This global bound will be called squared error bound because it is based on the
squared difference between the true distribution pr(c|x) and the model distribu-
tion pϑ(c|x).

4.3 Kullback-Leibler Bound

To derive this bound, we make use of the Pinsker inequality for two probability
distributions pc and qc (with normalization

∑
c pc =

∑
c qc = 1) [5, p. 300],[17]:

1
2

(∑
c

|pc − qc|
)2

≤ −
∑
c

pc log
qc
pc

(20)

The term on the right-hand side of this inequality is known as the Kullback-
Leibler distance (or relative entropy) between the two distributions pc and qc [5,
p. 18]. It was originally introduced in the context of statistics and information
theory without any link to the classification error rate. We use the Kullback-
Leibler distance as a distance between the true distribution pr(c|x) and the
model distribution pϑ(c|x).

Inserting the local bound Eq.(13) into Eq.(17), we obtain the global bound:

(
Eϑ{e} − E∗{e}

)2
≤

∫
dx pr(x)

(∑
c

|pr(c|x) − pϑ(c|x)|
)2

≤ − 2 ·
∫

dx pr(x)
∑
c

pr(c|x) log
pϑ(c|x)
pr(c|x) (21)
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Each of the two global bounds Eqs.(19) and (21) is tight: When the model
distribution approaches the true distribution, the bound goes to zero, and so does
the difference between model-based classification error and Bayes classification
error.

5 Empirical Training Criteria

In this section, we will show how each of the global bounds can be used directly
as training criterion to learn the unknown parameter set ϑ from a set of training
data.

5.1 From Error Bounds to Empirical Training Criteria

The approach is based on re-writing the inequality for each of the classification
error bounds in the form:(

Eϑ{e} − E∗{e}
)2
≤

∫
dx

∑
c

pr(x, c) hϑ(x, c) (22)

with a suitable function hϑ(x, c). To obtain a practical training criterion, we
apply two steps:

– For the classification error Eϑ{e} to approach the Bayes error E∗{e}, we
tighten the bound on the right-hand side by minimizing it over the unknown
parameter set ϑ.

– Now, of course, the true distribution pr(x, c) is not known, and we have only
access to a representative sample, i.e. a set of labelled observations from the
task for which we want to design our pattern classification system:

(xn, cn), n = 1, ..., N

i.e. observation xn with class label cn. Using this set of labelled training
data, we define the empirical distribution

pr(x, c) =
1
N

N∑
n=1

δ(x, xn) δ(c, cn)

where, for continuous-valued observations x, δ(x, xn) is the Dirac delta func-
tion rather than the Kronecker delta.

The training criterion for determining the optimum parameter set ϑ̂ can now be
written as:

ϑ̂ := argmin
ϑ

{∫
dx

∑
c

pr(x, c) hϑ(x, c)

}

= argmin
ϑ

{
1
N

N∑
n=1

hϑ(xn, cn)

}
= argmin

ϑ

{
N∑
n=1

hϑ(xn, cn)

}
(23)
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If, in addition to determining the optimum parameter set ϑ̂, we want to estimate
the classification error using this method, we have to be careful and avoid too
optimistic an estimate [8, p. 248]. In other words, the approach presented here
does not address the problem of overfitting.

5.2 Squared Error Criterion

To derive the squared error criterion, we use the following identity [13]:∑
c

[pr(c|x) − pϑ(c|x)]2 =

=
∑
c

pr(c|x)
∑
c′

[pϑ(c′|x)− δ(c′, c)]2 −
(

1−
∑
c

pr2(c|x)
)

(24)

This identity has been re-discovered several times in the context of statistical
pattern recognition and artificial neural networks. The earliest reference (using
a different framework of notation) we know is [15]. Inserting this identity into
Eq.(19) and dropping the terms independent of ϑ, we arrive at the following
training criterion for the unknown parameter set ϑ:

ϑ̂ = argmin
ϑ

{
N∑
n=1

∑
c′

[pϑ(c′|xn)− δ(c′, cn)]
2

}
(25)

This is the standard training criterion used for neural networks and other types
of discriminant functions, namely the sum of the squared differences between the
actual network output and the desired output for each output node [7, p. 290].
If the model distribution is non-parametric, i.e. has enough degrees of freedom,
the global optimum can be really attained (on the training data), and the model
distribution is then identical to the true distribution. This is the case for deci-
sion trees [3] with a non-parametric model distribution for the discrete-valued
observations x. The minimum values of the training criterion is then the second
term (with a positive sign) on the right-hand side of Eq.(24), which is referred
to as Gini criterion.

5.3 Kullback-Leibler Criterion

From the Kullback-Leibler bound, we obtain the practical training criterion by
simply separating the model distribution pϑ(c|x) and dropping the constant
terms:

ϑ̂ = argmax
ϑ

{
N∑
n=1

log pϑ(cn|xn)
}

(26)

This is the general form of a maximum likelihood criterion. Here, we have the
likelihood of the class posterior distribution pϑ(c|x) as opposed to the class
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conditional distribution pϑ(x|c). This criterion has become popular in the context
of so-called discriminative training and is referred to under different names:
conditional maximum likelihood [4, 12] and maximum mutual information [1, 14].
In the framework of information theory, the training criterion can be interpreted
as the empirical expectation of the model-based equivocation, which, in the
special case of constant class probabilities, is equivalent to mutual information.
In the context of decision trees [3], the criterion is called entropy criterion.

6 Discussion

We have derived two novel bounds for the model-based classification error: the
squared distance bound and the Kullback-Leibler bound, both of which result in
widely used practical training criteria. Although both these quantities have been
used before in statistical pattern recognition, they were not known to provide
strict bounds for the model-based classification error.

It is interesting to note that, in a Bayesian framework independent of the clas-
sification error, some authors [2, pp.67-81] have analyzed criteria for estimating
unknown probability distributions and have considered two specific criteria that
have attractive properties. These two criteria are identical to the two training
criteria that we have derived here. They are referred to as the quadratic and the
logarithmic scoring function.

The bounds we have presented are based on the square of the difference
between the model-based classification error and the Bayes classification error.
The open question is how this is related to approaches where the smoothed
classification error is used directly as training criterion [11, 16].
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Abstract. The goal of text document classification is to assign a new
document into one class from the predefined classes based on its con-
tents. In this paper, a mixture of multinomial distributions is proposed
as a model for class-conditional distributions in document classification
task. A bag-of-words approach to vector document representation is em-
ployed. It is shown, that the accuracy of the Bayes document classifier can
be improved by the proposed model in comparison with the Bayes clas-
sifiers based on the multivariate Bernoulli model, the multinomial model
as well as the multivariate Bernoulli mixture model. Experimental results
on the Reuters and the Newsgroups data sets indicate the effectiveness
of the multinomial mixture model. Furthermore, an increase in classifi-
cation accuracy is achieved for small training data sets, when multiclass
Bhattacharyya distance is used instead of average mutual information as
a feature selection criterion.

1 Introduction

The goal of document classification is to assign a new document to one of the
predefined classes based on its contents. This concept implies the existence of
a labelled training set, representation of the documents, and a statistical classifier
learned using the chosen representation of the training set.

Document classification is a domain in which obtaining labelled data is ex-
pensive. A large number of parameters often must be estimated from a small
amount of labelled data. When little training data is being used to estimate the
parameters for a large number of features, it is often best to use simple learning
methods. In such cases, there is not enough data to estimate feature correla-
tions and other complex interactions. One such simple classification method that
performs surprisingly well is the naive Bayes classifier. While the naive Bayes
classifier often performs document classification very well (see e.g. [5, 3, 7]), the
class-conditional independence assumption calls for developing better alterna-
tives.

We suggest to use mixtures of multinomial distributions (multinomial mixture
model) for class-conditional probability function. Maximum-likelihood estima-
tion of multinomial mixture parameters is done by the well-known expectation-
maximization (EM) algorithm. Preliminary experimental results on the Reuters

F.J. Perales et al. (Eds.): IbPRIA 2003, LNCS 2652, pp. 646–654, 2003.
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and on the Newsgroups data sets indicate the effectiveness of proposed multino-
mial mixture model. An increase in classification accuracy is achieved in com-
parison with standard models [5] as well as multivariate Bernoulli mixture model
investigated by Juan and Vidal [4].

Feature selection (FS) is a very important step in text classification, because
irrelevant and redundant features often degrade the performance of classification
algorithms both in speed and prediction accuracy.

We proposed to use the multiclass Bhattacharrya distance (MBD) [11] as FS
criterion. An increase in classification accuracy was achieved for small training
data sets, when MBD was used instead of average mutual information (AMI) [5,
12].

2 Probabilistic Framework for Text Classification

We approach classification of the text document to one class from the set of
classes C = {c1, ..., c|C|} in a Bayesian learning framework with a bag-of-words
document representation. In this representation, each document di is described
by a feature vector consisting of one feature variable for each word wt in the vo-
cabulary V = {w1, ..., w|V |}. The data generation procedure for a document di
can be understood as selecting a mixture component (a class) according to the
mixture weights - class prior probabilities, P (cj |θ), then having the correspond-
ing mixture component generate a document according to its own parameters
with class-conditional probability function (p.f.) P (di|cj ; θj). The unconditional
probability function of generating document di independent of its class is given
by

P (di; θ) =
|C|∑
j=1

P (cj |θ)P (di|cj ; θj) (1)

where the mixture weights, written θcj = P (cj |θ), 0 ≤ θcj ≤ 1,
∑|C|

j=1 θcj = 1
indicate the probabilities of selecting the different class mixture components,
P (di|cj ; θj). The number of mixtures components |C| is fixed and known. Each
class is modelled by a single component P (di|cj ; θj). Clearly, θ = {(θcj , θj) : j =
1, ..., |C|} is an unknown parameter set.

There are two common models in the representation of text documents (see
e.g. [5]). The Bernoulli model represents each document by a vector of binary
feature variables Bit, indicating whether or not a certain word wt occurs in the
document. In the multinomialmodel, the document di is represented by a feature
vector, each feature variable Nit is the number of times certain word wt occurs
in that document. In this model each document is drawn from a multinomial
distribution over the set of all words in V with as many independent trials as
the length |di| (the number of words from V occurring in the document). The
order of the words is lost, however the number of occurrences is captured. This
representation has been found superior to the Bernoulli model [5]. A set of class-
labelled training data is used to estimate a complete set of model parameters θ.
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The estimates for Bernoulli and multinomial models can be found in [5]. The
tested document is classified by maximum posterior probability.

3 Finite Mixture Models

Finite mixture models have become increasingly popular both from theoretical
and practical point of view as a model in statistical pattern recognition (see
e.g. [6, 11]). The reason behind this is that mixture models are able to represent
arbitrarily complex probability function. This makes mixtures also suited for
representing complex class-conditional p.f. in classification task.

Our approach to learning on text document is based on the fact that docu-
ments are often mixtures of multiple topics. In mixture approach to document
classification the jth class-conditional probability P (di|cj ; θj) is modelled as a fi-
nite mixture of the same M probabilities with its own parameters. It can be
expressed as

P (di|cj ; θj) =
M∑

m=1

αjmPm(di|sjm; θjm) . (2)

Here M denotes the number of subclasses, say sjm, in each class cj , αjm is the
mixing proportion of the mth model component sjm in jth class cj , αjm ≥ 0,∑M

m=1 αjm = 1, j = 1, ..., |C|. Pm(di|sjm; θjm) denotes the probability of di in
the mth subclass within the class cj .

3.1 Multinomial Mixture Model

We propose to use the mixture of multinomial distributions as a model for doc-
ument classification. It means that the probability

P (di|cj ; θj) =
M∑
m=1

αjm
|di|!∏|V |
t=1Nit!

|V |∏
t=1

θNit

t|jm . (3)

Here associated with each subclass sjm is a word probability written θt|jm =
P (wt|sjm; θjm) for all words in the vocabulary |V |, 0 ≤ θt|jm ≤ 1. The pa-
rameter set θj = {(αjm, θjm) : m = 1, ...,M}, j = 1, ..., |C| with θjm =
(θ1|jm, ..., θ|V ||jm),

∑|V |
t=1 θt|jm = 1 is unknown.

3.2 Model Fitting with the EM Algorithm

Let Dj = {d1, ..., d|Dj|} be a set of |Dj | independent and identically distributed
training documents from class cj ∈ C. We find out the parameters of P (di|cj ; θj)
by maximizing the log-likelihood function

L(θj) =
|Dj |∑
i=1

log

[
M∑
m=1

αjmPm(di|sjm; θjm)

]
. (4)
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We are excluding the number M of class-conditional components from the esti-
mation procedure.

The estimate θ̂j cannot be found analytically. A possible approach is the
expectation-maximization (EM) algorithm [1]. From this point of view, an
observed document di can be regarded as being incomplete where the missing
part is the true subclass labelling. The EM algorithm alternates two steps: (1)
E-step (an expectation step) where posterior probabilities are computed for
the latent subclass variables, based on current estimates of the parameters,
(2) M-step (maximization step) where parameters are updated based on so
called expected complete data log-likelihood which depends on the posterior
probabilities computed in the E-step.

The EM algorithm for model (3) takes the following form [9]:

E-Step: j = 1, ...|C|, m = 1, ...,M, i = 1, ..., |Dj |, k = 0, 1...

p(k)(sjm|di) =
α
(k)
jm

∏|V |
t=1

(
θ
(k)
t|jm

)Nit

∑M
r=1 α

(k)
jr

∏|V |
t=1

(
θ
(k)
t|jr

)Nit
. (5)

M-Step: j = 1, ...|C|, m = 1, ...,M, t = 1, ..., |V |

α
(k+1)
jm =

1
|Dj |

|Dj|∑
i=1

p(k)(sjm|di) (6)

and

θ
(k+1)
t|jm =

∑|Dj|
i=1 Nit p

(k)(sjm|di)∑|V |
r=1

∑|Dj |
i=1 Nir p(k)(sjm|di)

. (7)

The class priors can be estimated as

θ̂cj =
|Dj |
|D| (8)

where |D| = ∑|C|
j=1 |Dj |. An initial value for the parameters is required to start

the EM algorithm. For the experiments reported in Section 5.1 we used random
initialization for parameters θt|jm and α

(0)
jm = 1/M for both Bernoulli mixture

and multinomial mixture models.

4 Feature Selection

Feature selection methods for text document classification use some evaluation
function that is applied to a single feature. All features are independently eval-
uated, a score is assigned to each of them and the features are sorted according
to the assigned score. Then, a predefined number of the best features is taken
to form the best feature subset.
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Scoring of individual features can be performed using some of the measures,
for instance, document frequency, term frequency, mutual information, informa-
tion gain (average mutual information), χ2 statistic, and term strength. Yang
and Pedersen [12] give experimental comparison of the above mentioned mea-
sures in text classification. The average mutual information were reported to
work well on text data.

We propose to use the multiclass Bhattacharrya distance for multinomial
model as a FS criterion to measure the ability of feature subsets in discriminat-
ing between classes and to take into consideration how features work together
(opposed to AMI). We calculated MBD explicitly for a multinomial distribution
in [9]:

JB(d) = −|d|
|C|−1∑
j=1

|C|∑
k=j+1

θcjθck log
|V |∑
t=1

√
θt|jθt|k (9)

where θt|j and θt|k are the probabilities of the word wt in class cj and ck, re-
spectively.

5 Experimental Results

This section provides two empirical evidences. First, the mixture models
(Bernoulli mixture and the multinomial mixture) perform better than the corre-
sponding standard models (Bernoulli and multinomial). Second, the multiclass
Bhattacharyya distance criterion achieves higher accuracy than average mutual
information on very small training sets. All experiments were tested on the
Reuters data set and the Newsgroups data set.

The Reuters data set1 was used by various authors (e.g. [12, 5, 7, 10]) as a test
set for different methods of text classification. Since the aim is classification, in
which each document has an unique class, we discarded documents with no label
or with multiple labels. The classes with less than 20 documents were removed.
The resulting data set had 9159 documents in 33 classes. The vocabulary was
constructed by removing stop words and too infrequent words (words that had
less than 4 occurrences per document). The Porter stemming algorithm2 was
used. This resulted in 7425 words.

In addition, the Newsgroups data set3 was used. After removing very short
documents (less than 4 words), the resulting data set had 19958 documents in 20
classes. The vocabulary was constructed by removing stop words, too infrequent
words (words that had less than 5 occurrences per document) and by using the
Porter stemming algorithm, similarly to the Reuters data set. This resulted in
the vocabulary of 21951 words.

Following a traditional FS techniques for text classification, non-
discriminative words were removed in accordance to the AMI [5]. It was com-

1 http://www.daviddlewis.com/resources/testcollections/reuters21578.
2 http://www.tartarus.org/˜martin/PorterStemmer.
3 http://www.cs.cmu.edu/˜textlearning.
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standard and the mixture models on
the Newsgroups data set

puted from the training set for each word. Several values of |V | were consid-
ered in the experiments. We randomly split the data set into two-third training
set and one-third testing set. We repeated this random split twenty times on
the Reuters data set and ten times on the Newsgroups data set. The effective-
ness of Bayes classifier was measured by classification accuracy estimated as
accuracy = (Nc/Ntest)100%, where Nc is the number of correctly classified doc-
uments from testing set and Ntest is the total number of documents in the testing
set. The average classification accuracy was computed over all testing sets.

5.1 Standard Models versus Mixture Models

Figure 1 shows the performance of both the standard and the mixture models for
several vocabulary sizes on the Reuters data set. We can see that the multinomial
model performs better than the Bernoulli model. Good behavior of the Bernoulli
model is observed for dimensions equal or smaller than 400, after this point
the performance of the classifier degrades with an increase in vocabulary size.
Accuracy of multinomial model improves monotonically.

The Bernoulli mixture is found to be better than the Bernoulli model on
average of 5%. The multinomial mixture achieves the highest accuracy 94,9%
and is on average 2% better than multinomial model and on average 4% better
than Bernoulli mixture. The multinomial mixture performs the best results over
all vocabulary sizes, except on very small number of words.

Figure 2 shows the behavior of the standard and the mixture models on the
Newsgroups data set. The Bernoulli mixture achieves on average 2.1% the higher
accuracy than Bernoulli model. The multinomial mixture performs slightly bet-
ter than the standard multinomial model (on average 0.6%).
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The number of components for each class-conditional mixture also has an
important impact on performance. Good behavior was observed with three com-
ponents per class for both mixture models on the Reuters data set. Six compo-
nents per class for multinomial mixture and three components for the mixture
Bernoulli model were used on the Newsgroups data set. The methods for learning
classifier based on finite mixtures for class-conditional p.f. are computationally
more demanding than methods based on standard models (because of EM algo-
rithm).

5.2 Feature Selection on Small Training Data Set

Two criteria were used to obtain the subset of features representing the docu-
ment using the multinomial model. AMI criterion was used with Best Individual
Features search procedure [2] and MBD (9) was used with Sequential Forward
Selection search algorithm [2]. This criterion can be computed recursively.

The performance of FS on small training sets was observed. We used a few
documents for training the multinomial model; ten documents from each class of
the Reuters data set and hundred documents from each class of the Newsgroups
data set. The rest of documents was employed for testing.

Figure 3 shows difference between MBD and AMI on the Reuters data set.
The behavior of both methods is similar on an extremely small number of doc-
uments (less than 25) but after this point the classification accuracy of MBD
is considerably higher. When compare the MBD with AMI feature selection
methods an increase in classification accuracy of about 21% is achieved.

Figure 4 shows the difference between MBD and AMI on the Newsgroups
data set. AMI performs equally or slightly better than MBD on small number of
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documents (less than 400), behind this point the classification accuracy of MBD
is again higher. MBD has achieved on average 2% higher accuracy than AMI.

6 Conclusions and Future Work

The following conclusions are reached from this paper: An observation of the
performance of Bayes classifier for text classification on the Reuters and the
Newsgroups data sets suggests that learning methods based on mixture models
for class-conditional probabilities of the documents perform better than the stan-
dard models. The multinomial mixture is a promising model for class-conditional
distributions in the document classification. The experimental results show that
this model performs better than the Bernoulli mixture.

Many areas of future work remain. Ongoing work includes: Design of a new
model for text document modelling based on a modification of distribution mix-
tures of factorized components [8] to be able to solve simultaneously the problem
of the optimal feature subset and the optimal number of mixture components.
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Abstract. Unlike other heuristic search algorithms, stack-based decod-
ers have been proved theoretically to guarantee the avoidance of search
errors in the decoding phase of a statistical machine translation (SMT)
system. The disadvantage of the stack-based decoders are the high com-
putational requirements. Therefore, to make the decoding problem fea-
sible for SMT, some heuristic optimizations have to be performed. How-
ever, this yields unavoidable search errors. In this paper, we describe,
study, and implement the state of the art stack-based decoding algo-
rithms for SMT making an empirical comparison which focuses specifi-
cally on the optimization problems, computational time, and translation
results. Results are also presented for two well known task, the Tourist
Task and the Hansards task.

1 Introduction

The goal of the translation process in SMT can be formulated as follows: a source
language string f = fJ1 = f1 . . . fJ is to be translated into a target language string
e = eI1 = e1 . . . eI . Each target string is regarded as a possible translation for the
source language string with maximum a-posteriori probability Pr(e|f). Accord-
ing to Bayes’ decision rule, we have to choose the target string that maximizes
the product of both the target language model Pr(e) and the string translation
model Pr(f |e). Alignment models for structuring the translation model are in-
troduced in [2]. In statistical alignment models, Pr(f , a|e), the alignment a = aJ1
is introduced as a hidden variable, and the alignment mapping is j → i = aj
from source position j to target position i = aj.

Typically, the search is performed using the so-called maximum approxima-
tion:

ê = argmax
e
{Pr(e) ·

∑
a

Pr(f ,a|e)} ≈ argmax
e
{Pr(e) ·max

a
Pr(f , a|e)} (1)
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Many works [1, 6, 3, 5] have adopted different types of stack-based algorithms
to solve the global search optimization problem stated above. All these works
make their own optimizations in order to make the use of stack decoders feasible.
Here, we pay special attention to some optimization problems which are not
addressed in previous works, and we propose some possible solutions.

In this paper we show how to perform the global search optimization problem
following the different types of stack-based decoding algorithms proposed so
far. Then, we describe, study, and implement the state of the art stack-based
decoding algorithms for SMT making an empirical comparison which focuses
specifically on the optimizations problems, computational time, and translation
results.

2 Stack-Based Decoding

The stack decoding algorithm, also called A∗ algorithm, was introduced by F. Je-
linek in [4] the first time. The stack decoding algorithm attempts to generate
partial solutions, called hypotheses, until a complete sentence is found; these
hypotheses are stored in a stack and ordered by their score. In our case, this
measure is a probability value given by both the translation and the language
model introduced in section 1. The decoder follows a sequence of steps for achiev-
ing an optimal hypothesis:

1. Initialize the stack with an empty hypothesis.
2. Iterate

(a) Pop h (the best hypothesis) off the stack.
(b) If h is a complete sentence, output h and terminate.
(c) Expand h.
(d) Go to step 2a.

The search is started from a null string and obtains new hypotheses after an
expansion process (step 2c) which is executed at each iteration. The expansion
process consists of the application of a set of operators over the best hypothesis
in the stack. Thus, the design of stack decoding algorithms involves defining a set
of operators to be applied over every hypothesis as well as the way in which they
are combined in the expansion process. Both the operators and the expansion
algorithm depend on the translation model that we use. In our case, we used
IBM Model 3 and IBM Model 4.

The operators we used in our implementation for IBM Model 3 and IBM
Model 4 are those defined in [1] and [3], that we describe below:

– add: adds a new target word and aligns a single source word to it.
– extend: aligns an additional source word to the last generated target word.
– addZfert: adds two new target words: the first has fertility zero, and the

second is aligned to a single source word.
– addNull: aligns a source word with the target NULL = e0 word.
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Algorithm 1.1 Expansion algorithm for IBM Model 3(hip)

for all not(covered position j in(hip) do
if hip.is opened() then

hip′ = hip
hip′.extend(); push(hip′) {opened extension}
hip′.close(); push(hip′) {closed extension}

else
f =obtain j-th source word(j)
for all e word of source vocabulary do
if e <> NULL then

hip′ = hip
hip′.add(e, j); push(hip′) {add}
hip′.close(); push(hip′) {add + close()}
for all ze word of source vocabulary do

hip′ = hip
hip′.addZfert(ze, e, j); push(hip′) {addZfert}
hip′.close(); push(hip′) {addZfert + close()}

end for
else {Connect j with NULL}
if hip.phi0 < m/2 then

hip′ = hip
hip′.addNull(j; push(hip′)) {addnNull}

end if
end if

end for
end if

end for

The expansion algorithm we have implemented is strongly inspired on the
one given in [1] for IBM Model 3, (see Algorithm 1.1 for details). This algorithm
was adapted to use IBM Model 4.

Basically, there are two different stack-based algorithms depending on the
number of stacks used in the decoding process (one or several). The first type of
algorithm is the A∗ algorithm which uses a single stack and its basic operating
mode was described in the previous section; in this case the stack will store
all the hypotheses ranked by their score. The second type of algorithm are the
Multi-stack algorithms where those hypotheses with different subsets of source
aligned words are stored in different stacks. All the search steps given for A∗

algorithm can also be applied here, except step 2a. This is due to the fact that
multiple stacks are used instead of only one. In this case another distinction can
be made according to the criterion of hypotheses selection:

– Multi-stack algorithms. They select the best hypothesis or the N -best hy-
potheses that are stored in the queues.

– Multi-stack algorithm with threshold. In this case all stacks are explored, and
a numeric threshold value is calculated and associated to each stack. Only
those hypotheses whose scores are greater than the threshold of the stack
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can be candidates to be selected within the expansion process. The definition
of a function to compute the threshold is needed in order to characterize the
algorithm. A specific example of a thresholding function is given in [1].

3 Optimizations and Related Search Errors

Stack decoding has a remarkable advantage: under certain conditions, the opti-
mality of the search process can be guaranteed. However, it has an important
disadvantage: the search process requires a high computational complexity.

Let ê be the optimal reference translation of a source sentence f and let e be
the translation that the decoder returns. If e = ê, we say that a translation hit
has occurred. In contrast, a search error occurs when e �= ê and Pr(e | f) <
Pr(ê | f). There exists another possibility, if e �= ê and Pr(e | f) > Pr(ê | f),
then we say that the error is due to the translation and/or language models.

In the following, we describe the possible optimizations (proposed in [3, 5]) to
be applied in order to reduce the search space and the corresponding associated
search errors. In all cases, the description is corroborated by empirical results. To
establish a compromise between efficiency and effectiveness, we carried out some
experiments1 corresponding to a test set of 100 input sentences of length 8 from
the Tourist task. As in previous works, we used IBM Model 4 as translation
model and 3-grams as a language model.

The following optimizations do not require further explanation, but note that
the search errors can be avoided by using their maximum values, which always
involves a substantial increment in the computational time:

– Reduce the number of possible source word translations (W ) from the size of
the target vocabulary to a prioritized candidate list as defined in [3]. From
W = 1 to W = 12 we reduce the search errors from 82 errors to 18 errors,
but the secs. per sentence are increased (on average) from 14 secs. to 31 secs.
Higher values of W do no pay off.

– Reduce the number of possible zero fertility words (Z), that is, consider only
a certain number of zero fertility target words of a prioritized list. A similar
experiment was done varying Z from 1 to 50 reducing search errors from 79
to 13 errors but increasing the secs. per sentence from 2.7 secs. to 98 secs.

– Stack length limitation (S). The number of possible partial hypotheses to be
stored during the search can be huge. Then, in order to avoid memory over-
flow problems, the maximum number of hypotheses that a stack may store
has to be limited. It is important to note that for a partial hypotheses, the
higher the aligned source words, the worse score. These partial hypotheses
will be discarded sooner when an A∗ search algorithm is used due to the pos-
sible effect of the S parameter. This cannot occur if a multi-stack algorithm
is used, because only hypotheses with the same number of covered positions
can compete with each other.

1 Experiments were done on a Pentium III machine at 600 MHz.



658 Daniel Ortiz et al.

– Restrict the number of source position to be aligned per expansion (A) for
every position yet uncovered of the source sentence. Then the amount of
hypotheses generated in every expansion can be reduced by setting the max-
imum value to A. This is specially important for dealing with long sentences.
Furthermore, in the experiments, we obtained 67% of search errors for A = 1,
and 18% for A = 8 (the length of the sentences). No improvements were ob-
tained for higher values of A = 4.

However, the optimization of the reduction of addZfert comlexity proposed
in [3] cannot avoid search errors. This optimization is based on the fact that
the addZfert operation should not be systematically applied but applied only
when the probability of a partial hypothesis is increased. That is, the addZfert
operation can yield a better hypothesis than the add operation if it increases
the language model probability more than it decreases the translation model
probability. This is because addZfert adds a single contribution to the transla-
tion model probability consisting of the fertility term of the zero fertility word
added. We have observed that this optimization can cause search errors if a tri-
gram language model is used, this was not observed in [3]. Let us suppose that,
during the expansion process, the addZfert operation is not applied because of
the optimization condition. In the next iteration, the uninserted zero fertility
word might substantially increase the language model probability, thus yielding
a much better partial hypothesis than the one obtained without applying the
addZfert operation. The immediate solution to this problem could be to use
a bigram instead of a trigram. However, this solution will degrade the trans-
lation quality as has been shown in other works. The solution we propose is
to postpone the decision to discard the addZfert operation (and obviously the
associated hypothesis) to the next iteration when all history for the trigram
language model is known. Table 1 shows that the addZfert optimization (as
proposed in [3]) has, in effect, created search errors, which could be avoided by
using our solution. The 18% of search errors are due to the other optimizations.
As expected a substantial decrease in computational time is achieved.

In the experimentation process we carried out, we observed a special phe-
nomenon which was not mentioned in previous works. In a relatively high number
of sentences, the optimal translation of a given source sentence had two or more
consecutive zero fertility words, or the sentence ended with a zero fertility word.
According to the proposed operators in the literature, the decoders will not be

Table 1. Experiments with addZfert optimizations

Without opt. Heuristic opt. Postponed opt.

secs. per sent. 48.5 7.6 26.4

Hits 43 38 43

Model errors 39 39 39

Search errors 18 23 18
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Table 2. add2Zfert and reverseAddZfert test

addZfert add2Zfert reverseAddZfert

Secs. per sent. 15.4 26.4 33.8

Hits 32 43 45

Model errors 30 39 38

Search errors 38 18 17

able to yield the optimal hypothesis because there does not exist a sequence of
operators to avoid this phenomenon. We have called these errors as algorithm-
inherent search errors. We propose introducing two new operators in order to
reduce the algorithm-inherent search errors:

– add2Zfert: this works like the addZfert operator, but one more word with
zero fertility is added. This operator allows the algorithm to produce two
consecutive words with zero fertility.

– reverseAddZfert: this is similar to the addZfert operator, but the word
with zero fertility is added after the word whichd has a fertility greater than
zero. The reverseAddZfert can also yield hypotheses in which the last word
has zero fertility.

Table 2 shows an experiment which shows the reduction of search errors due to
these two new operators. The experiment was carried out maintaining the other
optimizations parameters at the same value. In spite of this, a total of 8 search
errors occurred due to the fact that there were more than two consecutive zero
fertility words. Thus, the definition of a new addNZfert (N > 2) operation
is needed in order to completely avoid search errors. Obviously, the secs. per
sentence are increased in all cases.

We also implemented two optimizations proposed in [5] which do not provoke
any search errors and involve a substantial speed up. The first optimization is
hypotheses Recombination which can discard hypotheses which cannot be dis-
tinguished by their language model state or by the translation model state, the
second optimization is the use of admissible heuristic functions which estimates
the cost of completing a partial hypothesis. A heuristic function is called ad-
missible if it never underestimates the probability of a completion of a partial
hypothesis. Here we used T , TF and TFL. These functions take into account the
probabilities of the lexicon model, the fertility model, and the language model
respectively, in order to calculate the heuristic value. The sentence cost is sig-
nificantly reduced from 26 secs. without any heuristic function to 11 secs. if we
use TFL heuristic.

For the rest of the experiments, we adopted the compromise to use: W = 12,
Z = 24, A = 5, TFL and S(A∗) = 10000, S(Mstack) = 1000, for the Tourist
task. Similar experimentation was carried for the Hansards task yielding the
following values: W = 8, Z = 8, A = 3, TF (due to the extremely huge cost of
calculating the language model probabilities required by TFL heuristic). These
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Table 3. Complexity per iteration with and without optimizations

Algorithm Without optimizations With optimizations

A∗ m|E|2 · 2 log(x) AWZ · 2 log(SStack)

M-stack N2m +m|E|2 · 2(g(2m) + log(x)) N2m + AWZ · 2(g(2m) + log(SMstack))

M-stack + thr 2mf() +m|E|2 · 2(g(2m) + log(x)) 2mf() + AWZ · 2(g(2m) + log(SMstack))

values allowed for a reasonable computation time without quantitatively degrad-
ing the translation quality.

4 Complexity per Iteration

A study of the complexity per iteration for the worst case has allowed us to
understand more about the effects of the optimizations. See Table 3 for a study of
the complexity of the algorithms with and without optimizations (the complexity
is expressed in terms of m). The symbols used are:

– m: number of words of the source sentence.
– |E|: cardinality of the target vocabulary.
– f(): complexity of the function that calculates the threshold.
– g(): complexity of retrieving the appropriate stack for inserting the given

hypothesis into it (only for multiple-stack algorithms). If we use a hash
table, the mean cost of this operation is considered constant.

– x: the number of hypotheses in the stack. Without optimizations, this value
is not bounded, and with optimizations, it is fixed to the values of S.

If no optimization is applied, the complexity will be prohibitive, specially for
multiple-stack algorithms, where we have to iterate over all the stacks in order to
select the hypotheses that will be expanded later. This task introduces an expo-
nential term in the complexity. On the contrary, if we apply the optimizations,
the complexity per iteration will be reduced.

5 Efficiency of Stack-Based Decoders

In order to compare the three different stack decoders introduced in section 2,
a simple experiment for the Tourist task was carried out. The results are shown
in Table 4. The threshold algorithm obtained the worst results. The thresholding
function used here consisted of taking the best hypothesis of each stack for
expansion. Such a strategy requires many more iterations than the approaches
without threshold. Further work must be done with algorithms of this kind. On
the contrary, we have similar costs for A∗ and multi-stack (without threshold)
algorithms. However, we expected the A∗ algorithm to have better results due
to its lower complexity. A more detailed study is shown in Table 5 where we
have processed five different test corpora of sentences with a fixed length.
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Table 4. Algorithm influence using a test set of 100 sentences of length 8

A∗ multi-stack threshold
Secs. per sent. 28.2 26.4 557.2

Hits 43 43 43

Model errors 39 39 39

Search errors 18 18 18

Table 5. Comparison between A∗ and multi-stack algorithms

Sent. length 4 6 8 10 12

A∗

Secs. per sent. 0.64 3.90 28.22 62.32 300.84
Expansion time (secs.) 0.63 3.87 28.10 62.12 300.15
Select hyp. time (secs.) 0 0 0 0 0
μ-secs. per push op. 16 18 23 26 32
Discarded hyps due to S 0 0 169K 624K 4.8M

multi-stack

Secs. per sent. 0.59 3.63 27.00 64.50 374.77
Expansion time 0.57 3.59 26.45 62.02 330.43
Select hyp. time 0.01 0.04 0.46 2.24 43.30
μ-secs. per push op. 17 25 26 27 31
Discarded hyps due to S 228 8.9K 202K 496K 3.5M

As we expected, the decoding cost increases in relation to the length of the
sentence. However, if we use a single stack algorithm, no time is spent on selecting
the best hypothesis for the expansion. On the contrary, multi-stack algorithms
spend a significant part of their decoding time doing this for long sentences. In
any case, the value of the parameter S and its effect on the amount of discarded
hypotheses seems to be more important than the importance of the hypotheses
selection. Note that the value of S is closely related to the algorithm type,
and theoretically, can be lower for multiple-stack algorithms than for the A∗
algorithm. Further work must be done in order to set the minimum values of
the parameters for each algorithm. Finally, the cost of the push operation is
very similar for all the different algorithms. This result is in accordance with the
theoretical complexity due to the logarithmic factor used in the expression.

6 Translation Results

The experimental results were carried out using two different tasks:

– The Tourist task consists of a semi-automatically generated Spanish–En-
glish corpus. The domain of the corpus consists of a human-to-human com-
munication situation at a reception desk of a hotel. The corpus consist of
10,000 random sentence pairs for training purposes from the above corpus.
The input and output vocabulary sizes were 689 and 514, respectively.
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Table 6. Translation quality for the Tourist andHansards tasks for different
test sentence lengths and different values of S(S = 10K and S = 100K, left and
right columns respectively; ”-” means equal value). In all cases, 100 test sentence
were translated, by using the A∗ algorithm

Tourist task Hansards task
Sent. length 6 8 10 12 6 8 10 12
WER 16.9 - 11.3 - 6.6 - 10.0 - 51.6 - 52.9 53.2 63.8 64.8 63.9 63.8
PER 16.6 - 11.3 - 6.5 - 9.8 - 50.9 - 50 50 61.5 61.7 57.3 58.3
SER 56 - 57 - 50 - 63 - 89 - 84 84 100 100 98 97
Secs×sent. 2.10 2.26 10.3 12.6 20.2 24.7 88.3 104 28.2 34.8 141 273 374 1335 912 4569

– The French-English Hansards task consists of debates in the Canadian
Parliament. This task has a very large vocabulary of about 100, 000 French
words and 80, 000 English words. A sub-corpus of 128,000 sentences was
selected for training purposes.

For both tasks, the training of the different translation models was carried out us-
ing GIZA++ software (http://www-i6.informatik.rwth-aachen.de/ och).
One hundred sentences (disjointly from the training corpus) of length up to 12
were selected for testing. A 3-gram language model was used, which was trained
with the English counterparts of both tasks.

To evaluate the translation quality, three different error criteria were used:
WER (Word Error Rate) computed as the minimum number of substitution,
insertion and deletion operations that have to be performed to convert the gen-
erated string into a reference target string; PER (Position independent Error
Rate) similar to WER but the order of the words is not taken into account; and
SER (Sentence Error Rate) defined as the number of times that the translation
generated by the decoder is not identical to the reference sentence.

The translation quality for both the Tourist task and the Hansards task
is shown, in Table 6. For the Tourist task, the effects of the heuristic opti-
mizations produced significant error rates. Further work must be done in order
to improve the training stage, including a preprocessing of the corpus. On the
other hand, the Hansards task is much more complex than the Tourist task,
so it has higher error rates. The results are shown for two different values of
the parameter S. Note the small influence of this parameter on the translation
quality, and the great reduction in the processing time.

7 Conclusions

An empirical and theoretical study of stack-based algorithms has been done,
paying special attention to those optimization problems that were not discussed
in previous works. According to the experimental results we can conclude that:

– Stack-based decoders cannot yield optimal translations with a reasonable
temporal cost per sentence. Even if we do not apply any optimization, the
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way the operators are defined produces algorithm inherent search errors. We
propose addNZfert-like operations to deal with such errors. In our opinion,
errors of this kind could also be reduced by using better trained or better
translation models.

– The main source of search errors seems to be the zero fertility words and
their related optimizations. A possible solution is also proposed.

– The model errors that we obtained were always higher than the search errors.
For a complex task like Hansards, this problem is much more important.
Further work must be done on the statistical model if we want to improve
the translation quality.

– Multi-stack algorithms have the negative property of spending significant
amounts of time in selecting the hypotheses to be expanded. In contrast,
for the A∗ algorithm, it is not possible to reduce the S parameter, as much
as in the multi-stack case, in order to speed up the search without loss of
translation quality.

For future work, we plan to investigate in detail the specific effect of the S
parameter on the different algorithms as well as the use of different thresholding
functions for multi-stack algorithms. We also plan to make a more exhaustive
comparison paying particular attention to the influence of the optimizations.

We have just started to apply these algorithms to translation assistant appli-
cations where the prediction of short partial hypotheses is used instead of whole
sentence translations. These are offering very promising results.
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Abstract. A segmentation method based on a physics-based model of
image formation is presented in this paper. This model predicts that, in
image areas of uniform reflectance, colour channels keep coupled in the
sense that they are not free to take any intensity value, but they depend
on the values taken by other colour channels. This coupling property
is, however, broken at reflectance transition locations. Surface material
changes (i.e. reflectance changes) can, thus, be found by looking for vio-
lations of the coupling properties. If edges are defined at points breaking
the coupling and connected image areas not including edges are found,
the set of resultant regions are guaranteed not to contain a material
change. If, besides, edges are added to the most similar adjacent region,
a first partition of the image can be obtained. Finally, a merging stage is
executed to remove the probably low degree of oversegmentation which
can result.

1 Introduction

Generally speaking, irradiance values measured at pixel locations are a combi-
nation of several scene factors which interact with each other: the illumination
distribution, the reflection properties of scene objects —which determine their
colour—, the objects geometry, the propagation medium and the performance
of the imaging sensor. Leaving aside the propagation medium and the charac-
teristics of the camera, an image encodes, thus, the lighting conditions and the
curvature and reflectance properties of the surfaces of the scene.

When shading is hardly noticeable in the image, as well as specularities and
other optical phenomena such as inter-reflections, areas of the scene of uniform
reflectance appear as regions of more or less constant colour if shadows are
avoided. Throughout the years, many segmentation and edge detection algo-
rithms have exploited this model of image formation to find areas of uniform
reflectance (i.e. uniform colour) in the image.

Nevertheless, when curved objects are imaged, the scene curvature and the
objects glossiness, among others, give rise to noticeable changes in image inten-
sity not necessarily related to object boundaries. In those situations, the simpli-
fied model of a noisy piecewise constant bidimensional function is not enough
� This study has been partially supported by project CICYT-DPI2001-2311-C03-02
and FEDER fundings.
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detailed so as to guarantee, at least theoretically, finding regions of uniform re-
flectance in the image. However, embedding a physics-based model of image for-
mation into the segmentation algorithm allows coping with the aforementioned
effects in a more suitable way.

Early work in physics-based vision dates from the 1970s, when Berthold
Horn at MIT first applied optical laws to supplement the traditional geometric
analysis in the process of automatic visual interpretation [1]. Since then, a lot
of research has been published mainly in the areas of shape recovery and colour
image understanding [2]. However, little effort has been devoted to applying the
physics of image formation to the segmentation of an image with respect to
the effort invested in traditional segmentation. Among the several physics-based
segmentation strategies which have been proposed, some of them are based on
estimating directly the reflectance of the surfaces present in the scene (see for
instance [3]), others look for certain configurations of clusters in colour space,
as it is predicted by the Dichromatic Reflection Model proposed by Shafer [4]
(by way of example, see [5, 6]), and, finally, others use photometric invariants in
their different forms ([7, 8], among others).

The segmentation method proposed in this paper is also based on the Dichro-
matic Reflection Model, but it does not use any of the approaches mentioned
above. Its main point, which is the most important contribution of the paper,
is based on the fact that, in uniform reflectance areas, colour channels are cou-
pled by the reflectance of the surface material, while, in reflectance transition
zones, such coupling can be broken in a number of ways. Consequently, material
changes can be found by looking for violations of the coupling properties, which
allows computing an edge map from which a first partition of the image can be
obtained. A region merging stage follows next, in order to remove the probably
low, but not generally zero, degree of oversegmentation which can result.

The rest of the paper is organized as follows: section 2 describes the im-
age formation model considered in this work, and comment on the properties of
uniform reflectance areas according to that model; section 3 presents the segmen-
tation algorithm; section 4 presents some segmentation results for real images;
and, finally, conclusions appear in section 5.

2 Image Formation Model

2.1 General Description

In general, when light interacts with matter, two reflection components must be
taken into account [4]: the interface or specular reflection, and the body or diffuse
reflection. The former is originated at the interface between air and the surface
medium and is due to the difference between both indexes of refraction. On the
other hand, body reflection is caused by light which finally penetrates into the
surface and undergoes scattering due to multiple light-material interactions. It
is generally accepted that final reflection is an additive composition of the body
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and interface components, as it is expressed by equation 1:

Lx(λ) =

Lbx(λ)︷ ︸︸ ︷
mb(x) [Ex(λ)ρbx(λ)] +

Lix(λ)︷ ︸︸ ︷
mi(x) [Ex(λ)ρix(λ)] (1)

where Lx(λ) is the light reflected by the surface at a given surface point x
and for a certain wavelength λ, and Lbx and Lix are, respectively, the body
and interface components of the radiance. With a reasonable degree of accu-
racy [4], each component Ljx(j ∈ {b, i}) can be modeled as the product of two
terms: Cj(λ) = Ex(λ)ρjx(λ), expressing the fraction of the incoming light Ex(λ)
which is conveyed by that reflection component due to the body/interface re-
flectance 0 ≤ ρjx(λ) ≤ 1; and mj(x) ∈ [0, 1], which is a geometrical factor
depending on the surface geometry at point x.

The final pixel value given by a camera can be expressed as:

Ik(u, v) = pk0

∫
Λ

Eu,v(λ)τk(λ)s(λ)dλ (2)

where Ik(u, v) is the intensity of the k colour channel at image cell (u, v), Λ
represents the set of wavelengths in the visible spectrum, pk0 is a scaling factor,
Eu,v(λ) is the incoming light at image cell (u, v), τk(λ) is the filter transmitance
for the k colour channel, and s(λ) is the spectral responsivity of the sensor [9].
In a typical RGB camera, k ∈ {r, g, b}, while τ(λ) = 1 in a monochrome camera.

After some considerations, which are not included here due to lack of space
(see [10] for the details), the image formation model turns out to be:

Ik(u, v) = mb(u, v)Ikb (u, v) +mi(u, v)Iki (u, v) (3)

where Ikb and Iki are, respectively, the so-called body and interface compos-
ite reflectances, representing the joint contribution of lighting and material re-
flectance to the corresponding reflection component.

To finish, notice that, within an image area whose pixels correspond to scene
points belonging to the same material, the body and interface colours are con-
stant if the light distribution is also uniform throughout the area. In a noise-
less environment, colour changes between image locations are, thus, only due
to changes in the geometrical factors mb and mi. This fact is exploited in the
next two sections to introduce three properties of the image formation model,
which result very useful for the purpose of partitioning images into the different
materials present in the scene.

2.2 Properties of the Image Formation Model For Non-glossy Pixels

If the illumination is uniform throughout the scene, within an area not containing
a material change, colour channels keep coupled as follows if the pixels involved
do not show interface reflection: (See [10] for the formal proofs.)
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Property 1. For any pair of colour channels k1 and k2 and any two image
locations (u1, v1) and (u2, v2) not showing interface reflection and coming from
the same scene material,

(1) Ik1(u1, v1) ≥ Ik2(u1, v1)⇔ Ik1(u2, v2) ≥ Ik2(u2, v2)
(2) Ik1(u1, v1) ≤ Ik2(u1, v1)⇔ Ik1(u2, v2) ≤ Ik2(u2, v2)

Property 2. For any pair of colour channels k1 and k2, any image location
(u, v) not showing interface reflection and not corresponding to a material
change, and any direction ξ over the image plane,

(1)
(
dIk1 (u, v)

dξ

)
≥ 0⇔

(
dIk2(u, v)

dξ

)
≥ 0

(2)
(
dIk1 (u, v)

dξ

)
≤ 0⇔

(
dIk2(u, v)

dξ

)
≤ 0

Property 3. For any pair of colour channels k1 and k2 and any two image
locations (u1, v1) and (u2, v2) not showing interface reflection and coming from
the same scene material,

(1) Ik1(u1, v1) ≥ Ik1(u2, v2) and Ik1(u1, v1) ≥ Ik2(u1, v1), or
Ik1(u1, v1) ≤ Ik1(u2, v2) and Ik1(u1, v1) ≤ Ik2(u1, v1)
⇔ Ik1(u1, v1)− Ik2(u1, v1) ≥ Ik1(u2, v2)− Ik2(u2, v2)

(2) Ik1(u1, v1) ≥ Ik1(u2, v2) and Ik1(u1, v1) ≤ Ik2(u1, v1), or
Ik1(u1, v1) ≤ Ik1(u2, v2) and Ik1(u1, v1) ≥ Ik2(u1, v1)
⇔ Ik1(u1, v1)− Ik2(u1, v1) ≤ Ik1(u2, v2)− Ik2(u2, v2)

Property 1 means that colour channels do not cross each other in an area
of uniform body reflectance. On the other hand, property 2 means that, in an
area of uniform body reflectance, colour channels vary in a coordinated way:
when one changes, so do the others, and in the same sense, all increase or all
decrease. This result extends to the fact that, given two image locations (u1, v1)
and (u2, v2), if Ik1(u1, v1) ≥ Ik1(u2, v2), then Ik2(u1, v1) ≥ Ik2(u2, v2), and the
same applies for ‘≤’. Finally, property 3 means that, as the intensity in one
channel decreases, so does the difference between colour channel intensities; the
opposite happens when the intensity in one channel increases.

3 Segmentation Algorithm

In general, segmenting an image consists in grouping pixels in homogeneous re-
gions, generally according to a certain perceptually-based homogeneity criterion.
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Most times, one is interested in the image regions corresponding to the same per-
ceptual colour. In physical terms, this means grouping pixels in uniform body
reflectance areas.

In those areas, colour channels keep coupled according to the properties in-
troduced in section 2.2. When a reflectance change takes place, colour channels
evolve so as to adopt the configuration corresponding to the new body reflectance
(i.e. they are coupled in a different way, see figure 1), giving rise to the violation
of at least one of the properties at the corresponding image locations. There-
fore, it is proposed to look for those locations to build an edge map where body
reflectance transitions are indicated.

As looking for regions satisfying the homogeneity criterion and looking for
the region borders are, at least theoretically, complementary problems, at the
next step of the segmentation process, non-edge pixels are grouped and the
resultant connected regions give rise to a first partition of the image, although
not yet complete. It is completed by adding edge pixels to the most similar
adjacent region. Finally, as it is discussed in section 3.1, a certain (low) number
of false positive edges can be expected, mostly due to image noise, and therefore
a certain (low) degree of oversegmentation can result. In order to remove it,
a region merging stage is executed next.

3.1 Edge Map Computation Process

The edge map is built by checking, at every pixel, all three properties. If the
pixel under consideration belongs to a closed 1D interval over the image plane
[(u1, v1), (u2, v2)] such that (u1, v1) and (u2, v2) do not satisfy at least one prop-
erty, then an edge is registered at the corresponding map location. Although
a reflectance transition should theoretically involve just two pixels, in real im-
ages they tend to span along several image cells because of real cameras’ aliasing.
As a consequence, the edge map must in general be expected to consist of thick
edges.

By checking those three properties, a broad spectrum of body reflectance
transitions is covered. On the one hand, if property 1 is infringed, it is because
at least one colour channel crosses one another (channel crossing edge (CHC),
see figure 1(a)). Otherwise, at that image pixel, colour channels do not cross
one another, but, still, property 2 can be violated. In such a case, at least two
colour channels diverge in the sense that, while in one channel the intensity
increases, at the other one decreases (non-coinciding derivative edge (NCD), see
figure 1(b)). In case the intensity at all colour channels vary in a coordinated way
—all increase or all decrease—, it can so happen that property 3 is not fulfilled;
that is to say, when intensity decreases in both channels, the difference between
them increases instead of decreasing, or vice versa (non-decreasing difference
edge (NDD), see figure 1(c)).

With this procedure, only those transitions whose effects on the colour chan-
nel signals do not violate any of properties 1-3 are left undetected. For instance,
reflectance transitions where both body reflectances have approximately the
same direction but different magnitude, e.g. light red against dark red, satisfy all
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Fig. 1. Examples of body reflectance transitions dectected and corresponding
edges: (a) CHC edge; (b) NCD edge; (c) NDD edge; (d) GRD edge

three properties —notice that reflectances can be seen as n-dimensional vectors,
with n = 3 for an RGB camera. In those cases, the algorithm resorts to gradient
information (edge of type GRD, see figure 1(d)).

Given the fact that the properties formulated in section 2.2 require pixels
not to show interface reflection, pixels around specularities are expected to be
labelled as edges. Although not always edges of type CHC, NCD or NDD are
found near specularities, edges of type GRD will clearly be found, except for
“smooth” specularities.

From the implementation point of view, edges are found by checking the
coupling properties on 1-dimensional neighbourhoods centered at the pixel under
consideration and oriented in a number of directions. Finally, in order to get
thinner edges, the final map is obtained after removing edges not coinciding
with LOG zero crossings of any magnitude (see [10] for a discussion about the
usefulness of second-order derivative operators for curvature-dominated images).

3.2 Region Growing Strategy

Once the edge map has been computed, connected components not including
edge pixels are found. The resultant groups correspond to regions satisfying all
three properties everywhere, and, therefore, body reflectance is uniform within
all of them. As it is predicted by the Dichromatic Reflection Model, pixels com-
ing from the same scene material lie in a hyperplane in colour space, spanned
by the body and the interface reflectances, and constituted by a linear or point
cluster corresponding to the matte pixels and another, more or less, linear clus-
ter corresponding to the glossy pixels. As the edge map is expected to separate
glossy pixels from matte pixels, the corresponding regions are expected to be
describable by linear or point clusters in colour space. Using Principal Compo-
nent Analysis, the line or point best characterizing the cluster corresponding to
every region is found. Next, edge pixels join the most similar adjacent region. In
this context, the orthogonal distance to the cluster descriptors has been used as
the similarity measure. As a result of this step, an initial partition of the image
is obtained.

3.3 Region Merging

Because thick edges can still appear in the edge map and due to the treatment
given to specularities, it is expected that some regions of uniform reflectance
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appear separated into several parts. In order to remove this oversegmentation,
all three properties are checked again but just at region borders. Two regions
are merged if edges of type CHC, NCD or NDD are not found along its common
border and there is at least one pixel at the border whose gradient at all channels
is below an adaptative threshold: ε1 dI

k

dξ + ε2, where ξ is any direction connecting
both regions, x is the average operator over a 1D neighbourhood centered at the
pixel, and (ε1, ε2) are parameters of the algorithm.

As for specularities, they are characterized as small regions with a colour
average above a certain intensity level in at least one colour channel (parame-
ters Nsp and Isp). Moreover, to be joined with an adjacent region, the compound
cluster in colour space must be fitted by a plane with a low fitting error (below
a parameter σsp). Using such criteria, adjacent regions are again considered to
be merged, giving rise to the final segmentation.

4 Experimental Results and Discussion

To prove experimentally the usefulness of the segmentation method proposed,
several results for real curvature-dominated images are given below. All the test
images were captured with gamma correction γ set to 1. Results for standard im-
ages are not given because they were not captured with a linear camera (γ �= 1)
and they do not generally consist of curved objects. Moreover, different sur-
face materials were included in the different scenes (plastics, ceramics, clothing,
paper, wood, etc.).

As for parameters, 1D neighbourhoods used to check properties fulfillment
were oriented horizontally, vertically and diagonally (both diagonals), and their
length was set to 10×2+1 pixels. For the rest of parameters, the following values
were used for all the images presented here: (1) the standard deviation for LOG,
σLOG, was set to 1; (2) ε1 = 1 and ε2 = 2; (3) Nsp = 200, Isp = 200 and σsp = 5.

For the segmentation results, see figures 2 and 3. On the one hand, for com-
parison purposes between a physics-based and a non-physics-based approach,
figure 2(right) shows the result obtained, using the undersegmentation option,
from the recognized mean-shift based segmentation algorithm by Comaniciu and
Meer [11] 1, for the original image corresponding to figure 2(left). The edge map
obtained from our method is given in figure 2(center), while the original image
with the corresponding region contours overimposed in white appears in fig-
ure 2(left). On the other hand, figure 3 presents more segmentation results for
a varied set of scenes containing different sorts of materials and glossy curved
objects. More experimental results and a more detailed discussion about them
and the algorithm parameters, which are not included here due to lack of space,
can be found in [10].

1 Its code is available in the web at URL:
http://www.caip.rutgers.edu/riul/research/papers/abstract/feature.html.
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Fig. 2. (left) original image with region contours overimposed; (center) edge
map; (right) contours resultant from the mean-shift based approach

Fig. 3. Segmentation results for different types of surface materials: plastics,
ceramics, clothing, paper, wood, etc.

5 Conclusions

A curvature-insensitive segmentation method, based on a physics-based image
formation model, has been proposed. The method uses the coupling between
colour channels in uniform reflectance areas to locate image locations where
colour channels turn out to be uncoupled because of a reflectance transition
arising there. Experiments with real images have been presented, showing the
power of the approach for dealing with scenes with glossy curved objects and
different surface materials.
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Abstract. In this paper, we present a new technique for separating dif-
ferent types of periodic motions in a video sequence. We consider different
motions those that have different periodic patterns with one or many fun-
damental frequencies. We select the temporal Fourier Transform for each
pixel to be the representation space for a sequence of images. The classi-
fication is performed using Non-Negative Matrix Factorization (NNMF)
over the power spectra data set. The paper we present can be applied
on a wide range of applications for video sequences analysis, such as:
background subtraction on non-static backgrounds framework, object
segmentation and classification. We point out the fact that no registra-
tion technique is applied in the method that we introduce. Nevertheless,
this method can be used as a cooperative tool for the existing techniques
based on camera motion models (motion segmentation, layer classifica-
tion, tracking of moving objects, etc).

1 Introduction

The aim of finding periodicities in image sequences goes back to the beginnings of
Computer Vision. Many biological reasons support the idea of dealing with this
specific issue. Periodic motion detection is a strong cue for object and action
recognition in human motion perception [3, 4]. Actually, studies on recogniz-
ing moving light displays show the ability of human perception for recognizing
biological motion [3, 4]. Even when dealing with very low resolution image se-
quences, humans are capable of recognizing periodic movements [2].

As it has been pointed out in [11, 7, 10], periodicity is striking in that it can
be detected without taking into account the structure of objects in a scene (rigid
and non-rigid objects are accounted for), and, at the same time, techniques for
periodic motion detection, segmentation and classification can assist in many
applications requiring object and activity recognition and representation [6, 1].

Recent analysis that categorize the existing methods for periodic motion
recognition and segmentation can be found in [2], and can be summarized into:
Fourier based methods [10, 7, 2], Point correspondences based methods [11],
Linear Dynamic models methods [1], fitting spatio-temporal surfaces [8], and

� This work was supported by CICYT TEL 99-1206-C02-02.

F.J. Perales et al. (Eds.): IbPRIA 2003, LNCS 2652, pp. 673–681, 2003.
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Flow-based methods [9]. Many of them use spatio-temporal alignment, back-
ground subtraction and tracking techniques for targeting periodic patterns. The
work we present in this paper is certainly compatible with these techniques, even
though, for the purpose of this paper, they are not the main point of discussion.

1.1 Contribution

We present a novel technique to deal with a new and interesting problem, which
can be stated as follows: How many different types of periodic movements are
in a specific scene? Is it possible segmenting different objects from their motion
when: a) there are occlusions in the scene across time and b) the same object
has disconnected parts? Both questions have an answer when studying the global
behavior of a sequence that contains different objects moving with different peri-
odic movements. The algorithm we propose yields a manner for detecting in each
frame : i) which pixels correspond to a specific object? and ii) which are the fun-
damental frequencies that contribute to its motion? The referenced works were
about detecting periodicity and segmenting a particular region where periodic
movements occur, however no classification for different periodic movements in
the same scene was proposed.

The technique we present can be used when dealing simultaneously with
moving objects plus moving backgrounds such as: waterfalls, waves, smoke, etc.
Typically, this sort of backgrounds are considered video textures. The main prob-
lem, in this case, is when approaching them with either background subtraction
or spatio-temporal alignment techniques, since the collection of pixels belonging
to the background do not correspond to a pure camera transformation and they
are not static in their pixel value (gray, color). We treat the background with no
particular distinction among the rest of pixels.

1.2 Outline

First, we build a model for one-dimensional images in order to analyze the differ-
ent contributions of shape, motion and frame-rate to the Fourier power spectra.
In section 3, we present a brief study on the reliability of periodic motion clas-
sification and power spectrum factorization. The segmentation of multiple peri-
odic moving objects in video sequences is based on the formulation presented in
section 4. The algorithm is shown in section 5. Section 6 presents a set of exper-
iments in order to show the algorithm’s performance. Finally, the conclusions
are presented in section 7.

2 Periodic Motion Analysis

In this section, we justify how the fundamental frequency can be extracted from
a set of observed images. To this end, we show an example that deals with one
dimensional images. It can be directly extended to 2-D images.



Analyzing Periodic Motion Classification 675

Let I(x) be an one dimensional image with d pixels, where x indicates the
pixel position. The following example shows an oscillating spot of length L and
amplitude A across time. Therefore, the observation is a set of N images with
the spot at different positions. The frequency of oscillation is ω0 = 2π/T0, and
we consider those cases where T0 < N . For each pixel position, there is a 1-D
periodic signal which consists of a pattern of bars with amplitude s and intra-bar
separation a.

The size of the object L and the frequency of oscillation determine the be-
havior of s and a at each height x location. The oscillation model corresponds
to the domain defined by the two following boundary signals:

f1(t) = A cos(ω0t) +
L

2
(1)

f2(t) = A cos(ω0t)− L

2
(2)

We can see that the length of the object for image in the sequence is f1(t)−
f2(t) = L, with L ≥ 0. For a specific pixel position x within the oscillation
amplitude interval, there is a 1-D signal that corresponds to the intersection
of x with each of the two boundaries (eqs. (1) and (2)): x = A cos(ω0t1) + L

2

and x = A cos(ω0t1) − L
2 . Therefore, x intersects at t1 and t2 yielding the bar

width s =| t2 − t1 |:

s(x,A, L, ω0) =
1
ω0

∣∣∣∣∣cos−1
(
x+ L

2

A

)
− cos−1

(
x− L

2

A

)∣∣∣∣∣ (3)

The intra-bar separation a can be written in terms of (x,A, L, ω0):

a(x) =
1
ω0

∣∣∣∣∣2π − 2 cos−1
(
x+ L

2

A

)
− cos−1

(
x− L

2

A

)∣∣∣∣∣ (4)

For each pixel location x, there is a temporal periodic signal with (a, s,
T0 = 2π

ω0
). Let Qa(t) be defined as a step function defined as follows:

Qs(t) =
{

1 if 0 ≤ t ≤ s(x)
0 else (5)

The temporal signal for a specific pixel location x can be defined as follows:

f(t) =
∑
n

Qs(x)(t− nT0) +
∑
n

Qs(x)(t− nT0 − a(x)) (6)

Assuming a frame-rate sufficiently fast to capture the periodicity, the power
spectrum at x can be written as follows:

S(ω, x) = 16
∑
n

δ(ω − ω0n)
1

ω2
0n

2
Un(ω0a(x))Un(ω0s(x)) (7)
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where Un(z) = [1 + cos(nz)]2 has been defined for notation simplicity. From
equations (4) and (3) we note that Un(ω0a(x)) and Un(ω0s(x)) do not actually
depend on the fundamental frequency ω0. This implies that the power spectrum
consist of the contribution of two terms of different nature: i) one corresponding
to the sampling effect due to the fundamental frequency ω0, and ii) another term
corresponding to the contribution of the pixel location x and the object’s shape
parameters:

S(ω, x) =
∑
n

δ(ω − ω0n)Hn(A,L, x) (8)

Moreover, the discretization effect due to the number of frames in the se-
quence makes equation (8) to be re-written approximately as follows:

S(ω, x) ≈
N−1∑
k=0

δ(ω − k)
T0∑
n=0

δ(ω − N

T0
n)Hn(x) (9)

This is just an approximation of a sum of exponentials, however, for our
range analysis we will further show that is very useful since it allows to study
the influence of Hn(x) on the spectra obtained from the observations. It is worth
to note that when T0 approaches to N , i.e., the ratio N

T0
→ 1, no information

about the fundamental frequency can be extracted from the observations. The
corresponding spectra miss the common property that allows to identify them
as the result of the same motion origin.

3 Variance

The purpose of this section is to study the possibility of classifying different
spectra belonging to different types of periodic motions. Consider a sequence
of two moving objects with fundamental frequencies ω1 and ω2. The resulting
spectra for each pixel position are:

S1(ω, x) ≈
N−1∑
k=0

δ(ω − k)
T1∑
n=0

δ(ω − N

T1
n)H1

n(x)

S2(ω, x) ≈
N−1∑
k=0

δ(ω − k)
T2∑
n=0

δ(ω − N

T2
n)H2

n(x)

The aim of this example is to analyze the variance due to the pixel position
in comparison with the average difference between the two types of spectra.
Let us call intra-class difference to the variance due to the pixel position (and
object’s shape), and inter-class difference to the average difference between the
two spectra.
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A symmetrical measure that express the inter/intra-class ratio variance can
be the geometrical mean of the ratios: d(S1, S2)/ < ΔS1 > and d(S1, S2)/ < ΔS2 >,
which is expressed in terms of the periods T1 and T2 as follows:

RS1,S2 = 4

√(
1 +

T 4
1

T 4
2

)(
1 +

T 4
2

T 4
1

)
(10)

The bigger is the ratio between the two periods T1/T2 the bigger is the vari-
ance RS1,S2 , and therefore, the most distinguishable are the two types of motion.
For instance, consider T1 being twice T2, therefore, RS1,S2 ≈ 16 times between
intra-class and inter-class. This yields to study the possibility of applying statis-
tical techniques to segment the different types of periodic movements that occur
in an image sequence.

4 Segmenting Different Periodic Motions

The fact that two different motions are sampled different, the distance between
them is much bigger, than the differences due to shape and pixel location of
different spectra originated by the same periodic motion as it is shown in equa-
tion (10). Therefore, the fact of factoring the power spectra does not block the
possibility of segmenting different types of periodic motions:

S(ω, x) =
T0∑
n=1

Wn(ω)Hn(x) ≈ W̄ (ω)H̄(x) (11)

This approximation is the central point for analyzing the segmentation of
periodic motions. Since the contribution of shape has been minimized through
this approximation, we can see that the method can deal with non rigid objects
(no assumption based on rigidity has been made).

For a model that assumes different periodic moving objects, the idea is that
the power spectrum at each pixel location x factorizes as follows:

S(ω, x) =
q∑

k=1

W̄k(ω)H̄k(x) (12)

where q different types of movements have been assumed. Further, we embed
this model into a Bayesian framework in order to select from data the number of
possible different types of motion automatically. In order to analyze the linear
superposition assumption in the spectra, we refer to the linear property of the
Fourier transform, and the fact the interferences when computing the power
spectra are taken into account in the variance analysis (intra and inter class).

The parameter estimation has to take into account the fact that S(ω, x),
W̄k(ω) and H̄k(x) are non negative. To this end, we base our method on the tech-
nique presented in [5]. The error function to minimize takes into account both the
reconstruction error and a prior function over H̄k(x) in order to automatically
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control the effective number of sufficient parameters (number of possible moving
objects q). Therefore, a set of hyper-parameters {α1, . . . , αq} is introduced in
order to behave as switchers; activating or deactivating the components H̄k(x).
For large values of αk the corresponding component will tend to be small, and
therefore, such component will be neglected.

E =
1
σ2

∑
x

∑
ω

∣∣∣∣∣S(ω, x)−
q∑

k=1

W̄k(ω)H̄k(x)

∣∣∣∣∣
2

+
q∑

k=1

αk
∑
x

H̄k(x) (13)

The update rules that take into account non-negativity are:

H̄k(x)
t+1 = H̄k(x)

t

{ ∑
ω
S(ω, x)W̄k(ω)∑

ω
W̄k(ω)

∑q

i=1
W̄i(ω)H̄i(x)t + σ2

∑q

i=1
δikαiH̄i(x)t

}
(14)

with unity constraints. The computation for the noise variance σ2 and the
model selectors αk can be performed as follows:

σ2 =
1

VxVω

∑
x

∑
ω

∣∣∣∣∣S(ω, x)−
q∑

k=1

W̄k(ω)H̄k(x)

∣∣∣∣∣
2

(15)

and

αk =
Vx∑

x H̄k(x)
(16)

where Vx and Vω are the number of pixel locations and frequencies respec-
tively. The idea, here, was to show the manner the factors are estimated avoiding
masking the procedure with extra mathematical formalisms.

5 Algorithm and Examples

Two sequences of images are used in order to show the performance of the al-
gorithm. The first one is a synthetic generated sequence with the purpose of
studying the manner the algorithm deals with occlusions. Three moving objects
are in the scene: two of them evolving according to a translational motion, and
a third one according to a zoom operation. The three moving objects have dif-
ferent frequencies. Figure 2 shows 25 frames of a 100 frames sequence - in 1 out
of 4 order-. Optical flow-based techniques are often used to estimate the motion
of objects in image sequences. The main weakness of those techniques is their
reliance on texture. In this specific sequence, we selected the objects to have no
texture.

A second sequence consists of natural images with two main periodic mo-
tions: a moving face with lower frequency than a moving hand. In this case,
occlusion is also a notable factor to be concerned when tackling this problem
with local approaches. Moreover, in this sequence, there is a third issue to be an-
alyzed: ”non-rigid objects”. We can consider the hand to be a non-rigid object,
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Hk(x) k = 1 k = 2 k = 3 k = 4

α1 = 0.5 α2 = 0.9 α3 = 0.03 α5 = 1E4

Fig. 1. Top row: Some frames of the face sequence. Bottom row: Components
indicating the contribution of each type of periodic movement to each pixel
location x. A large value of αk indicates negligible component

Hk(x) k = 1 k = 2 k = 3 k = 4 k = 5

α1 = 0.1 α2 = 0.09 α3 = 0.1 α4 = 0.08 α5 = 1E3

Fig. 2. Components indicating the contribution of each type of periodic move-
ment to each pixel location x. A large value of αk indicates negligible component

or, more properly, an articulated object - for the purpose it does not matter
-. The fact is that, techniques based on parametric motion estimation lack of
enough flexibility to deal with the segmentation of this moving hand (see fig. 1).
Parametric techniques are either too restrictive or not enough general to be ap-
plied in a variety of situations. The technique we present is able, instead, to deal
with non-rigid objects with the same approach applied in the first sequence.

In both sequences, few first compute the time Fourier transform for each pixel
location x, and therefore, their corresponding power spectra. After, this first
step, its necessary to assign an initial guess to the number of different periodic
motions, which are supposed to be in the scene. It is recommendable to assume
that there are many motions in the scene, since the Bayesian approach of this
algorithm will explain how many true different motions are in the scene. For the
synthetic sequence we chose 5 different motions as initial guess. In the other one
we select 4 as initial guess. Having the power spectra for each sequence, we run
the estimation process described in the previous section. After convergence, the
hyper parameters αk will explain in each case the number of sufficient different
motions to be considered as shown in figures 2 and 1.
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The algorithm provides a ”location mask” Hk(x) for each different detected
motion. Since for each pixel location H̄k(x) is normalized to the unity with
respect to the motion model components k, the H̄k(x) values indicate the con-
tribution in terms of probabilities of each single segmented motion in each pixel
location. This will allow labelling the different regions in the image frame in
terms of the motions that occurred across the sequence. The algorithm also pro-
vides the power spectra Wk(ω) for each different detected movement. Using the
components separately, we can generate synthetic video sequences with the dif-
ferent segmented moving objects. This segmentation is performed in space and
time at the same time.

6 Conclusions

We have presented a technique that classifies the different periodic motions that
can be present in a video sequence. We have firstly built a model in order to
show the different effects that contribute to the temporal Fourier spectra, such
as: shape, motion and frame-rate. Moreover, we have shown a reliability anal-
ysis that justifies the power spectra factorization, which is the key point for
a spectral classification of the different pixels in an image sequence. This analy-
sis permits dealing with occlusions, non-rigid objects and quasi-periodic moving
backgrounds such as video textures (waterfalls, smoke, sea, waves etc.).
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Abstract. In this paper we present a recursive least squares technique
for extracting the breaking curve of a 3D range open surface. Unlike
differential operators-based methods, the algorithm we propose is robust
to noise and is applied to unorganized point sets. No assumptions such as
smoothness and/or continuity on the boundary’s shape are performed.
The method we present deals with large amount of data under a low
computational cost, since no local computation is performed. A global
approach is given to the technique in order to make it more robust, faster
and simpler than individual point plus neighbours approaches.

1 Introduction

Many problems are associated with extracting the boundaries of noisy 3D sur-
faces: segmentation [8], object recognition, perceptual organization [3], appli-
cations to archaeology pottery reconstruction [4, 5], sherds classification, the
3D puzzle problem, etc. These applications deal usually with broken pieces and
patches which can be characterized by their breaking curves. This type of curves
can characterize the 3D spatial organization of a set of broken sherds in order
to reconstruct the original object.

Breaking curves are a particular case of 3D edges; they are the boundaries
corresponding to a 2D surface embedded in a 3D space. Actually, the points
belonging to a 2D surface are considered to be edge points since there is a dis-
continuity in at least one direction of the first derivatives (3D gradient). Much
work has been done on 3D edge detection through differential operators [7, 2].
The main drawback is that neighboring-based operations are highly expensive
in terms of computational cost. Other local approaches are either based on com-
putations that require a previous data ordering -triangular meshes- [8, 6] or
boundary following-like algorithms [9]. Techniques based on local computations
-such as partial differential equations- suffer from extreme sensitiveness to noise.

1.1 Contribution

We propose a new method that is based on global computations, and, which :
i) is fast in very large data sets, ii) is robust to noise, and iii) does not need
� This work was supported by CICYT TEL 99-1206-C02-02.

F.J. Perales et al. (Eds.): IbPRIA 2003, LNCS 2652, pp. 681–688, 2003.
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data to be organized. This method is based on a recursive algorithm that starts
fitting a plane to the surface and in each iteration increases the number of
planes by splitting the previous estimated ones. In each estimation the bound-
aries for each plane are computed. The boundaries of each sub-portion fitted
by a plane must be consistent with the whole data set. This means that only
the plane boundaries points consistent with the surface boundaries are taken
as ”true” boundary points. The procedure can be described as a tree structure,
where each level contains information on the sherd’s boundary at a certain scale.
Once, the algorithm is at the lowest level of the tree-structure, all the consistent
boundary points are collected from all the branches and leaves. These points are
the sherd’s boundary points. As it is shown in the experiments, the more levels
are investigated, more accuracy is obtained for describing the breaking curve.
Issues such as: ”how many levels are needed?”, and ”when it is necessary to stop
the splitting?” are answered as well. Moreover, from a computational point of
view, we show that the algorithm is initialization independent. The manner it
is formulated avoids implicitly ill-conditioning problems without being forced to
add ad hoc numerical treatments.

1.2 Outline

he paper first introduces the mathematical framework where the algorithm is
based on. Afterwards, the algorithm is presented. In section 4 some experiments
are shown. Finally, in section 5, we present the conclusions.

2 Background

In this section, we introduce the mathematical framework and the main geo-
metrical idea behind the algorithm. Before beginning with the formulation, an
issue to be considered is that a 2D surface can be approximated by 2D planar
patches. Ideally, an infinite number of these planar patches would reconstruct
the surface exactly.

2.1 Fitting a Plane to a Distribution of Points

The first and easiest sort of surface to start with is a planar surface described by
a few number of points. This type of surfaces can be represented by a specific set
of coordinate orthogonal axes adapted to the points spatial distribution. These
are obtained by means of a linear regression that fits a 2D plane minimizing the
orthogonal distance to the mentioned plane. A plane, actually, can be described
by just two degrees of freedom that locate any point belonging to it. These two
degrees of freedom are scalar values that measure the distance of a point along
each of the axes.

The estimation of the principal axes is performing through Principal Com-
ponent Analysis (hereafter PCA) [1]. The result of applying PCA on set of 3D
points is a set of 3 unitary vectors and 3 scalar values. The unitary vectors are
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known as eigenvectors, and the scalar values as eigenvalues. The eigenvalues give
a notion of the importance of a specific axis with respect to the others. This im-
portance measure is actually the variance -in statistical terms- of the data along
each axis. This means that an axis with large variance associated has the data
distributed in a larger portion of space, than another axis with lower variance
associated. In other words, when it comes to fit a plane to a planar distribution
of points, there is an axis with negligible variance, which determines the noise of
the planar distribution. The larger is the amount of variance in that direction,
the lower is the likelihood of the point distribution to be a plane. PCA algorithm
is coordinate free, which means that results are adapted to the nature of the data
distribution but to the frame of reference where data is represented. This makes
the technique independent of the absolute position, which is quite useful when
dealing with pottery (pieces in general) scans.

Let us analyze some useful consequences of computing the principal axes of
a noisy planar distribution of points. Firstly, the study of the projections along
each of the two principal axes gives a manner of start investigating the surface
dimensions. We can consider as a rough approximation the surface’s shape to be
a rectangle. Under this coarse way of studying the surface’s dimensions, we can
notice that the limits are defined in each of the two principal directions, i.e., the
orthogonal projections onto each of the eigenaxis (fig. 1).

This approximation permits finding a bounding box to the planar surface.
There are at least four interesting points for a general contour shape of a planar
distribution of points. Each of these four points are the contact points with the
bounding box, and each one corresponds to be the limit point projection in each
eigenaxis direction. It is interesting to note that the fewer number of points are
in the planar distribution, the simpler is the object’s shape and therefore, better
approximated by the mentioned bounding box. This reasoning plays a crucial
role when attempting to describe a complex surface by means of assembling
simpler structures.
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Fig. 1. (a) Planar surface approximation and principal directions. This distri-
bution can be bounded by a rectangle defined by (b) the orthogonal projections
onto each of the two principal axis
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2.2 Recursive Splitting

When approximating a 2D surface through a plane, the error might be higher
than a certain degree of tolerance. In that case, it is necessary performing a more
complex modeling. After a first approximation through one plane, the second
step is to consider two planar surfaces to fit the original distribution of points.
Typically, when a simple model does not fit well data is because the data has to
be explained through more complex models, or, through a combination of simple
sub-models, which is more practical. In the case we consider, given the geometri-
cal nature of the observed data, that the point distribution can be approximated
by higher number of planar patches (a combination of simple models).

Given the principal directions W = {e1, e2} and the sample mean μ there
are some ways of dividing data into sub-portions. A manner of dividing data
into two sets is along on of the principal direction, for instance, the one with the
largest variance e1. The splitting in this case would be selecting all those points
that are left to the sample mean in the e1 and the other set all those which are
right to μ. More explicitly, one sub-set P1

1 , will consist of points whose projection
onto e1 is :

e′1(pn1 − μ) ≤ 0

and another set P1
2 , will be formed by those points whose projection is:

e′1(pn2 − μ) > 0

The same reasoning can be applied to the e2 direction. However for the sake
of notation, we now just consider a division into two sub-sets. The notation that
has been used for the two sub-sets is described as follows: for P1

1 , the upper-
index means that is, in this case, the first division applied to the data set P .
The sub-index is sub-portion index, in this specific case we have two sub-sets :
P1
1 and P1

2 .
The point here is that the same technique can be applied to each of the

sub-sets. Therefore, what we obtain finally is a tree structure of sub-sets decom-
positions.

Regarding the idea of the certain degree of tolerance for splitting, there will
be nodes that do not need to be split up. These usually correspond to flat areas
where a planar patch is sufficient to represent locally a specific spatial distri-
bution of points. Actually, what determines the stop-splitting is the mentioned
degree of tolerance. When the considered area is sufficient flat, the algorithm
decides not to split on that area, and therefore, when all the branches stop split-
ting we obtain the leaves of the tree. Since the number of points N is finite, the
worst case scenario would mean splitting log2(N) times.

According to the main subject in the paper, the algorithm has to find in each
step the breaking curve points or boundary points. Finding the first four contact
points before division is a coarse estimation of the boundaries of the surface.
After division, the process of finding contact points has to be repeated for each
sub-set of points.
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e2 

e1 

Fig. 2. Boundary analysis of a sub-set; projection onto the 2 principal axes

Figure 2 shows the way the boundary points are determined. First, select one
of the two principal directions, for instance e1. Therefore, project onto e1 only
the points that satisfy:

pn such that |e′2(pn − μ)| < ε (1)

The same way a certain degree of tolerance was necessary to determine when
a set should be divided into two sub-sets, the algorithm needs for a for an
amplitude ε tolerance. These are the only two tuning parameters of the technique
we present. Further, we show the effect of these values on the final segmentation.
This ε parameter makes possible to deal with complex contour shapes. Figure 2
shows geometrically the idea of the condition expressed in eq. (1). From these
projections, the only points we can select are those which belong to the data
sub-set (the points inside the ellipse in figure 2), the rest of points belonging to
the whole data set are just to check if the boundary point belonging to the subset
is a ”true” boundary point. Formally, the condition to be safitied by a boundary
point of a sub-set PL

n is:

pk ∈ PL
n is boundary if

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
e′1(pk − μ) ≥ e′1(pi − μ)∀i and pi ∈ P

or

e′1(pk − μ) ≤ e′1(pi − μ)∀i and pi ∈ P

(2)

where P is the whole set of points. Note that the symbols ”≥” and ”≤” are
taking into account the fact that a point belonging to the sub-set also belongs
to P . Also notice that no point outside the subset PL

n is considered, at this step,
to be a boundary point since we are just dealing with projections, there is no
security of finding a ”true” boundary point which does not belong to PL

n from
this projection.
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3 The Algorithm

This section summarizes the procedure for finding breaking curves. The recursive
function that computes the boundary points has four arguments: the set of 3D
points P , the subset of points corresponding to a specific surface patch Psubset,
and the tuning tolerances stop-splitting τ and amplitude control ε. For a given
data set P = {p1, . . . ,pN}, the initial considered sub-set is the same data set P .
The function is described in the following steps:

function b = computeBoundaryPoints(P ,Psubset,τ ,ε)

– Find the principal components (e1, e2) and compute the sample mean μ
for Psubset.

– Compute the boundary points b0 for Psubset the using P , ε and the conditions eq.
(1) and eq.(2).

– Stop-splitting condition:
• If the error fitting the sub-set Psubset to a plane defined by (e1, e2) and μ is
bigger than τ , then split

Psubset
↙↘

Psubset1 Psubset2
∗ b1 = computeBoundaryPoints(P ,Psubset1 ,τ ,ε)

∗ b2 = computeBoundaryPoints(P ,Psubset2 ,τ ,ε)

and concatenate the resulting boundary points into b = cat(b0, b1, b2). There-
fore, return b.

• else return b = b0.

The function calls itself twice, according to the split along the first principal
direction e1. However, there are many possible combinations, such as splitting
according to the first and the second principal direction (e1, e2), which implies
calling four times the function computeBoundaryPoints, and therefore, spanning
a tree of four branches each time. We have described only a partition into two
subsets in order to follow the previous section’s description, and for sake of
notation. Anyhow, in the experiments we performed a four times splitting.

4 Experiments

In this section, we present some results obtained from real archaeological (2000
years old) pieces. Figure 3 shows four pieces and their breaking curves. The first
point we like to emphasize is the fact that three of them have high curvature
regions. When applying differential operators, and local techniques to this type
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Fig. 3. Different views of four pieces and their extracted breaking curves

of surfaces with high curvature regions, they can yield to misleading results. The
algorithm we have presented clearly overcomes this sort of regions, since data has
been treated under a global approach. Actually, this is exactly the role played
by the tuning parameter ε, which controlled the amplitude for checking ”true”
boundary points. Actually, the higher is ε value, the larger is the number of point
to be analyzed through equation (2), the likelihood of selecting a boundary point

Table 1. Time consumed for a computation using τ = 0.001 and ε = 0.01

Piece Number of Points Consumed Time (Matlab)

a 18979 2.01s

b 18495 1.97s

c 12072 1.37s

d 18471 2.15s



688 Xavier Orriols and Xavier Binefa

at that level is lower. The role of τ parameter is to control the number of splits
to be carried out. Finally, the table 1 shows the employed time corresponding
to each piece. The tuning parameters were the same for all the pieces since their
scanning resolution was practically the same in all cases.

5 Conclusions and Future Work

In this paper, we have presented a technique computes the breaking curves of
2D open surfaces from unorganized sets of 3D points. The formulation takes
into account the spatial distribution of data. The more complex is the surface in
terms of curvatures, the more time is necessary to invest in the computation of
the breaking curve since more levels of the tree must be explored. Unlike partial
differential equations techniques, or local scale depending-operators, the method
we have introduced relies on only two tuning parameters. It’s a matter of future
work to study the empirical/analytical relation between these tuning parameters
and the surface geometrical features such as curvature and the average density
of points (scanning resolution).
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Abstract. This paper describes the implementation details of a coded
structured light system useful for one-shot measurements of a surface.
Since a unique pattern is projected, the technique is useful for measuring
moving surfaces. A pattern based on grid structure is used. The main
advantage of such structure is that redundant codification is applied to
the cross-points. Since both pattern axis are coded, decoding errors can
be corrected thanks to the proposed algorithm. Moreover, not only the
cross-points of the grid can be reconstructed but also the pixels belonging
to vertical and horizontal slits. A description of the segmentation and
decoding stage is given in order to take profit of the advantages of the
pattern codification.

1 Introduction

Structured light systems appeared in order to ease the correspondence problem of
stereovision systems. Such techniques are based on replacing one of the cameras
by a light source. Then, projecting a set of known patterns onto the measuring
scene and grabbing images with the remaining camera(s), the correspondence
problem is solved by all those points where the patterns have been projected on.
The former systems projected patterns consisting of simple geometric primitives
like points or lines. Later, more complex patterns were developed, including
some kind of codification in order to distinguish different parts of the pattern
and increasing the number of correspondences in every projection. Such approach
has been known as coded structured light.

A large number of 3D points are recovered if multiple patterns can be pro-
jected. However, when measuring dynamic surfaces, techniques based on a unique
pattern must be used. Nevertheless, the resolution decreases since the codifica-
tion must be condensed in a single pattern [1].

The most used coding strategy to generate such patterns is based on spatial
neighborhood codification. This approach consists of identifying a set of points
of the pattern with the information contained in a small neighborhood nearby.
Then, a set of well distributed pixels on the image can be reconstructed with
a single projection.

This paper presents the implementation of a low-cost coded structured light
technique based on spatial neighborhood codification. The technique permits
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to obtain the shape of an unknown surface even if it is moving. Besides, since
the proposed pattern has a grid structure, both row and column codification
is included into the crossing points. With such redundancy some interesting
features are obtained: high accuracy in the reconstruction of the cross points,
possibility to reconstruct both vertical and horizontal slits, and error detection
and correction when decoding the cross points.

The main drawback of most part of techniques based on a unique pattern is
their inability to reconstruct surfaces containing discontinuities correctly. In this
paper it is demonstrated that encoding both pattern axis such limitation can be
eliminated.

The paper is structured as follows: first, the codification principle of the pat-
tern is detailed in section 2. The image processing involved in the segmentation
of the pattern and the proposed algorithm for robust decodification are presented
in section 3. Afterwards, in section 4 some examples of surface reconstruction
using the implemented technique are shown. The paper ends with conclusions.

2 Pattern Design

The proposed coded structured light has been designed in order to use low-
cost devices such a LCD projector to project the pattern, a color video camera,
a frame-grabber and a standard PC.

The codification principle of the pattern used for the current implementa-
tion was proposed by Salvi et al. [2]. The structure of the projected pattern is
defined as a grid composed of vertical and horizontal colored slits of a certain
thickness over black background. In order to choose the sequence of colors that
is assigned to the horizontal and vertical slits, a De Bruijn sequence is used.
De Bruijn sequences have been used by several authors with the aim of defining
patterns without periodicity. Concretely, the most exploited patterns coded with
De Bruijn sequences consists of parallel slits, i.e. the one proposed by Monks et
al. [3].

A De Bruijn sequence of order m over an alphabet of n symbols is a circular
string of length nm that contains each substring of length m exactly once. Such
characteristic is called window property. For example, given the De Bruijn se-
quence of eq. 1, if every element of the alphabet {0, 1, 2} is mapped to a certain
color, a total of 33 = 27 parallel slits of a pattern can be colored by mapping
such sequence. The given sequence has length 29 due to its circular property.

22021020012011010002212111222 (1)

Since the given De Bruijn sequence has a window property of 3, every three con-
secutive slits in the pattern will be uniquely identified by the codeword formed
by their three colors. Another author who took profit of this coding strategy
was Zhang et al. [4] proposing a coded pattern containing 125 vertical slits with
a De Bruijn sequence of order 3 and 5 colors.

Other pattern structures coded with De Bruijn sequences have been pro-
posed. For example, Griffin et al. used an array of colored dots such that every
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window of 3 × 3 dots in the pattern was unique [5]. The dot representation re-
quires to locate the mass centers of all the imaged spots in order to triangulate
them. Nevertheless, all those spots that appear partially occluded in the camera
image must be discarded since their mass center might not be well segmented.

The work by Salvi et al. [2] proposed to design a grid pattern instead of
a single sequence of parallel slits or a dot array. By selecting the colors of both
vertical and horizontal slits with the same De Bruijn sequence, both axis are
coded. The set of colors used to encode vertical and horizontal slits is different
in order to differentiate both kind of slits. All the pixels belonging to a vertical
or horizontal slit have a codeword which indicates the position of the slit in
the pattern. All the imaged pixels belonging to the slits can be reconstructed
by intersecting the equation of the camera 3D line which contains the image
pixel and the equation of the 3D plain corresponding to the slit. Moreover, the
cross points of slits in the grid have two codewords. Therefore, cross points can
be reconstructed more accurately by intersecting the equations of two 3D lines.
Another advantage of this pattern structure is that redundancy in the coding is
included since two codewords are defined for every cross point. This fact permits
to detect and even correct errors in the decoding stage of the imaged pattern.

The colors used for the horizontal slits are red, green and blue, while yellow,
cyan and magenta are used for the vertical slits. The resulting pattern can be
observed in figure 1a. Lavoie et al., a year later, proposed a similar pattern [6].

3 Pattern Segmentation and Decodification

Once the pattern is projected onto the measuring surface, an image must be
grabbed with the camera. Then, for all those cross points of the grid that can
be identified and decoded, the correspondence problem between camera and
projector can be solved and, therefore, the corresponding 3D points can be tri-
angulated.

In order to segment the grid in the image, a stage of image processing must
be fulfilled. Then, the decoding stage must obtain the codewords of every visible
cross point of the grid. This stage must be robust against errors since some parts
of the projected grid can be occluded from the camera point of view.

The implemented algorithm has been structured in the following steps: first
the segmentation of the grid, then, the cross points detection, and finally, the
decodification of the detected cross points. Hereafter, all three steps are detailed.

3.1 Segmentation of the Grid

For correctly segment the projected grid it is necessary to clearly distinguish
the 6 primary colors used. In order to success, a color calibration procedure is
made only once, when installing the system in the working area, by projecting
the grid onto a color-neutral surface and calibrating the gains for every projected
color. The camera iris is also adjusted to perceive basically only the projected
grid.
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�� ��
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Fig. 1. Pattern segmentation. a) original 24-bit. b) image after edge detection,
conversion to 8-bit and 3 Close iterations. c) binarization. d) thinning until
skeleton

The first step of the segmentation algorithm consists of applying a Sobel
operator to the camera image in order to detect the edges of the projected grid.
The resulting image is converted to 8-bit greyscale. Afterwards, three Close
morphological operators are applied in order to merge the parallel edges that
appear using Sobel filter. Then, the obtained image is binarized with a low
threshold in order to get thick slits. Finally, a thinning algorithm must be applied
until the skeleton of the image is obtained. The sequence of operations can be
observed in figure 1.

3.2 Cross Points Detection

Once the camera image has been processed in order to enhance and to seg-
ment the grid skeleton, the cross points between horizontal and vertical slits can
be located. The set of masks shown in figure 2 are convolved with the image
containing the skeleton of the grid.
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Fig. 2. Samples of the binary masks used to detect grid cross points
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Fig. 3. Cross points detection. a) A horse statue. b) the pattern projected. c)
the extracted skeleton of the grid. d) the detected cross points

For every position of the image where the convolution result is greater than
6 for any of the masks, the pixel is considered to be a cross point of the grid.
All these masks must be used since the thinning operation to obtain the grid
skeleton not always leads to perfect intersections.

An example of the cross-point detection process can be seen in figure 3, where
the pattern has been projected onto a horse statue.

3.3 Decoding the Detected Cross Points

The projected grid is colored so that every cross point has two codewords. The
first codeword is formed by the colors of the vertical slit containing the cross
point and the colors of both adjacent vertical slits. The second is generated in
the same way but with the horizontal slits. Both codewords are unique for every
cross point (window property), so there is a direct mapping from both codewords
to the cross point coordinates in the pattern.

In the previous subsection the process to detect cross points in the camera
image has been explained. In order to decode the maximum number of cross
points the following algorithm is applied:

– Generation of the cross points adjacency graph
– Obtaining the horizontal and vertical slits colors corresponding to every cross

point



694 Jordi Pagès et al.

– Decoding all those cross-points whose both codewords have been found by
using the adjacency graph

– Transfer of codewords to neighbors not decoded
– Correction of inconsistent codewords

To generate the adjacency graph is necessary to start from the coordinates of
every cross point and track the edges of the grid skeleton towards four directions
in order to find the neighbors. Since the skeleton has thickness of 1 pixel, windows
of dimensions 1 × 3 and 3 × 1 are enough for tracking vertical and horizontal
edges respectively.

The colors of the slits intersecting in every cross point are recovered during
the tracking process. The mean Hue of every tracked edge is used to identify
the original color projected. Let define the neighborhood of a cross-point as
the grouping of its two codewords. Therefore, the neighborhood of a cross-point
whose position in the grid is the y row the x column is defined as a vector like

neighborhood(crosspoint(y, x)) = [cx ry cx−1 ry−1 cx+1 ry+1] (2)

Where ci and rj are the colors of column number i and row number j respec-
tively. The graphic interpretation of the neighborhood of a cross-point can be
seen in figure 4. Note that thanks to the De Bruijn codification, the neighborhood
of a cross-point uniquely identifies its position in the projected grid.

Once the adjacency graph is constructed, the neighborhoods of all the de-
tected cross-points in the camera image can be obtained. Firstly, only the cross-
points whose complete neighborhood has been recovered are decoded. Other-
wise, the cross point remains undecoded. The decodification of a detected cross-
point consists of searching in the original pattern in which coordinates there is
a cross-point with the same neighborhood. Then, the correspondence between
both camera pixel and projector pixel is solved.

The following step tries to decode such cross points not decoded in the pre-
vious step by choosing the proposed pattern coordinates most voted by all the
available decoded neighbors. For example, the cross-point occupying the x col-
umn and the y row in fig. 4, will propose the following coordinates to its four
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Fig. 4. Neighborhood of a cross-point
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Fig. 5. Side view of the horse reconstruction

neighbors 1, 2, 3 and 4 respectively: (x − 1, y), (x, y − 1), (x + 1, y), (x, y + 1).
The transfer step is repeated until no changes occur.

The final step of the algorithm consists of comparing the decoded pattern
coordinates of every cross points with the coordinates that its neighbors would
propose. Then, if the decoded pattern coordinates of a cross point do not coincide
with the most voted coordinates proposed by its neighbors, such most voted
coordinates are accepted as the correct ones. The last step of the algorithm is
also repeated until no changes in the decoded coordinates occur.

4 Experimental Results

The hardware setup used for the experiments consists of a Mitsubishi XL1 video
projector, a Sony 3 CCD camera, a Matrox Meteor-II frame grabber and a stan-
dard PC. The resolution of the projected pattern is 1024× 768 pixels, while the
camera images are digitized at 768 × 576 pixels, width a depth of 24 bits per
pixel.

The rendered surface corresponding to the 3D reconstruction of the horse
statue from figure 3a can be observed in figure 5 from different points of view.

As a second example, a human hand has been reconstructed to demonstrate
the robustness of our technique against surfaces containing discontinuities. The
cloud of 3D points obtained after applying the technique is presented in figure 6.
The fingers of the hand are difficult to reconstruct since their small surface
does not permit to contain large neighborhoods of cross-points, so none can be
decoded directly. However, thanks to the transfer and correction steps of the
designed decoding stage such constraint is removed.

5 Conclusions

The implementation of a coded structured light technique based on the projec-
tion of a unique grid pattern has been detailed. The paper has focused on the
design of a robust decoding stage.
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Fig. 6. Human hand reconstruction

The grid structure of the used pattern improves other pattern representations
proposed in the bibliography. The different set of colors used for vertical and
horizontal slits permit to be distinguished easily. Since both axis of the pattern
are coded, cross points of the grid are redundantly coded, leading to a more
accurate triangulation. Redundancy also permits to detect and correct errors in
the cross points decodification.

The resolution of the technique can be increased by enlarging the number of
slits and, therefore, the length of the De Bruijn sequence used to encode the grid.
Moreover, since the pixels belonging to the horizontal and vertical slits are also
coded with respect to a single axis, they can also be reconstructed producing
a denser surface.
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Abstract. Most fingerprint-based biometric systems establish a refer-
ence point in a fingerprint, then extract features based on this reference
point. As such, the consistency and accuracy of the reference point lo-
cation considerably affects the overall system performance. Accordingly,
this paper presents an accurate and consistent reference point detection
algorithm based on orientation pattern labeling. Experimental results
demonstrate that the proposed method can produce a better performance
in terms of accuracy and speed than Poincaré index or sine map-based
methods.

1 Introduction

In most fingerprint-based verification or identification systems, a reference point
is established and used to extract fingerprint features robust to translation or
rotation. Generally, a core point, one of the singularities of a fingerprint, is
used as such a reference point. A core point can be defined as the topmost or
bottommost point on the innermost recurving ridgeline. The orientation pattern
in a small local neighborhood around a core point has semi-circular tendency [1].
The number of core points differs according to the type of fingerprint [2], [3].
Tented arch (TA), left loop (LL), and right loop (RL) -type fingerprints have
one core point, while twin loop (TL) and whorl (W) -type fingerprints have
two core points. Arch (A) -type fingerprint images are known as having no core
point. Therefore, in order to use a core point as a reference point, additional
reference point detection method is required for arch-type fingerprints. In the
case of fingerprints with two core points, the upper core point is normally used,
which exists in all types of fingerprints, except for arch-type.

A core point detection method based on a Poincaré index analysis is one of the
most commonly used techniques [1], [2], [3]. This method is simple and relatively
fast compared to other methods, however, it is unable to detect a core point in
most arch-type fingerprints, plus if the image quality is poor, the performance
is severely deteriorated. Thus, to detect core points in low quality fingerprint
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images, the sine map-based method was developed [4]. This method is able to
detect a reference point in the case of arch-type or low quality fingerprint images,
yet it requires much processing time. Accordingly, this paper presents a new
reference point location algorithm that can rapidly detect a reference point in
all types of fingerprint images using orientation pattern labeling. The following
section describes the proposed reference point detection algorithm in detail.

2 Reference Point Detection Algorithm

In non-singular regions, a fingerprint has a smooth and parallel flow of ridges,
while in singular regions, the direction of the ridge flow changes abruptly. In
particular, there is a big difference between the ridge directions of the upper and
lower regions of a core point, as shown in Fig. 1.

The proposed algorithm exploits the fact that the ridges of the upper re-
gion of a core point generally have a quantized direction of 0◦. First, the local
ridge direction is calculated, then the regions with a quantized direction of 0◦

are detected. Among these regions, the upper part maximum region is found
using connected component labeling. Thereafter, the position of the core point
is determined using information on the lowest block line of the detected upper
part maximum region.

��������	


�����������	

����������	

Fig. 1. Ridge distribution in neighborhood of core point
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2.1 Calculation of Orientation Pattern

The orientation pattern is calculated using a least mean square orientation esti-
mation algorithm [5] with the following procedure:

1) Divide the image into sub-blocks of size w × w. A block size of 5 × 5 was
used in the current experiment.

2) Compute the x and y direction gradients Gx, Gy for each pixel in block using
3× 3 Sobel operators.

3) Calculate the orientation,O(i, j), at the center pixel (i, j) of each block using
the equation below:

O(i, j) =
1
2

tan−1

⎡⎣ ∑i+w/2
u=i−w/2

∑j+w/2
v=j−w/2 2Gx(u, v)Gy(u, v)∑i+w/2

u=i−w/2
∑j+w/2

v=j−w/2
(
G2
x(u, v)−G2

y(u, v)
)
⎤⎦ . (1)

2.2 Smoothing of Orientation Pattern

The resulting orientation pattern includes a lot of noise, therefore, the orienta-
tion field is smoothed by converting it into a vector form, i.e. (cos(2O(i, j)),
sin(2O(i, j))), then averaging the two components of the vectors separately.
Thereafter, the smoothed vector is transformed again into a direction [3]. In
our experiment, a 5× 5 mean filter was employed.

2.3 Labeling of Smoothed Orientation Pattern

An orientation pattern image is binarized by making all the blocks with a quan-
tized direction of 0◦ a binary 1 and all other blocks a binary 0. Generally, two big
regions with a quantized direction of 0◦ exist in the binarized image as shown in
Fig. 2(d). The upper part maximum region is detected by labeling the binarized
image. The reference point is determined from the upper part maximum region.
The procedure for detecting a reference point is as follows:

1) Quantize the orientations into 8 directions: 0◦, 22.5◦, 45◦, 67.5◦, 90◦, 112.5◦,
135◦, and 157.5◦.

2) Binarize the quantized orientation pattern image by making all the blocks
with a quantized direction of 0◦ a binary 1 and all other blocks a binary 0.

3) Perform connected component labeling [6] on the binarized image.
4) Extract the region with the maximum area from the upper part of the labeled

image.
5) Find the lowest block line in the upper maximum region obtained in 4), then

determine the position of the reference point. The block located one block
below the center block of the lowest block line is determined as the reference
block, as shown in Fig. 3. The center point of the reference block is then
determined as the reference point.
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Fig. 2. Procedure for reference point detection. (a) Original image, (b) ori-
entation pattern, (c) smoothed orientation pattern, (d) region with quantized
direction of 0◦, (e) labeled image, (f) upper part maximum region, and (g) de-
tected reference point
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Fig. 3. Location of reference block

2.4 Re-labeling

In some fingerprint images, when labeling regions with a quantized direction
of 0◦, the upper part maximum region can be connected with the lower part
maximum region, as shown in Fig. 4(d). In this case, the reference point can
not be correctly detected by only one labeling. Therefore, to solve this problem,
the proposed method changes the quantization ranges by a certain angle (±nΔ◦)
and performs the labeling again. The quantization range shift is iteratively made
increasing the extent of the shift until the upper and lower maximum regions
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are separated. The procedure for reference point detection by re-labeling is as
follows:

1) If the extent of a quantization range shift is −(n − 1)Δ◦ in the previous
step, shift the quantization ranges by +(n − 1)Δ◦, else if the extent of
a quantization range shift is +(n − 1)Δ◦ in the previous step, −nΔ◦. Here
n = 1, 2, 3, . . . , N .

2) Perform labeling on the binarized image to which the shift quantization
ranges have been applied, and then go to step 3).

3) If the lowest block line of the detected upper maximum region is located at
the bottom of the image, go to step 1), otherwise, determine the reference
point according to the condition of step 5) of Section 2.3.

If the lowest block line of the upper maximum region is still located at the
bottom of the image though all the specified quantization range shifts are tested,
the proposed method fails in detecting a reference point. In this work, we set Δ
to 3.

��� ��� ��� ���

��� ��� ��� ���

Fig. 4. Procedure for reference point detection by re-labeling. (a) Original im-
age, (b) region with quantized orientation of 0◦, (c) labeled image of (b), (d)
upper maximum region of (c), (e) region with quantized orientation of 0◦ af-
ter shifting the quantization range by −3◦, (f) labeled image of (e), (g) upper
maximum region of (f), and (h) detected core point
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Table 1. Distribution of fingerprint classes

A TA LL RL TL W Total

Number 30 5 140 105 185 235 700

Table 2. Processing time for each method (msec)

A TA LL RL TL W Total

Poincaré 6.2 6.6 6.7 11.0 10.4 6.9 8.4
Sine map 141.9 146.0 144.0 154.4 140.2 145.2 144.9
Proposed 5.9 5.4 5.7 6.7 6.2 6.6 6.3

Table 3. Detection rate for each method (%)

A TA LL RL TL W Total

Poincaré 0.0 100.0 92.4 92.4 98.8 95.2 91.1
Sine map 53.5 100.0 90.5 93.3 98.8 94.3 92.9
Proposed 46.7 100.0 95.2 96.2 98.8 95.2 94.3

Table 4. Performance comparison in terms of speed, robustness to rotation,
low quality, arch type

Speed Rotation Low quality Arch type

Poincaré High High Low Low
Sine map Low Low High Medium
Proposed High Medium Medium Medium

3 Experimental Results

To acquire fingerprint images for experiments, a capacitive fingerprint capture
device was used and a total of 700 fingerprint images were obtained from 140
fingers. Five fingerprint images with different rotations were acquired for each
finger. The fingerprint images were all 256 grayscale images 364×256 in size. The
experiments were conducted on a personal computer using a 700-MHz Pentium
III processor. To evaluate the proposed method, its performance was compared
with that of the Poincaré index-based method and sine map-based method.

The determination of correct detection was performed manually by visual
inspection. Cases where no reference point was detected or the position of the
reference point was considered as wrong by an observer were determined as mis-
detections. The extent of translation between the fingerprint images from the
same finger was also reflected in the determination. Table 1 shows the distribu-
tion of the fingerprint classes in the database. The processing time and detection
rate for each method are shown in Tables 2 and 3, respectively. The proposed
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method produced a faster performance than the other two methods for all types
of fingerprints and a better detection rate than the other two methods for most
types of fingerprint images. For arch-type fingerprints, the detection rate with
the proposed method was inferior to that with the sine map-based method, how-
ever, the proposed method had a much better detection rate than the Poincaré
index-based method.

The proposed method was able to accurately detect a reference point of the
moderately rotated fingerprint image, however in case that the fingerprint was
rotated much, the detected reference point had a tendency to deviate from the
true location. The Poincaré index-based method well detects a reference point
regardless of the extent of rotation, while this method fails to correctly detect
a reference point in poor quality fingerprints. For the sine map-based method,
since the reference point determination is based on multiresolution analysis of
the orientation pattern, it has good performance even in case of fingerprint
images with poor quality, whereas it requires much processing time. The perfor-
mances are approximately compared in terms of speed, robustness to rotation,
low quality, arch type in Table 4.

4 Conclusion

A new and effective reference point detection method was proposed based on
labeling the orientation pattern. Experimental results showed that the proposed
method could effectively detect a reference point in an arch-type fingerprint,
which can not be detected based on a Poincaré index analysis, and produced
a better performance in terms of accuracy and speed than Poincaré index-based
method or sine map-based method.
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Abstract. In this paper, a new feature point selection method for the
global motion estimation(GME) in sprite generation is proposed. GME
for the sprite generation presented in this paper consists of two stages,
feature selection and global motion estimation with selected blocks. First,
local object motions are distinguished from the static background. Blocks
with local motions are excluded in the subsequent procedure because lo-
cal object motions would not be helpful to GME and often are even harm-
ful to the exact motion estimation. Note that sprite generation mainly
concerns the generation of the static background for a sequence of image
frames. To identify local motions, conventional block-based motion esti-
mation is performed for the blocks in the current frame. If it has a greater
residual error than a threshold, this block is considered to have an ob-
ject with local motions and is excluded in the subsequent procedure.
Note that a large residual error of a block implies a change in the shape
of the object and the block image could not be a part of the static back-
ground. The second stage extracts edges in the image excluding blocks
selected in the first step and they are used for GME. Experiments show
the proposed algorithm performs faster in selected images than existing
methods with improved objective/subjective quality.

1 Introduction

A sprite, also referred to a mosaic, is an image composed of pixels belonging
to a video object visible throughout a video sequence[1]. An obvious example
of a sprite is a background sprite, also referred to as background mosaic [2],
which consists of all the pixels belonging to the background of a scene during
camera-panning recording.

Broadly speaking, sprite-based coding can be categorized into two main
types, sprite generation and sprite image coding. First, the sprite generation
concerns how to quickly produce a sprite with high quality. The most important
� Corresponding author
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operation is the GME, where the differential errors need to be calculated at all
pixels of a frame[3, 4] or feature-based selected pixels of a frame [5, 6, 10] to ob-
tain motion parameters. Since GME is a time-consuming task, there have been
many studies to accelerate the sprite generation. The verification model(VM)
of MPEG-4 employs the Levenberg-Marquardt algorithm as a tool for GME[7].
Secondly, for the compression of a sprite image, MPEG-4 object-based coding
has been developed, where the sprite image is dealt with as a single INTRA
VOP with arbitrary shape[8] and there are other new coding techniques using
padding techniques[9].

This paper concerns the first issue of efficient generation of a sprite. The
main idea of the feature selection is to mask out the blocks with local motions
which are not helpful and even sometimes harmful to the exact GME for the
static background. Local motion estimation is performed for the reduced image of
each block in the current frame. If it has a greater residual error than a threshold,
this block is considered as an object with local motions and is excluded in the
subsequent procedure. Note that a large residual error of a block implies a change
in the shape of the object, possibly with abrupt motions, and the block could not
be a part of the static background. Excluding the blocks with local motions, edges
are extracted in the image and they are used for the final motion estimation.

This paper is organized as follows. GME adopted in MPEG-4 VM and
feature-based GME are explained in section 2. Section 3 describes the proposed
method and experiment results are shown in section 4. The last part contains
conclusions.

2 GME in MPEG-4 VM and Feature-Based GME

This section examines GME adopted in MPEG-4 VM and feature-based GME.
First, the GME in MPEG-4 VM includes all pixels of the current frame except
pixels of foreground segmentation[3, 4]. Second, feature-based pixel selections[5,
6, 10] use a feature such as edges or Hessian images instead of considering all
the pixels in the image to reduce computations.

3 Proposed Algorithm

In this section, the proposed feature selection algorithm for sprite generation
is explained. The proposed algorithm distinguishes local object motions from
static background because local object motion would not be reliable and even
harmful to the GME.

Generally, a sprite image is generated from a sequence of image frames with
the foreground segmentation masked out as shown in Fig.1. But there could
be many local object motions in the background such as spectators (in dotted
rectangle of Fig.1). These local object motions are not helpful or even harmful
for the GME.

To identify local object motions, block-based motion estimation is performed
for each block first and the residual error result from the motion estimation



706 Sungchan Park et al.

Fig. 1. General segmentation information

Fig. 2. Local motion vectors

is used. Since motion vectors are not enough to distinguish blocks with local
motions from static background, the residual error should be considered. Note
that, motion vectors of blocks in a frame are sometimes very similar without
respect to the type of objects. One can observe that, however, if a residual is
large enough, it could be the indication of locally moving objects because large
residual errors imply the change of shapes of the objects with abrupt movements.
Fig. 2 shows that motion vectors are very similar in blocks belonging static
background or foreground objects as well as local motion objects(spectators).
Detailed flow of the proposed algorithm is described in Fig. 3.

3.1 Computation of Residual Errors

In order to reduce the computational complexity, a low-pass image pyramid is
used. Both the length and the width of the top level image are 4 times smaller
than the corresponding image in the bottom level of the pyramid, and block-
based motion estimation is performed in each 8 by 8 block in the top image of
the current frame with respect to the previous frame. For block-based motion
estimation the three step search algorithm is employed in this paper for sim-
plicity. The residual image is generated by subtracting the motion compensated
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Fig. 3. Proposed feature point selection scheme

image from the current image. Local object motions would have greater residual
errors than static parts. Fig. 4 shows residual error of the 6th frame of the Stefan
sequence and we can notice that parts of the spectators have greater residuals
than other parts of the frame.

3.2 Selection of Candidate Blocks for Edge-Based GME

Threshold for the identification of blocks with local motions has been set by
the average of the residuals in the frame. Any blocks with residual errors larger
than the average are considered as a block with local motions. First, the residual
image is divided into 8 by 8 blocks.

a. Compute Avg =
1
k

k∑
1

residual(i)

b. If residual(i) is greater than Avg, the block contains local motions

Fig. 4. Residual image
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(a) Newly appeared areas (b) Outlier rejection areas

Fig. 5. Outlier rejection areas

where residual(i) denotes the residual of the ith block.
Note that blocks within the threshold in the residual are the candidate blocks

for the subsequent GME procedure.

3.3 Edge-Based Feature Selection

In order to further reduce the number of pixels involved in the GME, the edge-
based feature is used with candidate blocks selected in the first stage. Edges are
detected using Sobel operator in this paper.

3.4 Outlier Rejection

As the camera moves (panning and zooming) and foreground objects move, new
regions that did not exist in the previous frame appear in the current frame.
Fig. 5 shows the 6th frame in the Stefan sequence. Dotted rectangle area in
Fig. 5(a) represent newly visible region and grey areas(boundary of the fore-
ground and the outer boundary rectangle) in Fig. 5(b) are excluded for the
GME. Fig. 6 shows an example image of feature points selected by proposed
method.

4 Experimental Results

This section describes simulation results using the proposed technique with the
comparison to the GME in MPEG-4 VM and edge-based GME. Simulations
have been carried out using Stefan YUV files with corresponding segmentation
files. The test sequence is of 200 frames in CIF (352*288) format. Table 1 shows
the average PSNR-Y (dB) of Stefan test sequence as an example. The proposed
method is about 1.6 times faster than MPEG-4 VM and better quality than
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Fig. 6. Selected feature points

Table 1. Comparison of the objective quality of the reconstructed frames using
VM and proposed method

Sequence MPEG-4 MPEG-4 Proposed
& VM VM+Edge Method

Time PSNR PSNR PSNR

Stefan 18.62 18.83 19.31

Time 914735 574916 577832

15.5

16.5

17.5

18.5

19.5

20.5

21.5

22.5

23.5

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106 113 120 127 134 141 148 155 162 169 176 183 190 197

VM

VM+Edge

Proposed

PS
N

R

Frames

Fig. 7. PSNR-Y of Stefan sequence

MPEG-4 VM or MPEG-4 VM with edge-based GME. Note that the proposed
method is slightly slower than MPEG-4 VM with edge-based GME because of
the block-based motion estimation performed in the proposed approach.

Fig. 7 shows PSNR-Y comparison of test sequences. Fig. 8 and 9 show the
generated images by proposed method for subjective comparison.
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(a) Sprite image by VM method

(b) Sprite image by proposed method

Fig. 8. Comparison of the subjective quality

(a) VM method (b) Proposed method

Fig. 9. Comparison of the subjective quality of enlarged image
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5 Conclusions

In this paper, a new feature selection method for the GME in the sprite genera-
tion was proposed. GME for the sprite generation in this paper consists of two
stages. The first step distinguishes local object motions from static background
because local object motion could be often harmful in GME.

The second stage extracts edges for the final motion estimation excluding
the blocks with local motions detected in the first stage.

Since this algorithm excludes local object motions that are not helpful for the
GME, high quality sprite image is generated. Experiments show the proposed
algorithm is about 1.6 times faster than the algorithm in MPEG-4 VM with
improved quality.
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Abstract. This paper presents a comparative study of several well-
known and thoroughly tested techniques for the segmentation of textured
images, including two algorithms belonging to the adaptive Bayesian
family of restoration and segmentation methods, a probabilistic relax-
ation process, and a novel approach based on the recently introduced
concept of the frequency histogram of connected elements. The applica-
tion domain chosen for comparison purposes is the problem of detecting
very thin cracks -around 1 mm width- in the wooden boards of used pal-
lets, where a tricky balance between the crack detection and false alarm
ratios must be guaranteed. After a brief description of each segmenta-
tion method and their respective application to the problem at hand,
the paper discusses the comparative results, showing the excellent per-
formance achieved with the frequency histogram of connected elements,
which can be considered an attractive and versatile novel instrument for
the analysis and recognition of textured images.

1 Introduction

The authors have been working for several years on the development of auto-
mated wooden pallet inspection systems using computer vision techniques. One
of the hardest problems in the automatic inspection of wooden boards, like the
ones employed in pallets, is the detection of very thin cracks -around 1 mm range
width-, in which a really tricky balance must be guaranteed between the crack
detection ratio and the false alarms generated by wood veins, paint remains,
shadows created by the lighting system etc.

Although bidimensional histograms, computed from the co-occurrence matri-
ces ([1] and [2]), provide useful information about the spatial distribution (actu-
ally, about a specific two-point spatial relationship) of the particular discriminant
variable at hand, which is obviously relevant information as far as texture anal-
ysis and recognition are concerned, they have two serious disadvantages: their
excessive computational burden and, in particular, the curse of dimensionality
that produces a considerable amount of irrelevant information and noise. On the
contrary, unidimensional histograms, which are computationally speaking very
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attractive and discriminant enough to efficiently solve the segmentation prob-
lem in many applications, do not provide as much discriminant information, in
particular spatial and textural information, as the bidimensional histograms.

As a result of our work on practical automatic quality inspection based on vi-
sion systems, we have recently introduced a novel idea for image segmentation:
the so-called frequency histogram of connected elements (FHCE), [3] and [4].
Being a conventional unidimensional histogram, the FHCE incorporates all the
computational advantages, in terms of both simplicity and speed, inherent to the
histogram-based segmentation methods. Simultaneously, it includes information
about the spatial distribution of the specific discriminant feature in the digital
image, as bidimensional histograms also do. The FHCE concept has an additional
advantage in comparison to bidimensional histograms, as it is based on a much
more powerful spatial function than the simple two-point relationships, typical
of bidimensional histograms and co-occurrence matrices, which is the concept of
structuring element or spatial predicate. This spatial predicate is somewhat, but
not entirely, related to the structuring element concept used in morphological
image processing [7]. Furthermore, the FHCE has yet another interesting advan-
tage as compared with the conventional unidimensional histogram. This is its
flexibility with regard to the range of values of the discriminant variable -which,
in conventional unidimensional histograms, is absolutely rigid- and which pro-
vides an interesting degree of freedom, what we have called connectivity level,
for texture analysis and recognition.

The paper has been organized in two parts. In the first part, a brief de-
scription is given of the techniques for the segmentation of textures used in our
comparative study. In the second part, we describe the results of applying these
techniques to the problem of detecting thin cracks in the wooden boards of used
pallets.

2 Contextual Segmentation Methods: Adaptive Bayesian
Segmentation and Probabilistic Relaxation Processes

The objective of detecting thin cracks in wood can be modeled as a biclass
pattern recognition problem, as the computer vision system has to discrimi-
nate between pixels belonging to the crack class and to the sound wood class.
By exploiting the empirical evidence that both classes or patterns have differ-
ent grayscale intensity distributions, an automatic thresholding process can, in
principle, be applied in order to obtain a first approximation of the real distribu-
tion of both classes in the particular image under analysis. Afterwards, a more
specialized local segmentation process can be activated to take into account the
spatial dependencies -i.e. the texture distributions- within the image.

In this paper, we have selected three well-known of this kind of local/global or
hybrid methods: (1) the majority vote filter, (2) the iterated conditional modes
(ICM) algorithm and (3) a probabilistic relaxation process. The first two meth-
ods are instances of the adaptive Bayesian segmentation approach and are among
the most popular within the adaptive or contextual family of image restora-
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tion and segmentation techniques [5], whereas relaxation processes, along with
Markovian random fields, are powerful and widely used segmentation methods
for textured images [6].

2.1 Adaptive Bayesian Segmentation

Let us begin with a brief description of the basic functioning of the two Bayesian
methods chosen for comparison purposes. Both methods are based on a previous
conventional global Bayesian segmentation. As a result of this preliminary global
segmentation, all the pixels in the image are labeled –i.e. segmented-. Afterwards,
a local, spatial segmentation process is activated, which in the case of the ICM
algorithm is as follows, where the image –or the region of interest, ROI- under
analysis has been denoted {I(i, j)}NxM = {I(i, j)}0≤i≤N−1;0≤j≤M−1 and the
two existing classes or patterns, α1 and α2. The following description of the
ICM algorithm is basically taken from [5].

1. Compute the two class averages, m̂1(l) and m̂2(l), and the between-class
variance at the generic iteration l:

m̂1(l) = 1
N1

∑
∀I(i,j)∈α1

I(i, j) ; m̂2(l) = 1
N2

∑
∀I(i,j)∈α2

I(i, j)

σ̂2 = 1
NxM

N−1∑
i=0

M−1∑
j=0

[I(i, j)− m̂(i, j)]2 = N1σ̂
2
1+N2σ̂

2
2

N1+N2

(1)

where N1 +N2 = NxM is the total number of pixels labeled or segmented
as class α1 and class α2, respectively.

2. Re-label every pixel I(i, j) as class α1 or class α2 recursively according to
the following rule:

[I(i, j)− m̂1(l)]
2 − βσ̂2(l)N1(i, j)

α1
≶
α2

[I(i, j)− m̂2(l)]
2 − βσ̂2(l)N2(i, j) (2)

where N1(i, j) and N2(i, j) are the number of pixels labeled as α1 and α2,
respectively, in a certain neighborhood of the generic pixel I(i, j) under re-
segmentation. The size and shape of this neighborhood and the parameter
β have to be carefully designed for each particular application. This re-
segmentation process is equivalent to the application of a new optimum
threshold τ0(l + 1) :

τ0(l + 1) =
m̂1(l) + m̂2(l)

2
+
βσ̂2(l) [N1(i, j)−N2(i, j)]

2 [m̂1(l)− m̂2(l)]
(3)

3. If τ0(l+1) �= τ0(l), then repeat steps 2 and 3, else end segmentation process.

Majority vote filtering has a similar, although slightly simpler, structure as
step 2 is reduced to a re-labeling based on the dominant label at the respective
neighborhood.
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2.2 Relaxation Processes

When applying the relaxation process to the segmentation problem, the task of
labeling -i.e. classifying- the generic pixel (i, j) as belonging to a certain class
αm can be expressed as

Pαm [(i, j)] / m = 1, 2, . . . S ; 0 ≤ i ≤ N − 1 ; 0 ≤ j M − 1 (4)

Obviously, the probabilities are normalized to unity:

S∑
m=1

Pαm [(i, j)] = 1 ; ∀i, j (5)

The next step is to introduce a compatibility function for the pixel’s neigh-
borhood, with the intention of capturing the spatial information relevant to
the segmentation process. First of all, a specific neighborhood spatial function
N [(i, j)] has to be defined and, afterwards, the respective compatibility function
C can be expressed as follows:

C � {Cαm,αn [(i, j), (k, l)]} / 0 ≤ m,n ≤ S ; (k, l) ∈ N [(i, j)] (6)

which represents the compatibility between the fact that pixel (i, j) belongs to
class αm and that the neighboring pixel (k, l) belongs to class αn.

Let us now describe the adaptive spatial segmentation process based on the
above ideas. As a matter of fact, an iterative process for updating the probabil-
ities of labelling a certain generic pixel (i, j) as belonging to one of the possible
classes can be established as follows:

pr+1
αm

[(i, j)] =
prαm

[(i, j)] crαm
[(i, j), (k, l)]

S∑
n=1

prαn
[(i, j)] crαn

[(i, j), (k, l)]
; m = 1, 2, . . . S (7)

where the superindex r stands for the iteration order in the segmentation process.
For the current iteration, the compatibility function is given by:

crαm
[(i, j), (k, l)] = 1

Card[N(i,j)]

S∑
n=1

pαm/αn
[(i, j)/(k, l)] prαn

[(k, l)]

m = 1, 2, ...S ; ∀(k, l) ∈ N [(i, j)]

(8)

3 The Frequency Histogram of Connected Elements

Let us now proceed with a brief exposition of the theoretical foundation of the
FHCE.
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Fig. 1. Two test images for crack detection

Definition 1 (The Neighborhood Concept). Let {I(i, j)}NxM be a digital
image. If we denote the coordinates of a generic pixel as (i, j), the neighborhood
of this pixel is defined as follows:

v = {ϕi,j , (i, j) ∈ I}
ϕi,j = {(k, l) ∈ I/D((k, l), (i, j)) is true} (9)

where D is a predicate defined by a distance-based condition. For instance, a valid
definition of the neighborhood of a pixel I(i, j) can be given by the set:

ϕr,si,j = {(k, l) ∈ I/||k − i|| ≤ r and ||l − j|| ≤ s} ; r, s ∈ N (10)

which indicates that the neighborhood of the pixel is formed by a set of pixels
whose distances are not greater than two integer values r and s, respectively.

Definition 2 (The Connected Element Concept).
A connected element is:

Ci,j(T ) = {ϕr,si,j / I(k, l) ⊂ [T − ε, T + ε] , ∀(k, l) ∈ ϕr,si,j } (11)

where I is the grayscale intensity or brightness of pixel (k, l). In other words,
a connected element is any neighborhood unit whose pixels have a grayscale level
close to a given grayscale level T .

Definition 3 (The Frequency Histogram of Connected Elements). We
define the FHCE as:

H(T ) =
∑

∀(i,j)∈I
Ci,j(T )

0 ≤ T ≤ Imax − 1

(12)

That is to say, H(T ) approximates a density function for a random event
occurring in a digital image {I(i, j)}NxM . This event is related to the idea of
connected element, which in turn is related to the pseudo-random structure of
the grayscale intensity distribution of a particular texture. Obviously, there is
no universal connected element valid for any domain application. In the design
leading to the FHCE, there is a critical and domain-dependent step, which is
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responsible for selecting the parameters defining the optimum connected element.
These parameters are: (1) the morphological parameter and (2) the connectivity
level. See [4] for a general discussion of these parameters and paragraph 4.3 for
the particularities of the digital images under analysis.

4 Detecting Thin Cracks in Wood

For the comparative study, we have chosen two rather difficult cases, in which
the cracks to be detected have some hidden parts and, at the same time, the
apparently sound wood regions present special textures that can be mistaken for
cracks as well. Figure 1 shows the two different examples for the comparative
analysis.

4.1 Adaptive Bayesian Segmentation

The application of the two adaptive Bayesian methods described in paragraph
2.1 is straightforward. Figure 2 shows the results obtained with the mayority
vote filter and the ICM algorithm.

For the first case, notice that the final results are not entirely satisfactory,
since part of the crack has been lost. However, both techniques perform extremely
well for regions of the image with a clear difference in the grayscale intensity
distributions of each pattern. Concerning the second and much more difficult
case, both algorithms perform very poorly as almost half of the wood board has
been classified as cracked.

���������������������������������������������������������������
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Fig. 2. Segmentation results achieved with the ICM algorithm (a and c) and
the mayority vote filter (b and d), for the two wood boards appearing in Figure 1
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4.2 Relaxation Processes

The key element in a relaxation process lies in the choice of the local distribution
of neighbor dependency. More specifically, the crucial point is the correct choice
of the compatibility function. The individual coefficients cα1/α1 , cα1/α2 , cα2/α1
and cα2/α2 have to be established, as there are two classes α1 (sound wood) and
α2 (crack) in our wooden board segmentation problem. In fact, as the following
relations hold:

cαm/αm
[(i, j), (k, l)] = 1− cαm/αn

[(i, j), (k, l)]

m = 1, 2 ; n = 1, 2
(13)

only two compatibility coefficients have to be introduced. A neighborhood spa-
tial function has to be settled to complete the definition of the compatibility
functions. Let us consider an omnidirectional 3x3 neighborhood function -see
Figure 3-. Because of the diagonality of the cracks in the particular wooden
boards considered in our comparison, an omnidirectional neighborhood spatial
restriction does not seem to be the best choice. However, unless all the possi-
ble existing cracks in the wooden boards had the same diagonal orientation, an
omnidirectional spatial restriction would be preferable, as it is the least biased
a priori. In conclusion, we can establish the following compatibility coefficients:

cα1/α1 [(i, j), (k, l)] = 0.9 ↔ cα1/α2 = 0.1
cα2/α1 [(i, j), (k, l)] = 0.2 ↔ cα2/α2 = 0.8

0 ≤ i ≤ N − 1 ; 0 ≤ j ≤M − 1 ; ∀(k, l) ∈ N [(i, j)]

(14)

Note that the sound wood pixels have different compatibility coefficients to
the crack pixels, due to the fact that cracks are thin and elongated whereas the
sound wood regions are much larger and their pixels are much more homoge-
nous. Figure 3 shows the respective neighborhood function and the compatibility
coefficients.
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Fig. 3. The neighborhood spatial function and the compatibility matrix dis-
cussed in the text
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Fig. 4. Segmentation results for the application of a relaxation process to (a)
Figure 1a and (b) Figure 1b

Figure 4 shows the segmentation results achieved with this type of proba-
bilistic relaxation process for the two test images. Although crack detection has
improved quite appreciably for the first case -Figure 4a-, there are still some
losses and some false alarms. Regarding the second case -Figure 4b-, the results
are just as poor as for the Bayesian methods.

4.3 The Frequency Histogram of Connected Elements

As for any other contextual segmentation procedure aimed at exploiting the local
or spatial information of the image under analysis, the key issue when applying
the FHCE concept is a correct selection of the scanning window size. As is well
known, the basic idea in textured images is to apply a window whose size is big
enough to capture the essential structure of any texture present in the image. In
our particular application to detect thin cracks, we have found that a window
of 40x30 pixels seems to be optimum in most cases.

After exhaustive experimentation with a plethora of digital images of sound
and defective wood boards we have selected the neighborhood function for the
connected element event defined by a 5x3 window. This function is the so-called
morphological parameter of the FHCE. As we can see, there are more horizontal
pixels than vertical pixels, the reason being founded on the a priori knowledge
available about the problem at hand. In fact, there is empirical evidence that
cracks in a piece of wood tend to appear in the same direction as the wood grain.
As computer vision inspection is performed horizontally from the wood boards
standpoint, the shape of the selected neighborhood function is easily deduced.

To complete the connected element concept definition, we need to select the
connectivity level that a particular neighborhood should possess to be considered
as such. The FHCE is computed for each image portion by shifting through all
the pixels in a window of the same 5x3 shape as the neighborhood. This scanning
process is performed by means of a top-bottom and left-right movement and by
computing, at each pixel, the maximum and the minimum gray level within its
neighborhood. Each pixel’s neighborhood is classified as a connected element
if and only if the difference between the maximum and the minimum values
is small as compared with the dynamic range of the histogram in the whole
window. After some experimental work, we have chosen a 10% ratio, which is
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Fig. 5. Results of the segmentation process by applying the FHCE concept to
(a) Figure 1a and (b) Figure 1b. In both cases, note the efficiency in segmenting
the cracks appearing in the two boards

a good compromise between wooden portions in good and in bad conditions.
Therefore, the following condition has to hold for a neighborhood to be labeled
as connected element: ((imax− imin)/(Imax−Imin)) ≤ 0.1 ,where Imin and Imax

are the maximum and the minimum values of the window –i.e. the dynamic
range of the window’s histogram-, and imin and imax are the maximum and
the minimum grayscale intensity levels of the neighborhood. Therefore, if the
gray-level variability of a particular neighborhood is less than ten percent of the
dynamic range of the global window, the pixel in question is a connected element
and the FHCE will compute a new event valued T = (imin + imax)/2.

Figure 5 shows the result obtained with the FHCE method for the two test
images. Note the excellent segmentation of the cracks as compared with the
Bayesian and relaxation methods applied to the same images, in particular for
the second and hardest case -Figure 5b- in which the thin hidden crack has been
successfully detected.

5 Conclusions

A comparative study of several well-known and thoroughly tested contextual
techniques for the segmentation of textured images -i.e. two adaptive Bayesian
methods and a probabilistic relaxation process- and the recently introduced con-
cept of connected elements histogram has been presented. For comparison pur-
poses, the detection of very thin cracks -around 1 mm width- in the wooden
boards of used pallets has been considered, in which the false alarm ratio is the
main obstacle to the performance of any segmentation method. The experimen-
tal results obtained have demonstrated the excellent performance obtained with
the FHCE method, which can be considered an attractive and versatile novel
instrument for the analysis and recognition of textured images.
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Abstract. This paper describes a computational framework developed
for the extraction of low-level directional primitives present in an image,
and subsequent organization using the laws of perceptual grouping. The
system is divided in two stages. The first one consists on the extraction of
the direction of pixels in the image, through an efficient implementation
of Gabor wavelet decomposition. The second one consists on the reduc-
tion of these high dimensionality results by means of an auto-organized
structure. For this second stage, three different auto-organized structures
have been studied: self-organized maps (SOM), growing cell structures
(GCS) and growing neural gas (GNG). Results have showed that GCS
is the most appropriate structure in the context of this work.

Keywords: perceptual primitives, Gabor wavelets, self-organized struc-
tures, growing cell structures, growing neural gas, chromaticity diagram.

1 Introduction

In human vision, perceptual organization refers to the human visual system basic
capability to derive relevant groupings and structures from an scene without
prior knowledge of its contents. In computer vision, perceptual organization is
the study of how features are clustered prior to object recognition.

The main goal of perceptual organization is object recognition, which is ba-
sically a searching problem. Perceptual organization will be crucial for reducing
the size of this search. In this frame, the most important functions of perceptual
organization are [1]: segmentation, or division of the image into sets of related
features; three-space inference, as perceptual organization results in the forma-
tion of two-dimensional relations between image features that can lead to specific
three dimensional interpretation; and indexing of world knowledge, as in large
databases a very important factor determining the size of the searching space is
the selection of the appropriate object from the set of possibilities.

The final goal of our work is developing a computational framework that
integrates the relationships offered by Gestalt psychology (parallelism, continu-
ity, similarity, symmetry, common region and closure) among extended tokens
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to form larger groups, as the significance of large organizations is higher than
a small organized form. All the approaches to this goal [2, 3] are based on the
results extracted from traditional edge detectors. Opposite to this, our goal is to
detect perceptual primitives through the use of the directional properties that
Gabor filters provide, as an alternative to classical edge detectors. As stated in
a previous paper [4], the introduction of the computationally expensive process
of Gabor wavelet decomposition can improve the final system’s performance as:
the results obtained by this process provide global information about the ori-
entation of the pixels in the image, instead of the local information provided
by traditional edge detectors. And they are independent of the kind of images
to process, as opposed to classical edge detectors which need parameter tuning
dependent of the kind and quality of the images. Besides these advantages, we
have implemented an approximation to Gabor wavelets that reduces the compu-
tation time through the use of a pyramidal multi-scale Gabor wavelet transform
in the spatial domain, which is faster than conventional frequency domain im-
plementations.

Once that Gabor components for various frequencies and orientations have
been computed, the image intensity information has been transformed into a
high-dimensional Gabor components space. All this information must be orga-
nized in order to extract the directional primitives present in the image. A re-
duction of this input space dimensionality is also necessary in order to fix an
objective criterion to perform feature grouping that work well with any kind
of image to process. Auto-organized structures seem to be a suitable instru-
ment to achieve this dimensionality reduction, as the output space generated
must maintain the topology of the input Gabor space, being faithful to existent
characteristics. In this work, three different structures have been investigated:
self-organized maps, growing cell structures and growing neural gas.

2 Gabor Wavelet Decomposition

Gabor wavelets are complex exponential signals modulated by gaussians. There
is evidence that visual cortical cells in mammals closely resemble this configu-
ration, and maybe the most important property they have is that their conjoint
resolution in spatial and frequency domain is optimized [5]. These properties
make them good edge detectors with optimum localization of edges in space.
An additional advantage of Gabor wavelets with respect to traditional edge
detectors, like Canny or Sobel, is that they do not use any image-dependent
parameters.

The main drawback of Gabor wavelet decomposition is its high complexity
both in memory and computational time. This is the reason why, in a previous
paper [4], we developed a multiresolution spatial domain implementation of the
2D Gabor wavelet decomposition at two main frequencies (14 ,

1
8 ) and eight main

orientations (kπ8 , k = 0..7). Multi-resolution implementations are based on the
fact that reducing an image to half its size and convolving it with a Gabor
filter centered at a determined frequency is analogous to convolve the original
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image with a filter centered at half the previous frequency. Thus, in that case,
the filters for second frequency channel will be the same than those for first
frequency channel, but applied to an image half the size of the original one.
Later on, when the integration of both channels takes place, the results for this
channel must be expanded to double their size in order to have same size results
for both frequency channels.

In [4], Gabor wavelets were used for the extraction of the directional prim-
itives present in an image. In particular a bank of 16 filters, distributed over 2
frequency channels and 8 main orientations in each frequency channel, will be
employed. The result of this decomposition has been though a set of 16 images.
The application of Gabor wavelet decomposition has mapped the original im-
age to a high dimensional space. First of all, the input to these auto-organized
structures must be determined, as the following step in our perceptual grouping
process was the reduction of this high space dimensionality through the use of
auto-organized structures. This input is a nine component vector generated this
way: an eight component vector Hi(x, y) was assigned to each pixel (x, y) in
the original image for each frequency channel i, where each component corre-
sponded to the value of the Gabor decomposition centered at a main orientation;
and a ninth component, called response, was added to each gaborjet in order to
determine the presence of a directional feature and reduce inter-image and inter-
frequency variability:

responsei(x, y) = 0.5 +
arctan

(
(|Hi(x,y)|− ¯|Hi|)

˜|Hi|

)
π

(1)

where i = 0, 1 represents each frequency channel. The response in pixel (x, y)
for frequency channel i was obtained from the modulus of the Hi(x, y) vector
normalized to zero mean and unit variance through the modulus of the mean and
standard deviation of the Hi vectors over the whole image. Then this expression
was bounded to the range [0, 1] through the application of a sigmoid function
using eq. 1. High response values determine the presence of an important com-
ponent in one of the main orientations considered. The first eight components
in Hi(x, y) were scaled such that their modulus was equal to the response, re-
ducing inter-image and inter-frequency variability (as low-level frequency filters
tend to produce a greater range of values). As previously mentioned, these nine
component vectors constitute the input to the following step in the process just
described.

The main drawback for the implementation proposed in [4] is the high thick-
ness of the edges detected, as can be seen in the middle image of fig. 1. This
happens because this implementation is based on that described in [6], which
was developed for image compression and restoration, and not for edge detection.
The problem is that, as previously stated, this method employed only the mod-
ulus of the odd part of the wavelet. The thickness of the edges comes from the
1D filter masks of 11 components. This is the reason why a new implementation,
based on that exposed in [7], has been developed. In this new implementation,
for each main orientation, the exact position of the edges were detected as the
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Fig. 1. Left: Corridor original image. Middle: Response (9th component of the
gaborjet) for Gabor decomposition using only the modulus of the odd part.
Right: Response (9th component of gaborjet) for Gabor decomposition taking
the edges around the maximum modulus with a zero-crossing in the even or odd
part of the Gabor result

conjunction between a maximum in the modulus and a zero-crossing in the even
or the odd part of the Gabor result. Only these positions and their direct neigh-
bors have been considered edgels, and the rest of pixels were assigned a zero
value. This way, we are using the important property of Gabor filters of good
localization. Once computed the initial gaborjet this way, the last step is the
calculus of the response (eq. 1). Result can be seen in fig. 1 right .

3 Auto-organized Structures
for Dimensionality Reduction

As previously mentioned, Gabor wavelet decomposition result is a set of gabor-
jets, one for each frequency channel (centered at 1

4 and 1
8 ) and composed of 9

components: first eight for the orientations considered (kπ8 , k = 0..7) and the
last for response (eq. 1). A reduction of the dimensionality of this input space
is necessary in order to fix an objective criterion to perform a feature grouping
that work well with any kind of images to process. To this end, auto-organized
structures based on artificial neural networks will be employed. The election
of such structures is mainly based on their properties, as they are suitable for
solving clustering problems, allowing simultaneously a reduction of the input
space and the projection of the topological ordering in the input space to the
output structure [8]. We have focused our attention in three of such structures:
self-organized maps (SOM) [9], growing cell structures (GCS) [10] and growing
neural gas (GNG) [11].

The process followed consisted of studying the results obtained from these
auto-organized structures for the first frequency channel. From these analysis,
the structure that produced the best results will be chosen for its application in
the second frequency channel and also in the integration of both channels.



726 Marta Penas et al.

These auto-organized structures are artificial neural networks with a number
of processing elements (#pe) over which a neighborhood relation is established.
This relation determines a topology in the structure. For SOM, #pe is established
a priori, while for GNG and GCS the own structures fix this number during the
learning process. The difference between GCS and GNG is that the first structure
maintains the topology defined at the beginning of the training process while
the second has a free topology.

The input to each network is a vector I projected over each processing ele-
ment pek of the structure through a weight vector wk assigned to it. This weight
vector represents the center of the cluster associated to the processing element.

The adjustment of these structures is based on an unsupervised training
process. This means that the structures are trained based only on a set of input
vectors called training set. The objective of the training is to determine the
parameters that define the structure of the network. For SOM, these parameters
are the weight vectors assigned to each processing element. For GCS and GNG,
these parameters are the weights and the final number of processing elements. For
the last two structures, in order to determine these variables, a parameter called
resource value (rvk) is assigned to each processing element pek. This parameter
indicates where new processing elements must be inserted in order to satisfy
a merit function. GNG also has another parameter called age (tij) assigned
to each connection between processing elements pei and pej that measures the
degree of vicinity between them. The value of this parameter determines if the
connection can be broken, giving each processing element a greater degree of
freedom to locate their weights through the training process.

Once the structures are trained, each processing element pek represents
a cluster associated to the input vectors, and its weights corresponds to the
center of that cluster. The topological order, which implies that two neighboring
processing elements must have similar weighting vectors, is obtained through
the established neighboring relations. This topological order is crucial for a right
dimensionality reduction between the input and the output space.

Two different controls make auto-organization possible: the activity control,
based on the competition between processing elements for the opportunity of
winning and learning, and the plasticity control, that enables the weight modi-
fication of the processing elements belonging to the interest region Sw centered
on the winning processing element pew. The degree of weight modification for
a processing element pek depends on its proximity to the winning processing
element pew in base to the neighborhood relation defined through a function
h(k, w). For GNG and GCS this relation is restricted to the direct neighbors.

For all the structures, the training process begins by fixing the topology and,
for SOM, the number of processing elements and the interest region. After this,
the weights of the structure are randomly initialized, the function h that defines
the weight’s update is fixed and also a parameter called learning rate is specified.
Last, for SOM, the times the training set will be input to the net must be fixed,
and for GCS and GNG a merit function to satisfy (that usually depends on the
resource value) will also be fixed in order to achieve a right training.
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3.1 Analysis of Auto-organization Results

At this point, it was necessary to think about an adequate way of representing
the results graphically. We decided to use a colormap, where each processing
element was assigned a different color that represented in some way the distance
between processing elements. Thus, if a main cluster is assigned a determined
color, then the elements around must have similar colors.

Assigning colors to processing elements in SOM was not complicated due to
the rectangular and static neighborhood relation between processing elements.
The assignation result is a color graduation proportional to the size of the map
and shown in fig. 2 left. For GCS and GNG, the assignation of colors was more
complicated, due to the dynamic nature of these structures. The objective was
the selection of 8 equidistant colors representing the 8 main orientations in such
a way that the combination of two neighboring colors could not be other se-
lected color. For this purpose, we have recurred to the chromaticity diagram [12].
Our objective was computing the parameters that define a circle centered at
white color in chromaticity diagram, in order to draw 8 equidistant points on its
perimeter as shown in fig. 2 right. Once these points were calculated, they were
transformed into RGB coordinates.

Different kind of images have been used to compare the results from different
auto-organized structures. Rows in fig. 3 show original and results from a syn-
thetic image containing two concentric circles, where all possible orientations are
present, a corridor indoor image and an plane outdoor image, respectively.

Results obtained from test images in the first column of fig. 3 for first fre-
quency channel and using the colormaps previously exposed, are depicted in the
following columns of fig. 3. Second column corresponds to a rectangular 12× 12

Fig. 2. Left: Graduation of colors for processing elements in a 12 × 12 SOM.
Colors are smoothly variated from left to right and up to bottom from the
4 corners (red, green, cyan and magenta). Right: Chromaticity diagram with
RGB triangle inside. The maximum circunscribed circle centered on white color
is divided in 8 equidistant points. Points around this circle show color graduation
assigned to processing elements in GCS. For both figures, background is assigned
white color
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Fig. 3. First column shows the original images. Columns from second to fourth
show the results using SOM, GCS and GNG respectively for first frequency
channel. Last column shows the results from GCS analysis for second frequency
channel

SOM, where noise presence is relevant and some directional features are not
detected by the map. These results are due to the insufficient separation be-
tween the processing elements assigned to main orientations and background.
Some pixels that should be assigned to the background are assigned to another
orientation motivating the noise presence, while pixels belonging to an interme-
diate orientation or a weak edge are assigned the background color motivating
the lost of some directional features. Third column shows the results obtained
with a GCS composed of 200 processing elements and implementing the resource
value as a local counter that contains the number of input vectors assigned to
the processing element. These images show an important noise reduction and
a better detection of perceptual directional primitives. These results are due to
the formation of a set of clusters with a similar number of processing elements
around winning processing elements for each main orientation and background,
with a limited interconnection between them. When the gaborjet assigned to a
pixel is not close enough to the gaborjet that represents one of the eight main
directions, it is assigned the background color. This happens, for example, with
noisy pixels that produce soft values in some of the eight main orientations.
These gaborjets are not close enough to a main orientation to be colored. Fourth
column shows results obtained with a GNG composed of 100 processing elements
and implementing resource value as an accumulator of the error between the pro-
cessing element’s weights and the input vectors assigned to it. In these images
noise presence is almost null but some directional primitives are not detected by
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the map. This lost of information is related to the low generalization capacity
of the net, motivated by the excessive separation between the clusters in the
final structure. When a pixel belongs to an edge in a determined orientation,
but the edge is not strong or the orientation is intermediate between two main
orientations, it is assigned to the background and the directional information it
contains is lost.

As a conclusion, GCS is the structure that best fits the objectives of our
implementation for first frequency channel and so it will be employed for the
analysis of the second frequency channel and the integration of both frequency
channels. As results for second frequency channel are half the size of the original
image, due to the multi-resolution spatial domain implementation of the Gabor
decomposition exposed in previous section, these results must be expanded to
double their size. This expansion motivates a diffusion effect (see fifth column
of fig. 3) coherent with the low-pass nature of the set of filters employed.

One could think that first frequency could be enough to detect directional
features, but results from images like the plane show that second frequency
channel (last column of fig. 3) provides very useful information in images where
background contains a great quantity of information (in this case the wood’s
texture) that is not as important as the foreground image. Second frequency
channel discards this information and enforces the main shape.

3.2 Integration of Both Frequency Channels

The last step is the integration of information from both frequency channels
by means of GCS, as earlier stated. This integration process will take as input
the RGB output from each individual map, and produce an unique RGB result
containing relevant information from previous ones.

As for individual frequency channels, the first step was the input space defini-
tion: each pixel was assigned a six component vector, the first three components
represented the RGB output for the first frequency channel and the last three
components the RGB output for the second frequency channel, both normalized
to interval [0, 1]. Training set for GCS was generated from a set of artificial im-
ages containing almost the same proportion of lines in each main orientation.
Background was included in the same proportion as the rest of orientations. The
final goal was the generation of a set of clusters with a similar proportion of
processing units assigned to each main orientation and background. The final
map structure was the same as for individual frequency channel results.

Results for images in fig. 3 are depicted in fig. 4. As for individual frequency
channels, in order to show the results graphically, a color has been assigned
to each processing element using the chromaticity diagram and the following
set or rules: If any of the RGB components of the processing element weights
correspond to background color (white), the processing element is assigned the
RGB color defined by the other three components. If these also correspond to
background color, the processing element is assigned the white color. In any other
case, the RGB color is computed by means of the chromaticity diagram as the
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Fig. 4. Integration of both frequencies for images in fig. 3 using GCS

Fig. 5. Results from GCS analysis applied to different kind of images

arithmetical media of the original colors transformed to a RGB color belonging
to the chromaticity diagram.

4 Results

Fig. 5 shows the final results obtained by the system with a set of different kinds
of images. As can be observed in these images, GCS results contain the most
important directional features in the image. Each orientation has the same color
assigned in each of the images, which will be crucial for the next stage. This
stage will consist on the detection of the segments that the image contains. All
the results have been obtained from the same set of parameters, defined in sec.
3, a priori fixed without intervention of the final user.

5 Discussion and Conclusions

In this paper, the directional perceptual primitives of an image have been ex-
tracted by means of an efficient multi-resolution spatial-domain implementation
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of Gabor wavelet decomposition, centered at 2 frequency channels and 8 ori-
entations. Frequency channels analyzed have been those centered at 1

4 and 1
8 ,

this is, high and intermediate frequencies respectively, as those are the channels
where most important image features are localized. Good localization of edges
was achieved through an implementation that uses information from the even
part, the odd part and the modulus of the wavelet.

Later on, these primitives have been organized and grouped by means of
growing-cell structures (GCS) in a two layer hierarchy. The first layer organizes
the information from different orientations in each frequency channel. The sec-
ond layer integrates the organizations from different frequency channels so as
to have an unique result where information from different frequency channels
complement each other. This result has been a RGB image containing the most
important directional features in it. For most images, first frequency channel
could be enough, but for images with textured background, such as the plane in
fig. 3, the second frequency channel is necessary to obtain right results.

The next step will be the analysis of this RGB image in order to detect
the segments contained in the image. The result of this process will be a list of
segments which, later on, will be organized into larger groups in order to select
those low-level features that belong to a single object. This is, the directional
features extracted from Gabor decomposition will be used as the primitives of
a perceptual organization process.
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Abstract. Luminance-based palette reordering is often considered less
efficient than other more complex approaches, in what concerns improv-
ing the compression of color-indexed images. In this paper, we provide
experimental evidence that, for color-quantized natural images, this may
not be always the case. In fact, we show that, for dithered images with
128 colors or more, luminance-based reordering outperforms other more
complex methods.

1 Introduction

Traditionally, most color-quantized images have been encoded according to the
well-known and widely used Graphical Interchange Format1 (GIF). As part of
this format there is a coding engine based on the Lempel-Ziv-Welch (LZW) com-
pression algorithm [1], a variant of one of the seminal algorithms developed by
Ziv and Lempel [2], commonly known as LZ78. LZW is intrinsically a compres-
sion technique for one-dimensional sequences of symbols and, therefore, might
not be particularly tailored for exploiting the two-dimensional dependencies that
characterize image data.

Two-dimensional approaches specifically designed for coding color-indexed
images have been proposed. Among them we find methods such as PWC [3],
EIDAC [4], RAPP [5] or the method recently proposed by Chen et al. [6]. On the
other hand, it is frequently convenient to address the problem of coding color-
quantized images under the framework of general purpose coding techniques,
such as JPEG-LS [7, 8] or lossless JPEG 2000 [9, 10].

Color-indexed images are represented by a matrix of indexes (the index im-
age) and by a color-map or palette. The indexes in the matrix point to positions
in the color-map and, therefore, establish the colors of the corresponding pixels.
For a particular image, the mapping between index values and colors (typi-
cally, RGB triplets) is not unique — it can be arbitrarily permuted, as long

1 http://pds-geophys.wustl.edu/info/gif.txt .

F.J. Perales et al. (Eds.): IbPRIA 2003, LNCS 2652, pp. 766–772, 2003.
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as the corresponding index image is changed accordingly. However, for most
continuous-tone image coding techniques these alternative representations are
generally not equivalent, having sometimes a dramatic impact on the compres-
sion performance.

With the aim of minimizing this drawback several preprocessing techniques
have been proposed. Basically, they rely on finding a suitable reordering of the
color table in such a way that the corresponding image of indexes becomes more
amenable to compression. These preprocessing techniques have the advantage of
not requiring post-processing and of being cost-less in terms of side information.
However, if the optimal configuration is sought, then the computational com-
plexity involved can be high (for M colors, M ! configurations have to be tested).
Clearly, exhaustive search is impractical for most of the interesting cases, which
motivated several sub-optimal, lower complexity, proposals.

In this paper, we provide a comparison of three palette reordering methods
in what concerns their ability to improve compression rates. Two standard im-
age compression techniques are used to perform this evaluation: JPEG-LS and
lossless JPEG 2000. Our study addresses a particular class of images (color-
quantized natural images, with and without dithering), and intends to show
that, for this class of color-indexed images, a simple luminance-based palette
reordering approach can provide comparable or better results than other more
complex approaches.

2 Palette Reordering for Improving Compression

The problem of reordering a color map for better fitting the coding model of gen-
eral purpose image coding techniques is not a trivial task, due to the combinato-
rial nature of the problem [11]. Several sub-optimal solutions have been proposed,
based on approximated solutions to the traveling salesman problem [12, 13], on
the maximization of the compression performance through a greedy index as-
signment [14], on greedy pairwise merging heuristics [11], or on color reordering
by luminance [15].

In this paper, we compare the performance of three of these methods in what
concerns their ability to improve compression: (1) the pairwise merging heuristic
proposed by Memon et al., (2) the greedy index assignment proposed by Zeng
et al. and (3) luminance-based reordering.

The method proposed by Zeng et al. [14] starts by finding the symbol that
is most frequently located adjacent to other symbols (Smax), i.e., the symbol
that most contributes to transitions. This symbol is put into a symbol pool and,
right next to it, the symbol that is most frequently found adjacent to Smax. New
symbols are added to the symbol pool only from the left or right end position.
A particular symbol Si is chosen to integrate the pool if it is the one among the
unassigned symbols that maximizes

Di =
n−1∑
j=0

wn,jC(Si, Lj)
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where C(Si, Sj) denotes the number of occurrences, measured on the initial index
image, corresponding to pixels with symbol Si spatially adjacent to pixels with
symbol Sj , and where wn,j are some appropriate weights. The summation is
performed over all symbols Lj already located in the symbol pool. Moreover, it
is suggested in [14] that setting

wn,j = log2(1 + 1/dn,j)

is usually a good choice, where dn,j corresponds to the physical distance between
the current end position of the pool and the position of symbol Lj.

Memon et al. formulated the problem of palette reordering under the frame-
work of linear predictive coding [11]. In that context, the objective is to minimize
the zero-order entropy of the prediction residuals, a goal that can be very dif-
ficult to achieve. However, they noticed that, for image data, the prediction
residuals are usually well modeled by a Laplacian distribution and that, in this
case, minimizing the absolute sum of the of the prediction residuals leads to the
minimization of the zero-order entropy. For the case of a first-order prediction
scheme, the absolute sum of the prediction residuals reduces to

E =
M−1∑
i=0

M−1∑
j=0

N(i, j)|i− j|

where N(i, j) denotes the number of times index i is used as the predicted value
for a pixel whose color is indexed by j (note that, according to this definition,
generally we have N(i, j) �= N(j, i)), and M denotes the number of colors of the
image. The problem of finding the bijection that minimizes E can be formulated
as the optimization version of the optimal linear ordering problem, which is
known to be NP-complete [11].

One of the heuristics proposed by Memon et al. for finding good solutions to
the above stated problem is the so-called pairwise merge heuristic. Essentially,
it is based on repeatedly merging ordered sets of colors until obtaining a single
(reordered) set. Initially, each color is assigned to a different set. Then, the two
sets, Sa and Sb, maximizing∑

i∈Sa

∑
j∈Sb

(
N(i, j) +N(j, i)

)|i− j|

are merged together. This procedure should be repeated until having a single
set. To alleviate the computational burden involved in selecting the best way
of merging the two sets, only a limited number of possibilities are generally
tested [11].

Palette reordering based on luminance [15] is the simplest of the three meth-
ods addressed in this paper, since it only requires sorting the colors according
to its luminance. Luminance is usually computed according to

Y = 0.299R+ 0.587G+ 0.114B,

where Y denotes the luminance, and R, G and B the intensities of the red, green
and blue components, respectively.
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3 Experimental Results

In this section, we present experimental results based on the set of the 23 “kodak”
color images2. These are 768 × 512 true color images from which we generated
additional sets with resolutions 384×256 and 192×128. Color quantization was
then applied, both with and without Floyd-Steinberg color dithering, creating
images with 256, 128 and 64 colors. Image manipulations have been performed
using version 1.2.3 of the “Gimp” program.3

Table 1. Each row of this table shows average JPEG 2000 lossless compression
results, in bits per pixel, concerning a particular instance of the “kodak” image
set. Compression results obtained directly from the unsorted index images and
obtained using the GIF format are also given for reference. The best values are
shown in boldface

JPEG 2000
Image size Colors Dither GIF Unsorted Zeng Memon Luminance

192 × 128 64 No 3.965 4.826 3.819 3.896 4.002
128 5.100 6.032 4.864 4.905 4.993
256 6.402 7.280 6.138 6.089 6.086
64 Yes 4.371 5.306 4.242 4.311 4.316
128 5.565 6.445 5.314 5.416 5.254
256 6.880 7.609 6.491 6.488 6.282

384 × 256 64 No 3.498 4.476 3.389 3.457 3.674
128 4.528 5.657 4.422 4.457 4.608
256 5.695 6.824 5.574 5.540 5.611
64 Yes 3.924 5.016 3.934 4.001 4.034
128 4.994 6.129 4.955 4.966 4.902
256 6.194 7.212 6.021 5.917 5.833

768 × 512 64 No 3.270 4.208 3.147 3.203 3.400
128 4.277 5.359 4.203 4.144 4.309
256 5.386 6.575 5.281 5.229 5.275
64 Yes 3.730 4.845 3.808 3.892 3.816
128 4.746 5.902 4.755 4.770 4.650
256 5.941 7.035 5.835 5.709 5.538

2 These images can be obtained from http://www.cipr.rpi.edu/resource/stills/

kodak.html.
3 http://www.gimp.org.
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Table 2. Each row of this table shows average JPEG-LS lossless compression
results, in bits per pixel, concerning a particular instance of the “kodak” image
set. Compression results obtained directly from the unsorted index images and
obtained using the GIF format are also given for reference. The best values are
shown in boldface

JPEG-LS
Image size Colors Dither GIF Unsorted Zeng Memon Luminance

192 × 128 64 No 3.965 4.219 3.346 3.363 3.496
128 5.100 5.488 4.421 4.371 4.509
256 6.402 6.769 5.672 5.526 5.599
64 Yes 4.371 4.899 3.901 3.943 3.945
128 5.565 6.104 5.013 5.037 4.902
256 6.880 7.330 6.177 6.045 5.919

384 × 256 64 No 3.498 3.899 2.997 3.009 3.229
128 4.528 5.090 4.000 3.983 4.160
256 5.695 6.286 5.138 5.015 5.161
64 Yes 3.924 4.666 3.655 3.677 3.731
128 4.994 5.805 4.682 4.646 4.602
256 6.194 6.906 5.724 5.548 5.520

768 × 512 64 No 3.270 3.661 2.804 2.812 3.002
128 4.277 4.839 3.844 3.722 3.926
256 5.386 6.078 4.908 4.765 4.898
64 Yes 3.730 4.532 3.591 3.624 3.556
128 4.746 5.621 4.537 4.501 4.399
256 5.941 6.765 5.596 5.389 5.289

Table 1 shows JPEG 2000 lossless compression4 results of the reordered in-
dex images, using Zeng’s method5, Memon’s method6 and the luminance-based
approach. Table 2 displays the corresponding results when a JPEG-LS codec is
used7

Each row of the tables shows average compression results, in bits per pixel,
concerning a particular instance of the “kodak” image set. Besides the size of the
encoded index image, the (uncompressed) size of the color table is also accounted
in the results shown. For reference, we also include compression results using
directly the (unsorted) index images and also the GIF file format.

Observing Tables 1 and 2 it can be seen that, for images with dithering and
128 or more colors, the luminance-based palette reordering technique provides
4 Compression was obtained using the JasPer 1.700.2 JPEG 2000 codec
(http://www.ece.uvic.ca/~mdadams/jasper).

5 The implementation of this algorithm was provided by the authors.
6 We used an implementation of this technique included in a software package devel-
oped by Battiato et al.

7 Compression was obtained using the SPMG / JPEG-LS V.2.2 codec
(ftp://spmg.ece.ubc.ca/pub/jpeg-ls/ver-2.2/).
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the best results, being the second best in a number of other situations. It can also
be observed that Memon’s method generally provides better results in images
with 128 colors or more, whereas Zeng’s method seems to work better for images
with 128 colors or less.

4 Conclusions

Palette reordering is a very effective approach for improving the compression per-
formance of general purpose image coding techniques, such as lossless JPEG 2000
or JPEG-LS, on color-indexed images. In this paper, we provided experimental
results showing the compression improvements provided by three palette reorder-
ing approaches — Zeng’s method, Memon’s method and the luminance-based
method — under the context of color-quantized natural images with and without
dithering.

Luminance-based palette reordering is often considered inefficient, when com-
pared to other more complex approaches. However, we provided experimental ev-
idence showing that this may not be always the case. In fact, for dithered images
with 128 or more colors it outperforms the other more complex methods, being
very competitive in a number of other cases, specially if we take into account
its simplicity. The remaining cases are divided almost evenly among Zeng’s and
Memon’s methods, with a tendency for a better performance of Zeng’s method
in images having 128 colors or less, and for Memon’s method in images with 128
colors or more.
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Abstract. In this paper the capability of using self-organising neural
maps (SOM) as music style classifiers of musical fragments is studied.
From MIDI files, the monophonic melody track is extracted and cut into
fragments of equal length. From these sequences, melodic, harmonic, and
rhythmic numerical descriptors are computed and presented to the SOM.
Their performance is analysed in terms of separability in different music
classes from the activations of the map, obtaining different degrees of
success for classical and jazz music. This scheme has a number of appli-
cations like indexing and selecting musical databases or the evaluation
of style-specific automatic composition systems.

Keywords: Multimedia applications, computer music, self-organising
maps, feature selection, content-based information retrieval.

1 Introduction

The automatic machine learning and pattern recognition techniques, successfully
employed in other fields, can be also applied in music analysis. One of the tasks
that can be posed is the modelization of the music style. Immediate applica-
tions are the classification, indexation and content-based search in digital music
libraries, where digitised (MP3), sequenced (MIDI) or structurally represented
(XML) music can be found. The computer could be trained in the user musi-
cal taste in order to look for that kind of music over large musical databases.
Such a model could also be used in cooperation with automatic composition
algorithms to guide this process according to a stylistic profile provided by the
user.

Our aim is to develop a system able to distinguish musical styles from a sym-
bolic representation of a melody using musicological features: melodic, harmonic
and rhytmic ones. Our working hypothesis is that melodies from a same musical
genre may share some common features that permits to assign a musical style
to them. For testing our approach, we have initially chosen two music styles,
jazz and classical, for our experiments. We will also investigate whether such
a representation by itself has enough information to achieve this goal or, on the
contrary, also timbric information has to be included for that purpose.

The key point of this work is to test the ability of self-organising maps
(SOM) [1], to automatically perform this task. SOM are neural methods able to
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obtain approximate projections of high-dimensional data distributions in low-
dimensional spaces, usually bidimensional. With the map, different clusters in
the input data can be located. These clusters can be usually semantically labelled
to characterise the training data and also hopefully future new inputs.

1.1 Related Work

A number of recent papers explore the capabilities of SOM to analyse and classify
music data. Rauber and Frühwirth [2] pose the problem of organising music
digital libraries according to sound features of musical themes, in such a way
that similar themes are clustered, performing a content-based classification of
the sounds. Whitman and Flake [3] present a system based on neural nets and
support vector machines, able to classify an audio fragment into a given list of
sources or artists. Also in [4], the authors describe a neural system to recognise
music types from sound inputs. In [5] the authors present a hierarchical SOM
able to analyse time series of musical events and then discriminate those events in
a different musical context. In the work by Thom [6] pitch histograms (measured
in semitones relative to the tonal pitch and independent of the octave) are used to
describe blues fragments of the saxophonist Charlie Parker. The pitch frequencies
are used to train a SOM. Also pitch histograms and SOM are used in [7] for
musicological analysis of folk songs.

These works pose the problem of music analysis and recognition using either
digital sound files or symbolic representations as input. The approach we propose
here is to use the symbolic representation of music that will be analysed to
provide melodic, harmonic and rhythmic descriptors as input to the SOM (see
Fig. 1) for classification of musical fragments into a, initially reduced, set of
styles. We use standard MIDI files as the source of monophonic melodies.

2 Methodology

The monophonic melodies are isolated from the rest of the musical content in
the MIDI files. This way we get a sequence of musical events that can be either
notes or silences. Other kind of MIDI events are filtered out. Each note can take
a value from 0 to 127 (the pitch) and the duration is the distance in pulses from
the event that onsets the sound of a note to the finishing event.

Here we will deal only with melodies written in 4/4. In order to have more
restricted data, fragments of 8 bars are taken (enough to get a good sense of
the melodic phrase in the context of a 4/4 signature). For this, each melody
sequence has been cut into fragments of such duration.

We have chosen a vector of musical descriptors of the melodies as the input
for the SOM, instead of the explicit representation of the melodies. Thus, a de-
scription model is needed. Firstly, three groups of features are extracted: melodic,
harmonic and rhythmic properties. Then, from this initial set of features a se-
lection procedure will be performed based on their values for the weight vectors
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51.0  52.0  
65.0  77.0  70.8   3.0  
 2.0  10.0   4.8   2.3  
 1.0  21.0   2.7   3.8  
 0.0   9.0   2.9   2.0  
 6.0   2.2   1.6

FEATURE VECTOR

MAP  INPUT

SOM
FEATURE EXTRACTOR

Fig. 1. Structure of the system: musical descriptors are computed from a win-
dow 8-bar wide and provided to the SOM for training and classification. Once
trained, a style label is assigned to the units. During classification, the label of
the winning unit provides the style to which the music fragment belongs to. This
example is based on the Charlie Parker’s jazz piece ”Dexterity”

of the trained SOM. This way, some reduced models have been constructed and
their classification ability tested.

The features are computed using a time resolution of Q = 48 pulses per bar1.
The initial set of 22 musical descriptors is:

– Overall descriptors:
• Number of notes and number of silences in the fragment.

– Pitch descriptors:
• Lowest, highest (provide information about the pitch range of the

melody), average, and standard deviation (provide information about
how the notes are distributed in the score).

– Note duration descriptors (these descriptors are measured in pulses):
• Minimum, maximum, average, and standard deviation.

– Silence duration descriptors (in pulses):
• Minimum, maximum, average, and standard deviation.

– Interval descriptors (distance in pitch between two consecutive notes):
• Minimum, maximum, average, and standard deviation.

– Harmonic descriptors:
• Number of non diatonic notes. An indication of frequent excursions out-

side tonality (extracted from the MIDI file) or modulations.

1 This is call quantisation. Q = 48 means that if a bar is composed of 4 times, each
time can be divided, at most, into 12 pulses.
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• Average degree2 of non diatonic notes. Describes the kind of excursions.
• Standard deviation of degrees of non diatonic notes. Indicates a higher

variety in the modulations.
– Rhytmic descriptor: number of syncopations: notes not beginning at the

rhythm beats but in some places between them (usually in the middle) and
that extend across beats.

2.1 SOM Implementation

For SOM implementation and graphic representations the SOM PAK soft-
ware [8] has been used. For the experiments, a hexagonal geometry for unit
connections and a bubble neighbourhood for training have been selected. The
value for this neighbourhood is equal for all the units in it and decreases as
a function of time.

The maps are displayed using the U-map representation, where the units
are represented by hexagons with a dot or label in their centre. The grey level
of unlabelled hexagons represents the distance between neighbour units (the
clearer the closer they are). For the labelled units is an average of the neighbour
distances. This way, clear zones are clusters of units, sharing similar weight
vectors. The labels are a result of calibrating the map with a series of test
samples and indicate the class of samples that activates more times each unit.

2.2 Feature Selection Procedure

The utilized features have been designed according to those used in musicological
studies but there is no theoretical support for them. We have devised a selection
procedure in order to keep those descriptors that actually contribute to make
the classification. The procedure is based on the values for the features in the
weight vectors of the trained SOMs. The maps are trained and labelled (cali-
brated) in an unsupervised manner (see Fig 2-a for an example. We try to find
which descriptors provide more useful information for the classification. Some
descriptor values for the weight vectors correlate better than others with the
label distribution in the map. It is reasonable to consider that these descrip-
tors contribute more to achieve a good separation between classes. See Fig. 2-b
and 2-c for descriptor planes that correlate and that do not with the class labels.

Consider that the N descriptors are random variables {xi}Ni=1 that corre-
sponds to the weight vector components for each of the M units in the map. We
drop the subindex i for clarity, because all the discussion is related to each de-
scriptor. We will divide the set of M values for each descriptor into two subsets:
{xCj }MC

j=1 are the descriptor values for the units labelled with the classical style
and {xJj }MJ

j=1 are those for the jazz units, being MC and MJ the number of units
labelled with classical and jazz labels, respectively. We want to know whether
these two set of values follow the same distribution or not. If false, it is an indi-
cation that there is a clear separation between the values of this descriptor for
2 Measured in distance in pitch from the key note of the diatonic scale.
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the two classes, so it is a good feature for classification and should be kept in
the model and otherwise it does not seem to provide separability to the classes.

We have considered that both sets of values hold normality conditions and
the following statistical for sample separation has been applied:

z =
|x̄C − x̄J |√
s2
C

MC
+ s2

J

MJ

, (1)

where x̄C and x̄J are the means, and s2C and s2J the variances for the descriptor
values for both classes. The larger the z value is, the higher the separation be-
tween both sets of values is for that descriptor. This value permits to order the
descriptors according to their separation ability and a threshold can be estab-
lished to determine which descriptors are suitable for the model. This threshold,
computed from a t-student distribution with infinite degrees of freedom and
a 99.5% confidence interval, is z = 2.81.

Fig. 2. Contribution to classification: (a:left) callibrated map (’X’ and ’O’ are
the labels for both styles); (b:center) weight space plane for a feature that cor-
relates with the areas; (c:right) plane for a feature that does not correlate

3 Experiments and Results

As stated above, we have chosen two given music styles: jazz and classical for
testing our approach. The jazz samples were taken from jazz standards from
different jazz styles like be-bop, hard-bop, big-band swing, etc., and the melodies
were sequenced in real time. Classical tunes were collected from a number of
styles like baroque, romantic, renaissance, impressionism, etc.

From the MIDI files, 430 jazz and 522 classical melodic samples have been
extracted, all of them made up of 8 bars. From them, the 22 descriptors were
computed. Two different SOM sizes have been used. Their parameters are dis-
played in the table below. Those maps have been trained with different subsets
of descriptors.

map coarse training fine training
size iterations neighb.rad. learn.rate iterations neighb.rad. learn.rate

16× 8 3,000 12 0.1 30,000 4 0.05

30× 12 10,000 20 0.1 100,000 6 0.05

After training and labelling, maps like that in figure 3 have been obtained. It
is observed how the labelling process has located the jazz labels mainly on the
left zone, and those corresponding to classical melodies on the right. Some units
can be labelled for both music styles if they are activated by fragments from
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Fig. 3. Left: SOM map after being labeled with jazz (top) and classical (down)
melodies. Note how both classes are clearly separated. Right: Sammon projection
of the SOM, a way to display in 3D the organisation of the weight vector space

both styles. In these cases there is always a winner label (the one displayed)
according to the number of activations. The proportion of units with both labels
is the overlapping degree, that for the presented map was very low (8.0 %),
allowing a clear distinction between styles.

In the Sammon projection of the map in figure 3 a knot separates two zones
in the map. The zone at the left of the knot has a majority presence of units
labelled with the jazz label and the zone at the right is mainly classical.

3.1 Feature Selection Results

Firstly we have trained the maps with the whole set of 22 features. This way
a reference performance for the system is obtained. In addition, we have trained
other maps using just melodic descriptors and also melodic and harmonic ones.
We get a set of five trained maps in order to study the values of the weight
space planes, using the method described in 2.2. This number of experiments
has been considered enough due to the repetitivity of the obtained results. For
each experiment we have ordered the descriptors according to their value for zi
(see eq. 1). In table 1 the feature selection results are displayed, including what
descriptors have been considered for each model according to those results. Each
model number denotes the number of descriptors included in that model. We
have chosen four reduced model sizes: 6, 7, 10 and 13 descriptors. Descriptors
with no entry in the order column are those having a zi value under the threshold.
Entries marked with a ’x’ are not considered in that experiment.

3.2 Classification

For obtaining reliable results a scheme based on leave-k-out has been carried
out. In our case k = 10% of the size of the whole database. This way, 10 sub-
experiments were performed for each experiment and the results have been av-
eraged. In each experiment the training set was made of a different 90% of the
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Table 1. Feature selection results. For each descriptor the ordered position
according to the statistical zi for all the experiments and the average position
are displayed. In the rightmost column, the models in which each descriptor is
included are also presented

descriptor order in experiments avg. order models
Syncopation x x 1 x 1 1.0 7+10+13
Highest pitch 2 1 2 1 2 1.6 6+7+10+13
Max. interval 1 3 5 4 3 3.2 6+7+10+13
Dev. note duration 6 4 4 3 5 4.4 6+7+10+13
Max. note duration 7 5 3 5 4 4.8 6+7+10+13
Dev. pitch 3 2 6 7 7 5.0 6+7+10+13
Avg. note duration 4 7 7 2 6 5.2 6+7+10+13
Avg. pitch 9 8 8 8 8 8.2 10+13
Dev. interval 5 6 10 11 9 8.2 10+13
number of notes 8 9 9 6 10 8.4 10+13
number of silences 10 10 11 10 12 10.6 13
Min. note duration 11 11 12 9 – 10.8
Min. silence duration – – – – 11 11.0
Min. interval 12 12 13 12 13 12.4 13
Avg. interval – 13 – – – 13.0
Dev. non-diatonic degrees – – 14 x – 14.0
Num. non-diatonic notes 13 14 16 x 14 14.3 13
Lowest pitch – – 15 13 15 14.3
Max. silence duration – – – – – –
Avg. silence duration – – – – – –
Dev. silence duration – – – – – –
Avg. non-diatonic degrees – – – x – –

total database and the other 10% was kept for testing. The results are presented
in table 2. The results in the table are those obtained in the next experiments:

– All descriptors: all the 22 melodic, harmonic and rhythmic features.
– 6 descriptors: max.pitch, max.interval, note number std.deviation, note num-

ber max., pitch std.deviation, and note number mean.
– 7 descriptors: all above plus syncopation.
– 10 descriptors: all above plus pitch mean, interval std.dev. and note number.
– 13 descriptors: all above plus silence number, min.interval, non-diatonic num.

The data presented in the table are successful classification rates for jazz and
classical. Each model has been evaluated with the two different size SOM, and
in each case the best partition and the average results for the 10 partitions of
the leave-k-out experiment are displayed.

The best average performances were consistently obtained with the smaller
map, with a success classification rate around 80 %. The best average results
were obtained for that map when using the 7-descriptor model (84.2 %). It is
observed that 6-descriptor model performance are systematically improved when
syncopation is included in the 7-descriptor model. In some experiments even
a 98.0 % of success (96.0 % for both styles) has been achieved. The inclusion of
more descriptors in the model worsens the results and the worst case is when all
of them are used (76.1 % and 66.0 %).
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Table 2. Classification results (success rates are in percentages). “Best” results
are not neccesarely with the same map. “Best” results for “Both” styles are
averaged for jazz and classical styles with a particular map

JAZZ CLAS BOTH
16x8 30x12 16x8 30x12 16x8 30x12

Descr. BEST AVG. BEST AVG. BEST AVG. BEST AVG. BEST AVG. BEST AVG.

All 89.8 72.7 87.8 61.2 93.2 79.6 85.1 70.8 90.8 76.1 80.7 66.0

6 98.0 79.4 81.6 68.4 95.2 82.1 90.5 89.3 92.5 80.8 78.3 73.3

7 96.0 81.8 83.7 74.1 97.3 86.5 97.3 76.6 96.0 84.2 85.1 75.4

10 98.0 78.8 87.8 63.3 96.0 82.7 90.5 74.6 88.8 80.7 89.2 68.9

13 87.8 72.0 89.8 67.1 97.3 82.6 85.1 68.8 84.4 77.3 78.0 68.0

4 Conclusions and Future Works

We have shown the ability of SOM to map symbolic representations of melodies
into a set of musical styles using melodic, harmonic and rhythmic descriptions.
The best recognition rate has been found with a 7-descriptor model where synco-
pation, note duration, and pitch have an important role. The overlapping degree
does not seem to be a key point when assessing the quality of a map.

Some of the misclassifications can be caused by the lack of a smart method
for melody segmentation. The music samples have been arbitrarily restricted to
8 bars, getting just fragments with no relation to musical motives. This fact
can introduce artifacts in the descriptors leading to less quality mappings. The
main goal was to test the feasibility of the approach, and average recognition
rates above 80% have been achieved, that is very encouraging keeping in mind
these limitations and others like the lack of valuable information for this task
like timbre.

A number of possibilities are yet to be explored, like the development and
study of new descriptors. It is very likely that the descriptor subset models are
highly dependent on the styles to be discriminated. To achieve this goal a large
music database has to be compiled and tested using our system for multiple
different style recognition in order to draw significant conclusions.
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Abstract. This paper describes a new proposal for tracking deformable
objects in video sequences using multiple shape models of heterogeneous
dimensionality. This models are generated unsupervisedly from a train-
ing sequence, and used to estimate the shape of an object along time
by means of a novel tracking framework proposed. This framework is
based in estimate the rigid and non-rigid shape transformations in two
separated but related processes. The advantage of proceed in that way
is that the a priori knowledge contained in the learned models is better
exploited, resulting in a more reliable tracking performance. The Con-
densation algorithm is used to estimate the rigid transformation of the
shape, while the non-rigid shape deformation is determined by combin-
ing the response of several Kalman Filters. The proposal is evaluated
tracking a synthetic form, and the silhouette of a pedestrian.

1 Introduction

Many approaches to shape tracking pose this problem as determining the pa-
rameters of a deformable curve from measures obtained in image frames. One
popular technique applied in this task is known as Active Contour or Active
Shape Estimation [1, 2]. This is a model based approach that applies methods
developed in estimation theory (mainly Kalman and Particle Filters) to estimate
the parameters of a model which encapsulates the shape variability of the object
to be tracked. Usually this model is linear, determined from the Principal Com-
ponent Analysis(PCA) of a training set. This model is also complemented with
a constraint model delimiting the valid parameterizations of the model [3, 4, 5].
The use of both models by estimation filters brings to quite robust tracking
performances. However, if the shape to be modeled changes abruptly over time,
the accuracy of the linear shape model diminishes, while the complexity of the
constraint in the space of valid shape parameters increases (requires a model of
higher order). Realizing that, our recent past research has focused in studying
the benefits of using several models in this modeling task. The natural following
step has been defining a tracking strategy that takes advantage of the multiple
models to achieve robust tracking performances.

F.J. Perales et al. (Eds.): IbPRIA 2003, LNCS 2652, pp. 782–792, 2003.
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In this paper we propose a novel tracking framework that manages multiple
models to track a deformable shape over time. Section 2 briefly describes our
modelisation strategy, which determines unsupervisedly a collection of models
from a training sequence. Next, section 3 details how complement this models
to consider, beside the learned deformations, the common rigid transformations
that suffer objects in common tracking applications (translations, change of scale,
. . . ). Section 4 discusses the difficulties in the estimation of the parameters of
the proposed models, and proposes a two-phase tracking framework which takes
advantage of the implicit a-priori information contained in the models. Section 5
evaluates the performance of the proposal in synthetic and real sequences. The
paper ends with a brief summary and some conclusions.

2 Unsupervised Multiple Model Generation

Given a training set of aligned curve parameterizations Q = {Q1, . . . , Qn} that
represent the object to be modeled, common approaches make a PCA to deter-
mine a low-dimensional linear shape model. This model is defined by the matrix
of principal eigenvectors W of the distribution of Q, and its corresponding mean
Q̄. The elements in the training set Qk can be approximately recovered using
equation 1, being XD

k the projection of Qk in the shape space W .

Qk = WXD
k + Q̄, k ∈ {1, . . . , n} (1)

The feasible values of XD
k are constrained to lay in a specific region, in order

to generate only curve parameterizations similar to the ones in Q. This con-
strain region, denoted as Subspace of Valid Shapes (SVS), is usually represented
with a Gaussian Mixture Model(GMM). This mixture of Gaussian models the
distribution of XD (the projection of Q onto the shape space W ) and is char-
acterized by its amount of components K and their corresponding parameters
Φ = {(P1, μ1, Σ1), . . . , (PK , μK , ΣK)}.

p(XD
k ) =

K∑
i=1

p(XD
k |μi, Σi)Pi (2)

To determine an appropriate parameterization several different proposals can
be found in the literature [6, 7, 8]. Each GMM component delimits an hiperel-
lipsoid in the W -space, where projects a subset of elements in Q whose shape
variability can be delimited by a Gaussian distribution. This fact suggests us to
replace this linear model constrained by a GMM with a set of linear models, each
one constrained by a single Gaussian. First each projected training sample XD

k

is assigned to the component j that maximizes its likelihood. This allow us to
define K subsets Qi in the training sequence Q, where

Qi = ∪{Qj} ∀XD
j | i = arg

K
max
k=1

p(XD
j , k)P (k) . (3)
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Fig. 1. Unsupervised construction of a collection of Gaussian-constrained shape
models

This procedure clusters the training set in groups similar in shape. We propose to
define an specific linear shape model for each of them, constraining its respective
SVS with a single Gaussian. Figure 1 summarizes the overall procedure.

As elements in Qi ⊂ Q present a high degree of similarity, a linear model W i

of dimensionality lower than W is expected to be determined. We determine the
specific model dimension di by the minimal one which obtains a mean squared
reconstruction error lower that the one obtained with W . That is,

min di |
∑

Qj∈Qi

(
Qj − (W iXDi

j + Q̄i)
)2 ≤ ∑

Qj∈Qi

(
Qj − (WXD

j + Q̄)
)2

, (4)

where XDi
j is the projection of Qj onto the W i space. We found that the most

important benefit of proceed in that way, more than the gain of accuracy (that
is set at a feasible minimum), is the reduction in dimensionality of shape spaces.
This fact reduces the computational load of tracking algorithms, which favors to
obtain more robust performances (allow a better temporal sampling of sequences,
considering more sofisticated image measurement, etc). Also, having a lower
dimensionality supposes implicitly a gain in the SVS constraint, as the degrees
of freedom of the shape parameterizations are reduced. Moreover, the Gaussian
constraint of each model can be elegantly applied in a tracking algorithm by
assuming a constrained Brownian motion for the dynamics of shape parameters
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(see [1] for a description). Our experiments show than in practical problems, the
constrained multiple model approach improves the traditional approach in terms
of the Minimum Description Length criterion. For a more detailed description
and study of this modelisation proposal, the reader may refer to [9].

For an efficient use of this collection of models in tracking applications, a dy-
namical model of the transitions between the different models is required. If the
training set Q contains an ordered sequence of the typical deformation cycle of
the modeled object, a Model Transition MatrixMTM can be constructed by his-
tograming the pair of model identifiers (Mi,Mi+1) assigned to each consecutive
pair of elements in Q. Figure 2 show an schematic of this process.
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1 2 3 4 5 6

1 0.955 0.045 0 0 0 0

2 0 0.953 0.047 0 0 0

3 0 0 0.956 0.044 0 0

4 0 0 0 0.956 0.044 0

5 0 0 0 0 0.956 0.044

6 0.044 0 0 0 0 0.956

a) b)

Fig. 2. Dynamic learning process of a Markov Chain model, for a synthetic
training set. a) A GMM models the SVS. b) The MTM computed from a training
sequence, using the procedure described in [4]

3 Rigid Transformations Extension

The models described in the previous section encapsulate the non rigid transfor-
mations present in the training set. However, beside shape deformations, objects
in tracking applications mainly present translations, changes of scale, and other
transformations that affect globally the shape of the object. To take this trans-
formations into account, the learned models have to be complemented with new
parameters XR, which describe the global transformation affecting the whole
object. Assuming that this global transformation is linear, curve parameters Q
are determined by means of the following expression:

Q = WXR

(
W iXD + Q̄i

)
+ TXR . (5)

For Euclidean transformations, XR = {s, θ, tx, ty}. WXR is a scaling-rotation
matrix whose elements depend on the parameters s(scale) and θ (angle), and TXR

is an appropriate translation vector constructed from tx and ty.
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Fig. 3. Block diagram of a model based tracking application

4 Tracking Framework

Estimation methods applied in visual tracking determine the distribution of the
model parameters Xt = {XR

t , X
D
t } at instant t by means of the iterative process

shown in figure 3.
In a multiple model approach this scheme is still valid, but requires to com-

plement the state of the object with an identifier of the model it active at in-
stant t. Therefore the state of the object becomes Xt = {XR

t , X
D
t , it}. More-

over, the algorithm at each iteration has to consider multiple state hipothesis
H = {Xth1 , . . . , Xthn

}. From the estimation at the previous instant Xt−1, the
prediction module uses the Model Transition Matrix with the value of it−1 to
predict a subset of posible active models iH = {ih1 . . . ihn} in the current in-
stant. All this models share a common predicted rigid transformation, and have
its specific deformation parameters. After all this hypothesis are evaluated, we
consider the one which better explain the observed measures as the estimate of
the state at instant t.

Estimate XR
t and XD

t for each hypothesis is difficult, because the effect of
each parameter is observed combined in the measurements. However, doing some
assumptions, their corresponding effect can be isolated, and this can be used to
take more profit of the a priori information in the models. The following sections
describe a proposal to estimate the elements {XR

t , X
D
t } separately, which allow

a more precise estimation of each of them, achieving a more robust tracking
performance. Then, the criterion to choose the more likely hypothesis is detailed.

4.1 XR
t Estimation

We apply an adaption of the CONDENSATION algorithm [10] to estimate XR
t ,

which makes use of the multiple models hypothesized. At time t − 1 we have
a population of samples {XR

t−1i} i = 1 . . . n representing the probability density
function of XR, conditioned with the history until t−1. We propagate the sample
set to instant t, assuming a constant velocity model for translation parameters,
and a constrained Brownian motion for scale and rotation parameters. Then,
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each sample XR
ti is evaluated, determining its fitness to observations πi from the

combination of the likelihood of the multiple hypothesized models.

πi =
∑

ihj
∈H

p(Zt|XR
ti , ihj ) (6)

In that way we emulate in a particle filter the procedure of a simplified gener-
alized pseudo-Bayesian estimator of first order for managing multiple hypoth-
esis [11]. After the normalization of the πi values, XR

t is determined from the
weighted linear combination of the predicted sample set XR

t =
∑n

i=1 πiX
R
ti .

As equation 6 shows, the basis to apply this reasoning is obtaining measure-
ments Zt that do not depend on the value of XD

ti . To achieve this, we define for
each model a submodel Rk, which is a rigid template corresponding to the zone
in the model less affected by deformations. First we project the variance Σk of
the model’s SVS constraint into a space of samples along the modeled contour,
with expression

Σk
samples = BTW kTΣkW

kB . (7)

B is a matrix that projects a vector of control points Q into a predefined sam-
pling of its corresponding curve. From Σk

samples the position covariance Σk
siof

each sample point si in the curve is obtained. The samples which suffer less
deformation are identified, and selected to define Rk (see figure 4).

To estimate XR
t , measurements Zt are obtained applying an edge detector

along lines perpendicular to the contour regions in Rk. The likelihood p(Zt|XR
ti ,

ihj ) is defined as proposed in [10].

4.2 XD
t Estimation

Having determined the more likely value of XR
t , now we can apply this rigid

transformation to the hypothesized models and focus just on the estimation
of XD

t . We do that applying a Kalman Filter for each hypothesized model.

Fig. 4. Example for a pedestrian tracking application. Deformation associated
to the learned contours, and the zone determined to estimate XR

t
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a) b)

Fig. 5. Example in a pedestrian tracking application. a) Measurements per-
pendicular to the contour(the common approach). b) Measurements in the more
probable direction of deformation. For each pose, one can agree that it corre-
sponds to the logical direction of deformation

First, each model predicts its deformation at the current instant using a con-
strained Brownian motion model, with parameters determined from the param-
eters (μk, Σk) of its corresponding constrain region.

XD
t − μk = A (XD

t−1 − μk) + ωk . (8)

Matrix A corresponds to aI (with a = 0.9) and ωk is a vector of dk indepen-
dent random variablesN (0, εΣk), where ε = 1−a2. For the hypothesis ihj �= it−1
the value of XD

t−1 is established as μj . This dynamical model guarantees that
the predicted deformation lay inside its constrain region. Then, to estimate XD

t ,
new measurements Zt are extracted from the image, profiting by the fact that
now the rigid transformation is already estimated. This allow to define a more
coherent measurement process, measuring along lines oriented toward the more
probable direction of shape deformation (see [12] for details). As shows figure 5
in a real example, the measurements obtained in this direction will reflect more
confidently the deformation suffered by the object.

4.3 Final Xt Estimation

From the multiple hypothesis H, we select the one that better fits the image
using expression 9, which is taken to be the final estimation of Xt.

Xt = {XD
thk

, XR
t , ihk

} | hk = arg max
ihj
∈H

p(Zt|XD
thj

, XR
t , ihj ) (9)

Figure 6 shows an schematic of the overall process proposed

5 Results

In order to measure the performance of the tracking proposal, we have repro-
duced the experiment proposed in [13]. First we have generated a collection of
models from a binary sequence showing the deformation period of a synthetic
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Fig. 6. Block diagram of the proposed tracking strategy

shape. Then we have used this models to track a test sequence, showing the
learned shape suffering oscillatory changes of position, rotation, and scale (see
Figure 7). Different degrees of noise have been added to the test sequence, in
order to check the robustness of the proposal.

Fig. 7. Some results in frames corresponding to a Signal-to-Noise (SNR) ratio
around 6 dB. Top: uncorrelated noise. Bottom: correlated noise

Our algorithm tracks robustly the shape, even when a high number of arti-
facts corrupts the test sequence (see Figure 8). For uncorrelated artifacts, the
tracking is fairly robust when noise is over 4 dB. For correlated noise, its behav-
ior is acceptable when noise is around 6 dB. An output SNR less than 7.5 dB
results when the system fails to track more than 25% of the sequence.

We have also tested the proposal in a pedestrian tracking application. Good
results have been obtained in several test sequences showing different people
walking sideways, even when the initial parameterization of the tracker was
vague. Pedestrians location and scale its correctly estimated, while its outline is
recovered accurately in the 78.5% of the frames.
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Fig. 8. Tracking statistics for the proposed method

Fig. 9. From right to left, some results in a pedestrian tracking application.
Despite the inaccurate initialization of the tracker, it succeeds in recovering the
pedestrian outline
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6 Summary and Conclusions

This papers describes an unsupervised method to determine a collection of shape
models from a training set, and presents a novel two-phase algorithm that uses
them for the robust tracking of objects. The proposal estimates sequentially
the rigid and non-rigid object transformations in two different processes. The
rigid transformation is determined evaluating several rigid template models in
a particle filter. For the sake of efficiency, the object’s non-rigid deformations is
obtained analytically by evaluating the response of several kalman filters, each of
them checking a concrete space of object deformations. Using a particle filter for
locating the object makes our algorithm robust to clutter, and allow to recover for
temporal miss-track. Deformation parameters are estimated by Kalman filters,
as its priors and dynamics are Gaussian, and assuming a Gaussian observation
density is not critical, provided the effect of clutter is already considered in the
object localization.
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Abstract

A wide variety of texture feature extraction methods have been proposed for
texture based image classification and segmentation. These methods are typically
evaluated over windows of the same size, the latter being usually chosen for each
particular method on an experimental basis. This paper shows that pixel-based
texture classification can be significantly improved by evaluating a given texture
method over multiple windows of different size and then by integrating the results
through a classical Bayesian scheme. The proposed technique has been applied to
well-known families of texture methods that are frequently utilized for feature
extraction from textured images. Experiments show that the integration of multi-
sized windows yields lower classification errors than when optimal single-sized
windows are considered.

1  Introduction
A wide variety of texture feature extraction methods (texture methods in short) have
been proposed in the computer vision and image processing literature in order to
characterize different texture patterns (e.g., [7][10][14][16][17]). A texture method
is a process that can be applied to a pixel of a given image in order to generate a
measure (feature) related to the texture pattern to which that pixel and its neighbors
belong. The performance of the different families of texture methods basically
depends on the type of processing they apply, the neighborhood of pixels over which
they are evaluated (evaluation window) and the texture content.

Traditionally, texture methods have been evaluated over windows of a single
size, the latter being commonly defined on an experimental basis. The role played by
both the shape and size of evaluation windows was studied in [6], showing that tex-
ture characterization is much more influenced by the window size than by its shape,
although no hints on optimal sizes were provided. 

Although many studies regarding the performance of the different families of
texture feature extraction methods have been carried out in the past (e.g.,
[4][11][14]), only a few have dealt with the issue of determining optimal window
sizes. The majority of those works find out optimal sizes for specific texture methods
(e.g., [2][10]). In the scope of pixel-based texture classification, [12] presents a tech-

This work has been partially supported by the Government of Spain under the CICYT project DPI2001-
2094-C03-02.

F.J. Perales et al. (Eds.): IbPRIA 2003, LNCS 2652, pp. 793-801, 2003. 
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nique for determining the window size that leads to the maximum separability
among texture models, given an arbitrary texture method and a set of texture models
of interest.

Following a different approach, this paper shows that by integrating the features
obtained after the evaluation of a texture method over multiple windows of different
size, classification rates are significantly larger than when the same method is
applied over windows of the same size, even if this size is optimal under some crite-
rion, such as separability [12]. The paper is organized as follows. Section 2 describes
how texture methods are evaluated over multisized windows. Section 3 presents the
proposed scheme for integrating multiple evaluation windows. Section 4 shows
experimental results obtained with the proposed technique when applied to texture
feature extraction methods that are widely used for texture classification, as well as a
comparison with a well-known texture classification framework (MeasTex [9]). Con-
clusions and further improvements are finally given in section 5

2 Evaluation of Texture Methods over Multisized Windows

Let  be a set of T texture models of interest. Each model  is described
by a sample image  that contains a pattern of that texture. Let I be a two dimen-
sional test image of  pixels that contains several regions of uniform texture.
The usual way of classifying each pixel  consists of computing a texture fea-
ture  obtained by applying a texture feature extraction method  to the pixels
contained in a neighborhood of : . That neighborhood is usually a
square window centered at  whose size is experimentally set for each method.
The computed feature is then fed into a pattern classifier in order to determine the
texture model corresponding to .

Instead of using a single window, we propose the evaluation of the given texture
method  over N square windows, , with each window having a dif-
ferent size. Every window  is considered to contain  pixels, with

. Hence, every texture method  generates a feature vector  with N
texture features for every pixel to which the method is applied. 

We consider that whenever an evaluation window is not totally contained in the
given image, the texture method cannot be evaluated, since it would generate a value
based on a fraction of the texture pattern. This means that the strip of pixels that
belong to the boundary of I will not be classified, as no window centered at them
will entirely fit into the image. Let W, , be the number of windows that do
entirely fit into the image for a specific pixel . In this case,  generates a vec-
tor F of W features: .

3 Pixel-Based Texture Classification Using Multisized
Windows

Given an image I and a texture feature extraction method , which generates a fea-
ture vector  when it is evaluated in the neighborhood of pixel  by using a set
of W windows of different size, , this section presents a tech-
nique for integrating the W texture features of  in order to determine whether pixel

 can be classified into one of T given texture models .
The first stage of the proposed technique applies a supervised training scheme in

τ1 … τT, ,{ } τk
Ik

R C×
I x y,( )

f μ
I x y,( ) f μ x y,( )=

I x y,( )

I x y,( )

μ w1 … wN, ,{ }
wj sj sj×

sj 2j 1+= μ F

W N≤
I x y,( ) μ

F f1 … fW, ,( )=

μ
F I x y,( )

s1 s1× … sW sW×, ,{ }
F

I x y,( ) τ1 … τT, ,{ }
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order to obtain a set of frequency tables (histograms). Each histogram models the
behavior of texture method  when it is applied to all the pixels of the sample image
corresponding to one of the given texture models by using one of the chosen window
sizes. Each of those histograms will allow to compute the likelihood of pixel 
according to method , window size  and texture model . Such basic likeli-
hood functions are denoted as . Thus, given a texture method ,

 frequency tables and, hence, basic likelihood functions are computed.
In the second stage, the W basic likelihood functions corresponding to the differ-

ent window sizes  are integrated, for each texture model , obtaining a new
subset of  intermediate likelihood functions, . Finally, in the last
stage, the  likelihood functions obtained above are combined through
the Bayes rule in order to obtain the posterior probability that pixel  belongs
to texture model  according to texture method , . Pixel  will
be classified to the texture model with the maximum posterior probability. 

The three stages of the proposed technique are further described below.

3.1 Supervised Training Stage

Let  be a texture feature extraction method  evaluated over a window of size
. When  is applied to a pixel , it generates a value  that repre-

sents a feature of the texture pattern to which  belongs. Every known texture
model  is associated with an image  that contains an example of its pattern. For
instance, Fig. 2(top) shows eight texture models belonging to the Brodatz album [3].

By evaluating method  at each of the pixels contained in , it is possible to
determine the probability distribution  associated with the feature values gener-
ated by  when applied to  with a window size . In practice,  is
approximated by a frequency table (histogram) with  bins (e.g., ). The
feature values computed by  will range in a specific real interval:

(1)

The basic likelihood function  is then defined as: 
(2)

 can be interpreted as the likelihood that pixel  belongs to tex-
ture  according to method  when it is evaluated on a window of size . 

3.2 Integration of Multiple Window Sizes

Given a texture method  and its corresponding set of  basic likelihood func-
tions  defined in the supervised training stage (2), the objective now is to integrate
the likelihoods corresponding to the W window sizes associated with each texture
model: . The result will be a set of  combined
likelihood functions: .

The likelihood functions corresponding to the evaluation of a texture method
over different windows centered at the same pixel of a textured image are assumed to
be statistically independent. The reason is that each window captures a subimage of
a particular size, which is constituted by pixels that have independently captured the

μ
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reflectivity of one or several microtextured surfaces that are intrinsically noisy by
nature. Therefore, a same texture method may produce significantly different values
when it is applied to a small window or to a large one, although both windows are
centered at the same pixel. This implies that the corresponding likelihoods may also
be different and uncorrelated.

The combination of different basic likelihood functions can be modeled as a lin-
ear opinion pool [1]: 

(3)

The weights  are computed as the normalized average of the Kullback J-diver-
gence [8] between  and the other texture models:

(4)

The Kullback J-divergence measures the separability between two classes (texture
models in this context) as:

(5)

with A and B being obtained in our context from the histograms computed during the
supervised training stage (1):  and

.

3.3 Maximum a Posteriori Estimation

Given a set of T likelihood functions  (3), the posterior probabilities
 are finally computed by applying the Bayes rule:

(6)

with the prior probability corresponding to each texture model being defined as:

(7)

At this point, T posterior probabilities have been generated:
, one per texture model. 

Finally, pixel  will be considered to belong to texture class  iff
, which is generally known as the maximum a
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posteriori (MAP) estimation. This process is iteratively applied to all the pixels in I.

4 Experimental Results

Taking recent surveys into account [14][16], several widely-used texture feature
extraction methods have been chosen to validate the proposed technique: four Laws
filter masks (R5R5, E5L5, E5E5, R5S5), two wavelet transforms (Daubechies-4,
Haar), four Gabor filters with different wavelengths (8, 4) and orientations (0º, 45º,
90º, 135º), two first-order statistics (variance, skewness), a second-order statistic
(homogeneity) based on co-occurrence matrices and the fractal dimension.

The proposed technique has been tested on a set of composite Brodatz images
[3], Fig. 1(a)(b), and on real outdoor images, Fig. 1(c)(d). Fig. 2(top) shows eight
Brodatz texture patterns utilized as models for the training stage. Each pattern
belongs to one of the eight texture categories proposed by Rao and Loshe [15] as
representatives of the variability of natural textures according to human perception.
Fig. 2(bottom) shows five outdoor texture patterns.

In the first set of experiments, each texture method was evaluated over a single
window size at a time. Six window sizes were considered in turn: {3x3, 5x5, 9x9,
17x17, 33x33, 65x65}. For every test image, texture method and window size, the
classification rate after just applying the MAP estimation stage was obtained. Table
1 shows the largest classification rates obtained for every texture method when
applied to the test images presented in Fig. 1. The window sizes that led to such larg-
est rates are considered to be optimal for each method and test image, and are also

Fig. 1. Test images with portions of Brodatz texture patterns: (a),(b). Test images with
real outdoor scenes: (c),(d)

(a) (d)(b) (c)

Fig. 2. Detail of texture models  from (top) the Brodatz album and (bottom) real
outdoor scenes

τk

D3 D15 D32 D37 D41 D5 D91 D94

sky forest cliff ground sea
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shown in the table.

According to these experiments, it is important to point out that, in practice, a
single texture method usually has different optimal window sizes depending on the
image contents. Therefore, a window size considered to be optimal from a theoreti-
cal standpoint [12] does not necessarily lead to optimal classification in practice,
given an arbitrary test image.

In order to determine the benefits of integrating multiple windows of different
size, the second set of experiments tested the proposed technique by evaluating
every texture method over windows of the aforementioned sizes.

Table 2 shows the pixel classification rates obtained for each texture method and
test image in Fig. 1 when multiple windows are integrated. By comparing Table 1
and Table 2, it can be noticed that the classification rates corresponding to the inte-
gration of multiple windows are significantly larger than the rates associated with
single optimal windows in the majority of experiments. Those cases in which a sin-
gle optimal window was superior are also highlighted.

The proposed technique has also been compared to MeasTex [9], a widely recog-
nized texture classification framework. MeasTex provides a set of texture classifiers
based on the combination of a texture method (e.g., Gabor, Markov, Fractal, Grey-
Level Co-occurrence Matrices) evaluated over single-sized windows and a pattern
classification algorithm (e.g., Multivariate Gaussian Bayes [MVG], K-Nearest
Neighbors [KNN]). MeasTex was utilized to classify every pixel of the test images
given a subimage of 33x33 pixels centered at that pixel —33x33 is the default win-

Texture Feature 
Extraction Method

Optimal Single Window

Fig. 1(a) Fig. 1(b) Fig. 1(c) Fig. 1(d)

Laws R5R5 55.3 (9x9) 55.7 (17x17) 50.5 (9x9) 23.7 (9x9)

Laws E5L5 64.1 (9x9) 40.5 (9x9) 56.7 (9x9) 35.7 (9x9)

Laws E5E5 58.3 (17x17) 43.5 (9x9) 58.3 (9x9) 35.2 (9x9)

Laws R5S5 66.6 (17x17) 48.7 (9x9) 58.2 (9x9) 28.0 (17x17)

Variance 59.4 (9x9) 46.0 (9x9) 55.6 (9x9) 19.8 (17x17)

Skewness 37.2 (65x65) 35.4 (33x33) 23.9 (33x33) 25.5 (9x9)

Homogeneity (5, 45º) 7.8 (33x33) 11.1 (9x9) 61.4 (9x9) 67.0 (17x17)

Gabor (wav 4,ori 45º) 56.7 (17x17) 44.0 (9x9) 46.0 (33x33) 27.9 (9x9)

Gabor (wav 8,ori 0º) 56.6 (17x17) 44.9 (9x9) 46.8 (33x33) 29.0 (9x9)

Gabor (wav 4,ori 90º) 56.0 (17x17) 43.6 (9x9) 45.8 (33x33) 26.8 (9x9)

Gabor (wav 8,ori 135º) 56.2 (17x17) 43.1 (17x17) 46.1 (33x33) 28.5 (9x9)

Fractal 48.8 (65x65) 45.5 (33x33) 48.0 (33x33) 18.2 (17x17)

Wavelet Daubechies 4 49.7 (17x17) 44.8 (17x17) 66.5 (9x9) 60.7 (9x9)

Wavelet Haar 56.2 (17x17) 55.4 (9x9) 65.3 (9x9) 62.4 (9x9)

Table 1. Classification rates (%) with the proposed technique and a single texture
method, by considering a single (optimal) window size per image and method (the
optimal window size is also shown) 
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dow size used by MeasTex [9]. The sample images utilized for the proposed
classifier (Fig. 2) were also used as the training dataset for MeasTex. 

Table 3 shows the classification rates obtained by applying the previous proce-
dure, by considering four Gabor filters as texture methods and two classification
algorithms currently supported by MeasTex (MVG, KNN). In all cases, MeasTex
yielded lower classification rates than the proposed technique. In some cases (e.g.,
Gabor wav 4, ori 45º), the difference in favor of the proposed technique was rather
significant. Furthermore, the best result obtained with MeasTex for each test image
was achieved by using a different type of Gabor filter and classifier.

Fig. 3 shows qualitative results for the test image shown in Fig. 1(c) correspond-
ing to the evaluation of Gabor (wav 8, ori 0º), which is the texture method that
produced the best result for that test image with MeasTex. Fig. 3(a) shows the origi-
nal image. Fig. 3(b) is the corresponding ground-truth classification. Fig. 3(c)
presents the result of applying the proposed multiwindow technique according to
Table 2. Fig. 3(d) shows the same technique by using a single optimal window size
(33x33 according to Table 1), instead of multiwindow integration. Fig. 3(e) shows
the result obtained with MeasTex according to Table 3.

5  Conclusions
This paper shows that pixel-based image classification can be both quantitatively
and qualitatively improved by utilizing texture methods evaluated over multiple win-
dows of different size. The proposed technique has been applied to different well-
known families of texture methods, showing better classification rates than when a

Texture Feature 
Extraction Method

Multiple Windows

Fig. 1(a) Fig. 1(b) Fig. 1(c) Fig. 1(d)

Laws R5R5 59.0 56.7 54.1 29.8

Laws E5L5 65.8 42.0 59.8 31.7

Laws E5E5 56.8 51.4 70.3 52.6

Laws R5S5 75.1 61.6 60.5 37.7

Variance 62.2 51.8 62.7 23.6

Skewness 36.9 41.1 35.4 33.8

Homogeneity (5, 45º) 8.9 11.5 61.4 64.0

Gabor (wav 4,ori 45º) 68.1 54.4 57.1 42.9

Gabor (wav 8,ori 0º) 69.0 53.4 58.0 49.9

Gabor (wav 4,ori 90º) 70.0 54.7 56.3 41.4

Gabor (wav 8,ori 135º) 69.7 54.4 56.9 42.5

Fractal 51.1 53.7 44.7 23.6

Wavelet Daubechies 4 55.0 51.8 61.0 58.0

Wavelet Haar 56.3 59.2 65.8 66.5

Table 2. Classification rates (%) with the proposed technique applied to each texture
method. Multiple window sizes are integrated per method. Shadowed cells correspond to
the only experiments in which optimal single window sizes (Table 1) led to better classi-
fication rates than multiple sizes
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single window size is utilized per method, as it has been traditionally done. Results
also show that, in practice, it is not feasible to determine a unique window size that
allows optimal discrimination for an arbitrary textured image and texture method.

Further work will consist of the combination of the proposed technique with the
pixel-based classifier presented in [5][13], which integrates different texture meth-
ods. The goal is to obtain a pixel-based texture classifier based on the integration of
multiple texture methods, each evaluated over multiple windows of different size.
This classifier is to be applied to real-world problems involving the identification of
specific texture patterns in digital images, such as specific kinds of tissue in medical
imagery, or terrain in aerial images.

References

[1] J. Berger. Statistical Decision Theory and Bayesian Analysis. Springer-Verlag,
1985.

[2] D. Blostein and N. Ahuja. Shape from Texture: Integrating Texture-Element
Surface Estimation. IEEE Trans. PAMI, 2(12): 1233-1251, 1989.

[3] P. Brodatz. Textures: A Photographic Album for Artists and Designers. Dover &
Greer Publishing Company, 1999.

[4] K.I. Chang, K.W. Bowyer and M. Sivagurunath. Evaluation of Texture
Segmentation Algorithms. Proc. IEEE CVPR, Fort Collins (USA), 1999. 

[5] M.A. García and D. Puig. Improving Texture Pattern Recognition by Integration
of Multiple Texture Feature Extraction Methods. 16th IAPR Int. Conf. on Pattern
Recognition, vol. 3, pp 7-10, Quebec, Canada, 2002.

[6] P. García-Sevilla and M. Petrou. Analysis of Irregularly Shaped Texture Regions:
A Comparative Study. 15th IAPR Int. Conf. on Pat. Recog., 1080-1083,
Barcelona, 2000.

[7] R.M. Haralick, K. Shanmugam and I. Distein. Textural Features for Image
Classification. IEEE Trans. SMC, 6(3): 610-622, 1973.

[8] J. Kittler. Feature Selection and Extraction. Handbook of Pattern Recognition and

Texture Feature Extraction 
Method and Classifier

Single Window (33x33)

Fig. 1(a) Fig. 1(b) Fig. 1(c) Fig. 1(d)

Gabor (MVG,wav 4,ori 45º) 45.5 38.4 46.4 35.6

Gabor (MVG,wav 8,ori 0º) 30.6 20.8 51.3 41.7

Gabor (MVG,wav 4,ori 90º) 48.3 41.1 50.2 37.3

Gabor (MVG,wav 8,ori 135º) 37.3 27.0 41.5 34.8

Gabor (5-NN,wav 4,ori 45º) 49.2 39.8 48.5 36.9

Gabor (5-NN,wav 8,ori 0º) 35.3 24.9 54.0 43.8

Gabor (5-NN,wav 4,ori 90º) 51.1 42.2 52.3 38.1

Gabor (5-NN,wav 8,ori 135º) 40.3 29.3 45.5 37.2

Table 3. Classification rates (%) for the test images shown in Fig. 1 and different con-
figurations of the MeasTex texture classifier (considering a single 33x33 window size)
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Abstract. This paper addresses the problem of reconstructing texture-
less objects of quadric like shape. It is known that a quadric can be
uniquely recovered from its apparent contours in three views. But, in
the case of only two views the reconstruction is a one parameter family
of quadrics.
Polarization imaging provides additional geometric information com-
pared to simple intensity based imaging. The polarization image encodes
the projection of the surface normals onto the image and therefore pro-
vides constraints on the surface geometry.
In this paper it is proven that two polarization views of a quadric con-
tain sufficient information for a complete determination of its shape.
The proof itself is constructive leading to a closed-form solution for the
quadric. Additionally, an indirect algorithm is presented which uses both
polarization and apparent contours. By experiments it is shown that the
presented algorithm produces accurate reconstruction results.

1 Introduction

Quadrics in 3D space and conics in 2D space, besides points, lines and planes,
are basic geometric entities, which are widely used and have been extensively
studied in the domain of computer vision. This paper focuses on the problem
of the recovery of texture-less objects of quadric shape from the information
available in two views. As no texture on the quadric surface is present, no point
correspondences can be used to reconstruct the surface via triangulation of point
features. Hence, the only available information is the apparent contour or the
outline of the quadric. It has been shown that a quadric can be uniquely recovered
from its outlines in three views [2, 7, 6]. The problem can be solved in a linear
way deploying dual-space geometry. But, from two views the reconstruction is
ambiguous and a one parameter family of quadrics will project onto the same
apparent contours in the images. A second challenge is the recovery of quadrics
under circumstances where the outlines are not or only partially available, for
example due to occlusion.

Polarization imaging analyzes the state of polarization of reflected light. In
a polarization image the projection of the underlying surface normals is encoded

F.J. Perales et al. (Eds.): IbPRIA 2003, LNCS 2652, pp. 810–820, 2003.
c© Springer-Verlag Berlin Heidelberg 2003
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and constraints on the surface geometry can be derived. This fact was first
deployed by Wolff in [11] where the orientation of a plane was determined based
on two polarization images. Recently, it was shown that polarization imaging
can be used for the reconstruction of specular surfaces [9] and in photometric
stereo [3, 4].

In this paper it is shown that using two polarization views a quadric can be
determined uniquely. It is proven that solely the polarization information (with-
out the apparent contours) provides in general a unique solution for the quadric
shape (In some exceptional cases the shape is recovered only up to a scale fac-
tor.). The proof is constructive and a closed-form solution for the quadric can be
derived. But, it is shown that for real images the linear algorithm is not the first
choice. Instead, we propose a non-linear algorithm. This indirect optimization
scheme has the advantage that information available from the apparent contours
can be easily incorporated. We show experiments on real images and access the
quality of the results for both solely polarization and polarization plus apparent
contours.

2 Polarization Imaging

Polarization analysis is the determination of the complete state of polarization
of the light. In the case of partial linear polarized light, the polarization image is
equivalent to a set of three images encoding the intensity (that is what a normal
camera would see), the degree of polarization and the orientation of polarization
(see figure 2). The orientation of polarization is encoded in the so called phase
image.

The two basic assumptions for a geometric scene interpretation using polar-
ization imaging are, that the object under investigation exhibits a microscopi-
cally smooth surface structure and that the light illuminating the scene is not
polarized. The assumption of unpolarized lighting results in phase images being
invariant with respect to the intensity of the illumination and therefore becom-
ing a characteristic entity of the object’s shape, which is clearly shown in figure
2. Even though this assumption is not strictly fulfilled, as in real environments
reflected light is slightly polarized, good reconstruction results can be achieved.

3 Polarization Imaging and Orthographic Projection

For a proper polarization analysis the incoming light has to pass orthogonally
through the polarizing filter. Therefore, the scaled orthographic projection, see
eg. [5], is the appropriate camera model: 3D world pointsX = (X,Y, Z)T project
onto 2D image points xi = (xi, yi)T in the i-th camera, having squared pixels
and no skew. Rotation and translation between world and camera coordinate
system are given as RiT = (Ri

1,R
i
2,R

i
3) and tiT = (ti1, ti2, ti3) respectively. Be X̃

and x̃ the projective extension ofX respectively x, we can write in homogeneous



812 Stefan Rahmann

coordinates:

λx̃i =

⎛⎝α 0 αti1 + x0
0 α αti2 + y0
0 0 1

⎞⎠ ⎛⎝1 0 0 0
0 1 0 0
0 0 0 1

⎞⎠ (
Ri 03
0T3 1

)
X̃ = KiP‖Ti X̃ , (1)

where α = f
Zi

ave
is the quotient of the focal length and the average depth. As

the experimental setup is fully calibrated and the average depths Zi
ave can be

computed from the image data, the camera matrices Ki are known as well.
Therefore, image points x̃i can be substituted with their normalized counterpart
(Ki)−1x̃i, which finally yields:

λx̃i = P‖Ti X̃ . (2)

4 Level Curves as the Projection of Surface Profiles

In the context of polarization imaging the notion of level curves was first intro-
duced in [8]. Level curves are the projection of surface profiles where the surface
profiles are the intersections of the surface and planes parallel to the image plane.
It was shown that level curves can be computed based solely on the phase image.
In figure 1 the case of a quadric surface is shown. The polarization based recon-
struction problem can then be formulated as follows: given a set of level curves
the corresponding surface profiles are known as well, up to their depth. Can two
sets of level curves computed from two polarization images provide a unique
solution for the quadratic surface shape?

5 Quadric Surfaces and Conic Surface Profiles

5.1 Definition of a Quadric, Coordinate Transformation and the
Power Substitution

The equation of a quadric in homogeneous coordinates is X̃TQX̃ = 0, with
a symmetric matrix Q.

Let us define a vector [X̃]2 as [X̃]2=( X2, XY,XZ, Y 2, Y Z, Z2, X, Y, Z, 1 )T

= ( ([X]2)T , XT , 1 )T ; [X̃]2 is called the second power of X̃. Then, an alter-
native formulation of a quadric is to write the implicit polynomial as the scalar
product of a coefficient vector C and [X̃]2:

CT [X̃]2 = 0 . (3)

The coefficient vector can be decomposed into blocks referring to elements of
the power vector of the same degree: we define CT = (CT

2 ,C
T
1 , C0), which gives

CT [X̃]2 = CT
2 [X]2 +CT

1X+ C0.
Be T a general invertible transformation mapping X̃ onto X̃′: X̃′ = TX̃.

There exist a linear transformation [T]2 mapping [X̃]2 onto [TX̃]2: [TX]2 =:
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Fig. 1. Level curves are the projection of surface profiles, which are parallel to
the image plane. Surface profiles and level curves of a quadric are conics. Two
calibrated images with two level curves each are sufficient to determine the shape
of the quadric

[T]2[X̃]2. [T]2 is called the second power substitution of T. The original publi-
cation presenting the general n-degree power substitution is [10]. An overview
over the properties of the power substitution and an application to image analy-
sis and recognition can be found in [1]. Equipped with the concept of the power
substitution a coordinate transformation in equation (3) results in: CT [X̃]2 =
CT [T−1]2[T]2[X̃]2 = CT [T−1]2[X̃′]2 = C′T [X̃′]2 = 0. Here, we see a very nice
advantage of the power substitution: the transformation of the coefficient vec-
tor is a simple linear mapping in contrast to a left- and right-hand side matrix
multiplication in the case of the quadratic matrix formulation.

5.2 Surface Profiles

Assuming the Z-axis to be the direction of (parallel) projection and the quadric
given in the camera coordinate system. As it was explained already, surface
profiles parallel to the X/Y -plane can be computed from the phase image. The
profiles have constant depth values resulting in X̃ = (X,Y, Z0, 1)T . Equation (3)
will then transform into

CT [X̃]2|Z=Z0
=

(C1, C2, C4, C3Z0 + C7, C5Z0 + C8, C6Z
2
0 + C9Z0 + C10)(X2, XY, Y 2, X, Y, 1)T

⇒ CT [X̃]2|Z=Z0
= CTZ0[x̃]2 = cT [x̃]2 = 0 ,where x̃ = (X,Y, 1)T .

(4)
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Surface profiles of a quadric, as an intersection with a plane parallel to the image
plane, will project onto the image plane as conics. The following homogeneous
equation holds:

c ∼ ZT0 C . (5)

Here, the sign ∼ means equality up to a non zero scale factor. The 10×6 matrix
Z0, as a function of Z0, plays the role of a projection matrix.

Points in the i-th camera coordinates system X̃i are related to world coordi-
nates X̃ by the transformationTi: X̃i = TiX̃. Then, the general equation for the
projection of a quadric surface onto the j-th level curve in image i, corresponding
to the depth Zi,j

0 , is:

ci,j ∼ (Zi,j0 )T ([Ti]2)−T C . (6)

As it was stated in equation (1) the transformation is a simple rotation.
Hence, [Ti]2 and its inverse ([Ti]2)−1 exhibit a block-diagonal structure:
diag( ([Ti]2)−1 ) = ( ([Ri]2)−1, (Ri)−1, 1 ). The individual blocks of the trans-
formation matrix can be written explicitly as: ([Ri]2)−1 = (ri1, . . . , ri6) and
(Ri)−1 = (ri7, r

i
8, r

i
9). Now, equation (6) can be separated into quadratic, lin-

ear and constant terms:

(ri1, r
i
2, r

i
4)
T C2 = λi ci,j2 , (7)

Zi,j
0 (ri3, r

i
5)
T C2 + (ri7, r

i
8)
T C1 = λi ci,j1 , (8)

Zi,j
0

2
(ri6)

T C2 + Zi,j
0 (ri9)

T C1 + C0 = λi ci,j0 . (9)

The λi is a scaling factor which is constant for all the different profiles j in
one image i. This is because the quadratic term does not change for different
depth Zi,j

0 , see (7). Assumed that two conics ci,1 and ci,2 have been computed
from the phase image. After normalization by the norm |ci,j2 | it holds: ci,12 = ci,22 .

6 Recovery of the Quadric

6.1 Calculating the Quadratic Term

According to (7) one level curve in each image provides six equations in seven
parameters (six in C2 and, for example, one for λ1 while setting λ2 = 1). Fur-
thermore, the matrix (r11, r

1
2, r

1
4, r

2
1, r

2
2, r

2
4) is rank deficient. Hence, not enough

constraints for the calculation of C2 are provided. Fortunately, more than one
level curve in each phase image can be computed. Taking the difference in (8)
for two different level curves yields:

(ri3, r
i
5)
T C2 =

λi

(Zi,1
0 − Zi,2

0 )
(ci,11 − ci,21 ) = δi Δci1 . (10)
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As the difference in depth (Zi,1
0 − Zi,2

0 ) is not known a new scaling factor δi is
introduced. Combining (7) and (10) in a single system yields:⎛⎜⎜⎝

(r11, r
1
2, r

1
4)
T −c1,12 03 03 03

(r13, r15)T 02 −Δc1 02 02
(r21, r

2
2, r

2
4)
T 03 03 −c2,12 03

(r23, r25)T 02 02 02 −Δc2

⎞⎟⎟⎠
⎛⎜⎜⎜⎜⎝
C2

λ1

δ1

λ2

δ2

⎞⎟⎟⎟⎟⎠ = 010 . (11)

Writing the above equation shortly as: My = (Mr,Mc)y = 0. The solution
vector y is the null space of the matrix M. Therefore, the rank of M has to be
investigated in order to categorize the solution in y.

6.2 General Solution and Degeneracy

General Quadrics By general quadric it is understood that the matrix Q has
full rank, i.e. the quadric is a sphere or a hyperboloid of one sheet (up to any
projective transformation). In this case the quadratic vectors ci,j2 do not vanish.
Furthermore, assuming the Δci1 not to be both zero. Then, it can be proven that
the matrix M has rank 9 and, what is important for a unique solution in C2,
Mr has rank 6. The solution in y is unique and a unique solution in C and all
the depth Zi,j

0 can be derived as well (which will be shown in the next section).

General Quadrics Viewed from Principal Axes If the quadric is viewed
from a principal axis, the elements C3 and C5 in equation (4) are zero. Therefore,
Δci1 is a zero vector and two distinct level curves ci,1 and ci,2 differ only in the
last element ci,j0 . Assuming that both images are taken from principal axes. Then,
both columns in M containing Δci1 can be discarded resulting in a 8 element
solution vector yT = (CT

2 , λ
1, λ2). Then, it can be proven that M has rank

7 and a unique solution in y exists. But, as (δ1, δ2) can not be calculated the
depths Zi,j

0 can be derived only up to a scalar factor. This implies that the shape
of the quadric can be determined up to a scalar factor too. This is, for example,
the case if the quadric is a sphere: all spheres with the same origin but arbitrary
radius will result in identical phase images. At least one viewing direction must
not be a principal axis in order to uniquely determine the quadric.

Degenerated Quadrics A quadric is called degenerated if the rank of Q is
three or less. Quadrics of rank three are cones or all different sorts of cylinders
(elliptic, hyperbolic or parabolic). Looking onto a cylinder from a direction nor-
mal to its major axis, level curves are pairs of lines, i.e. a degenerated conics. If
all viewing directions, two or more, are such that the resulting level curves are
degenerated, then the shape of the quadric can not be determined.

6.3 Calculating the Linear and Constant Term

The scheme for the calculation of the linear term is quite similar to that for the
calculation of the quadratic term. It can been seen, that using (8) for one level
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curve each in two images provides only four equations in five unknowns. Because
of (10), considering more than one level curve will not help to calculate C1. So,
the difference in (9) for two different level curves is taken which yields:

CT
2 r

i
6 (Zi,1

0 + Zi,2
0 ) + CT

1 r
i
9 = δi Δci0 . (12)

Combining equation (8) and (12) for two views yields:⎛⎜⎜⎝
2(r17, r

1
8)
T (r13, r

1
5)
TC2 0

(r19)T (r16)TC2 0
2(r27, r

2
8)
T 0 (r23, r

2
5)
TC2

(r29)
T 0 (r26)

TC2

⎞⎟⎟⎠
⎛⎝ 1C
Z1,1
0 + Z1,2

0

Z2,1
0 + Z2,2

0

⎞⎠ =

⎛⎜⎜⎝
λ1(c1,11 + c1,21 )

δ1Δc10
λ2(c2,11 + c2,21 )

δ2Δc20

⎞⎟⎟⎠ .

(13)
The system provides six equations for five unknowns. Generally, the matrix has
rank five and a unique solution exists. But, as it was shown previously, the situa-
tion is different if viewing directions are parallel to principal axes of the quadric.
In this case the δi can not be determined in (11) and the entry (ri3, ri5)T C2 is
identical to the zero vector. Thus, the corresponding column and equation line
has to be discarded, and the depth Zi,1

0 + Zi,2
0 can not be calculated. As the

matrix (r17, r
1
8, r

2
7, r

2
8) has rank three, there are in any cases enough independent

equations for unique solution in C1.
If at least one viewing direction i is not parallel to a principal axis, the

δi can be calculated in (11) followed by the calculation of Zi,1
0 + Zi,2

0 in (13).
Knowing the depths Zi,j

0 the constant term C0 can be derived from (9). In the
case the second viewing direction is a principal axis there exist two solutions in
the depths Z2,j

0 .
If both viewing directions are principal axes the depths Zi,j

0 are functions of
the unknown coefficients C0 (including a twofold ambiguity).

7 Reconstruction Based on Level Curves

The proof, presented in section 6, is of constructive type. Hence, it describes
a direct algorithm for the computation of a quadric based on two or more level
curves computed in each of both phase images. We carried out synthetic exper-
iments and by this means the proof could be verified.

But, in practice, we encountered two problems. First, the computation of
the level curves is not accurate enough. This is due to image noise and to the
fact that the required area of valid phase information can be quite small (see
the cylinder in figure 2). The second problem is the limitation of the scaled
orthographic projection model. This goes along with difficulties in the estimation
of the average depth for equation (1), which is sometimes not accurate enough
for a precise reconstruction of the quadric.

8 Reconstruction Using Phase Images

Instead of the above outlined direct reconstruction scheme based on few level
curves we favor an indirect scheme which takes into account the complete phase
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Table 1. Numerical reconstruction results: the sphere is recovered quite accu-
rately (Using only phase information, the sphere can be recovered only up to
scale; therefore, the global scaling of the principal axes is of no importance.). Us-
ing solely phase information the cylinder is approximated by an ellipsoid; using
phase information plus outlines it is approximated by a hyperboloid (indicated
by the j =

√−1). The z-component of the origin is dropped, because it has no
meaning here

Origin Principal axes
Sphere

Phase image -3.27 , -0.25 , 2.58 2.20 , 2.13 , 2.10

Phase image + outlines -3.42 , -0.27 , 2.76 1.93 , 1.90 , 1.89

Cylinder

Phase image -3.50 , -0.66 , — 2.1 , 2.5 , 5.0

Phase image + outlines -3.44 , -0.26 , — 2.13 , 1.83 , 5.72j

image. A similar idea is presented in [9]: the optimal surface reconstruction has
to produce phase images very close to the actual captured phase images. A global
optimization scheme produces accurate results because all available phase values
are used and a general camera model can be applied.

Denoting by Φi the original phase image and by Φ̂i(Ĉ,Pi) the phase image
generated by the estimated quadric Ĉ. The projection matrix is Pi, which can
be a general perspective projection matrix. Assuming perfect data the quadric Ĉ
is identical to the real underlying quadric C if Φ̂i = Φi. A suitable error function
can be stated as follows:

e =
∑
i=1,2

(
Φ̂i(Ĉ,Pi)− Φi

)2
(14)

There is a one-to-one equivalence between the set of level curves and the phase
image: the phase image uniquely defines the level curves, and a complete set of
level curves uniquely defines the phase image. Hence, an optimization based di-
rectly on the phase images should converge to the unique solution of the quadric.
As initial solution an ellipsoid is computed from the centroids and the general
shape of the regions, where phase information is available in both images. The
optimization is carried out using the Levenberg-Marquardt algorithm and the
numerical results are shown in table 8. The shape of the sphere is estimated with
2.5% accuracy (maximum of the relative error of the principal axes). It has to
be stressed that the cylinder is quite short; therefore, it is not surprising that
the estimation of the shape is poor.
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Fig. 2. A pair of polarization images showing a billiard ball placed on top of
a cylinder: intensity images in the upper line and phase images in the lower
line (The phase images are zoomed, to better perceive the phase information.).
The gray-values in the phase image encode the orientation of polarized light:
the range of orientation angles [−π

2 ,
π
2 ] maps onto the range [0, 1] of gray-values,

where the zero angle encodes the vertical direction

9 Reconstruction Using Phase Images
and Apparent Contours

As it is shown for example in [2], the dualQ−1 of the quadricQ projects onto the
dual of the apparent contour C−1out as C−1out ∼ PQ−1PT . The condition for image
points xout to lie on the conic outline defined by the vector cout is cTout[x̃out]

2 = 0.
The error function incorporating the information of the phase image and the
apparent contours is:

e =
∑
i=1,2

(
Φ̂i(Ĉ,Pi)− Φi

)2
+ λ

∑
i=1,2

∑
∀xout,i

(
ĉTout,i[x̃out,i]

2
)2

, (15)

where λ is a weighting factor which has to be chosen appropriately. It has been
observed that in general the convergence of the optimization is fast. In table 8 the
results are presented. It can be seen that using both phase images and apparent
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Fig. 3. Visualization of the reconstruction result. The origin and the orientation
of the reference calibration grid are indicated

contours the reconstruction is accurate. The principal axes of the sphere are
estimated with an accuracy of 1% (maximum of the relative error of the principal
axes). Even though the numerical results for the cylinder seem not to be accurate,
the visualization of the reconstructed part, see figure 3, shows the cylinder like
shape.

10 Conclusion

A method for the reconstruction of quadrics using polarization imaging has been
presented. It was proven that, in general, already two views provide a unique
solution. The method can be applied in cases where the contour generators of
the quadric are not or only partially visible in the images, for example due to
occlusion: in these cases purely intensity based imaging algorithm would fail.
Using both polarization information and apparent contours, in general, a unique
solution in the quadric can be derived. A global optimization scheme has been
presented, producing accurate reconstruction results.

The method can be extended to implicit surfaces of a degree greater than
two. Using more than just two images, it can be expected that more complicated
shapes can be recovered accurately.
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Abstract. In pattern recognition there is a variety of applications where
the patterns are classified using edit distance. In this paper we present
some results comparing the use of tree and string edit distances in a
handwritten character recognition task. Some experiments with differ-
ent number of classes and of classifiers are done.

Keywords: nearest neighbour, handwritten character recognition, edit-
distance; metric space.

1 Introduction

One of the most useful and simplest techniques in Statistical Pattern Recogni-
tion that can be used in a wide range of applications of computer science and
technology is the Nearest Neighbour (NN) rule. In this rule, an input pattern is
assigned to the class of the nearest prototype pattern. Many times, each class is
a set of prototype patterns and a k-NN rule is used: the input pattern is assigned
to the class containing the larger fraction of the k nearest prototypes.

A variety of applications can be developed using the NN rule. Some of
them are directly related with Pattern Recognition (as the handwritten recog-
nition task), but also in data compression [1], data mining [2] or information
retrieval [3].

When patterns may be represented as strings or trees, conventional methods
based on a vector representation can not be used. In this case methods that
only use a distance (and the metric properties of the distance) and an adequate
data structure can be used to perform the classification. Some algorithms as
AESA [4] and LAESA are focused on the reduction in the number of distance com-
putations [5]1. Others such as Fukunaga [6] are focused on the reduction of the
temporal overhead using a tree structure. Recently, a new algorithm based on
� Work partially supported by the spanish CICYT TIC2000-1599-C02 and TIC2000-
1703-CO3-02.

1 These methods are adequate when the computational cost of the distance is very
expensive.

F.J. Perales et al. (Eds.): IbPRIA 2003, LNCS 2652, pp. 821–828, 2003.
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approaching spatially the searched objects and called sa-tree (spatial approxi-
mation tree) was proposed [7].

Given a particular representation, the edit distance between two objects is
defined as the number of insertions, deletions and substitutions needed to trans-
form one representation into the other. In the case of a string representation,
insertions, deletions and substitutions are made on the individual symbols of the
strings. In the case of a tree representation, insertions, deletions and substitu-
tions are made on the nodes of the tree.

In previous works as [8] the experiments were done using digits (10 classes).
In this work, some additional experiments are done using characters (26 classes)
to have a better knowledge of the behaviour of two fast search algorithms (AESA
and LAESA) when two different (string and tree) edit distances are used in a hand-
written character recognition task.

2 String and Tree Representation of Characters

Two different representations of handwritten characters are done. In both cases,
the mathematical morphology opening transformation are used to avoid noisy
pixel and to smooth the shapes of characters.

2.1 Tree Code

The Nagendraprasad-Wang-Gupta thinning algorithm modified as in [9] was
applied (figure 1b). The result image is transformed into a tree representation
using the following steps:

1. The first up and left pixel, r, is marked and assigned the tree root with
a special label “0”. Two empty pixel sets C and G and created.

2. C ⇐ {r}
3. If C = Ø go to the end (step 8).
4. For all elements t ∈ C collect in set G every unmarked pixels into the window

(size 11) centred in the pixel associate to t (figure 1c). Follow connected pixels
until a below criteria was true:
(a) the branch has the maximum fixed parameter size (see figure 1b);
(b) the pixel has no unmarked neighbours (terminal pixel);
(c) the pixel has more than one unmarked neighbour (intersection pixel).

5. Create the new branches: branch(t, g) : g ∈ G. The label is assigned to
the branch depending on the final pixel, g, relative position to the starting
one2, t.

6. C ⇐ G and erase all elements from G.
7. Go to step 3.
8. End.

A complete process showing this feature extraction with character ’F’ is pre-
sented in figure 1.
2 The 2D space is divided in 8 regions (figure 2).
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Fig. 1. Example of character “F” (a) original image; (b) thinned image; (c) tree
labelling process; (d) final labelled as a tree; (e) problem image to extract the
contour string; (f) image right formed to extract contour string; (g) coded string
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Fig. 2. (a) 2D labelled regions; (b) example to get next candidates to create
branches in structured tree extraction

2.2 String Code

The algorithm to extract the coded string from the image is detailed below:

1. Assign i = 1.
2. The mathematical morphology opening transformation with i pixels was

applied and the algorithm to extract the external contour of the characters
is used to obtain the patterns from the images.

3. If the new image contains pixels with 3 o more neighbours, as in figure 1e),
the algorithm will have problems to follow the contour, so do i = i+ 1 and
go to step 2.

4. The first black pixel is searched from the left-to-right scan starting from
the top. From this pixel going to the right, the border of the character is
followed until this first pixel is reached again. During this route the algorithm
builds a string with the directions that it follows to find the next pixel of
the border3.

3 There are eight neighbouring pixels that can be found after a given pixel (figure 1f
and 1g), therefore, only eight symbols can appear in this chain-code (see figure 2a).



Some Results about the Use of Tree/String Edit Distances 825

3 Edit Distances

3.1 The Tree Edit Distance

A general tree edit distance is described in [10]. The distance between two or-
dered trees is considered to be the weighted number of edit operations (insertion,
deletion and substitution) to transform one tree into another.

A dynamic programming algorithm is implemented to compute the distance
between two trees, T1 and T2 whose complexity is in space O (|T1| × |T2|) and
time O(|T1| × |T2| ×min(depth(T1), leaves(T1))×min(depth(T2), leaves(T2))).

Each basic operation has an associated weight. Substitution weights wij are
min (|i− j| , 8− |i− j|). Both insertion and deletion have a weight wI = wD = 2.
This distance is finally normalised with the sum of the number of nodes in each
tree.

3.2 The String Edit Distance

The string edit distance is defined as the minimum-cost set of transformations
to turn a string into the other. The basic transformations are deletion, insertion
and substitution of a single symbol in the string. The cost values are equal as
those used in tree edit distance. The string edit distance can be computed in
time in O(|x|, |y|) using a standard dynamic-programming technique [11]. As in
the tree edit distance, this final measure is normalised, in this case by the sum
of the lengths of the strings.

4 Experiments

Two fast approximating-eliminating search algorithms have been used in this
work: AESA and LAESA. These algorithms has been applied in a handwritten char-
acter recognition task using the NIST SPECIAL DATABASE 3 of the National
Institute of Standards and Technology. Some results using only digits from this
data set have been presented in a recent work [8]. In this work new experiments
are made using the upper handwritten characters. The increasing-size training
samples for the experiments were built by taking 500 writers and selecting the
samples randomly. The figures show the results averaged for all combinations.

A first set of experiments using AESA were made to compare the average
error rate between the string and the tree edit distances. In these experiments
(see figure 3), different number of classes have been used: one set with 26 classes
representing all the alphabet, and two different sets of 10 classes (the first 10
characters of the alphabet and the 10 more frequently used characters). In all
the cases the use of strings allow to have a better accuracy in the recognition
task. However, as figure 4 shows, the average number of distance computations
is higher that in the tree representation. Moreover, the computation of the string
distance is more expensive than the tree edit distance in average, because the
number of symbols in the strings is higher than the number of nodes in the tree.
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Fig. 4. Results applying AESA and LAESA algorithms as a function of looseness
using 5200 prototypes belonging to 26 character classes: (a) average error rate;
(b) average number of distance computations

The application of the AESA and LAESA algorithms in previous works, as [12]
and [13], shows that the “looseness” H in the triangle inequality can be used to
reduce the number of distance computations4.
4 Given a representation space E, the looseness is defined for each x, y, z ∈ E as
h(x, y, z) = d(x, y) + d(y, z)− d(x, z). If a histogram of the distribution of h(x, y, z)
is computed, this histogram can be used to estimate of the probability that the
triangle inequality is satisfied with a looseness smaller than H [14].
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The performance of both algorithms is compared evaluating the average er-
ror rate and the average number of distance computations as a function of the
“looseness” 5 (see figure 4). This experiment reveals that the “looseness” is not
a critical parameter when the tree representation is used. For any value of H
between 0 and 0.2, the error rate in the classification and the average number of
distance computations have a slight variation for the tree representation. How-
ever, in the case of the string representation there is a large variation. It will be
necessary to use a higher value of H to reduce significantly the average number
of distance computations in the tree case. The problem is that in this case the
average error increases dramatically.

The histograms of the looseness can help to understand the last statement6.
The figure 5 shows that the smallest looseness is observed for strings. For this
reason, the error rate increases for smaller values of H for strings than for trees.

5 Conclusions

In this paper we have done some experiments comparing the performance and
the accuracy of a handwritten recognition task using two different representa-
tions. Our experiments show that the tree edit distance is a suitable choice as
opossed to the string edit distance. Although the error rate is higher for the
tree representation when no looseness is used, this difference dissapears when
the looseness is applied to speed up the classification.

5 The size of the set of base prototypes, B is selected to minimise the number of
computed distances per sample, so is 70 and 140 for trees and strings, respectively.

6 The triangle inequality is almost always satisfied for both representations and the
distribution is reasonably normal-like.
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Abstract. Retrieval and recognition of symbols in graphic images re-
quires good symbol representation, able to identify those features pro-
viding the most relevant information about shape and visual appearance
of symbols. In this work we have introduced Ridgelets transform as it
permits to detect lineal singularities in an image, which are the most
important source of information in graphic images. Sparsity is one of the
most important properties of Ridgelets transform, which will permit us
to extract a set of descriptors based on the angle and the distance to
the origin of every straight line. We show how this representation can
be normalized to make it invariant on traslation, rotation and scaling of
the symbol. We present some preliminary results showing the usefulness
of this representation with a set of architectural symbols.

1 Introduction

Symbol representation is the basis for a lot of applications working with graphic
images, such as indexation and content-based retrieval in databases of docu-
ment images, graphic web navigation or symbol recognition. As graphic images
are basically composed of lines, any symbol representation should be based on
information about lines. Vectorization[8] has usually been used to extract lines
in graphic images. These methods usually work only with local information and
are very noise sensitive and dependent on accurate tuning of a set of parame-
ters. As different symbols have different number of lines, it is difficult to find an
homogeneous representation easy to compare and to use in retrieval operations.
In this work we explore another way to identify and represent line information
applying a global transformation - Ridgelets transform - to the image which will
provide an homogenous representation for all symbols. Similar approaches have
been recently reported using the Hough[5] and the Radon[7, 9] transforms.

From a visual image analysis we see that graphic symbols use to be very
structured, with only few particular features - lines and arcs - allowing to de-
scribe them. In addition, if we consider such lines being of zero-width, we can
� Supported by DURSI. Generalitat de Catalunya.
�� Partially supported by CICYT TIC2000-0382, Spain.
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observe that this kind of images are zero almost everywhere, except for a small
set corresponding to lines. So, all relevant information is concentrated in a small
set of “singularities” where the image is non-zero, usually one in binary images.
Therefore, this global transformation should convert these singularities in orig-
inal images into characteristic points in the transformed image. In this way, we
will introduce Ridgelets transform[2, 3] to extract a set of features describing
symbol lines. This transform belongs to the non-separated wavelet family and
it is specially suited to detect linear singularities in two dimensional spaces.
Ridgelets transform -better than Radon and Hough transform- localizes straight
lines in any orientation and distance to the origin. Then, we will use the Ridgelets
coefficients to to build up a feature vector representing the longest symbol lines.

We briefly resume Ridgelets transform and its properties in section 2. We
discuss the choice of the parameters and how we extract the set of features
representing the symbols. Then, in section 3, we will present a set of invariant
features built up from the original set of features. Finally, in sections 4 and 5,
we discuss some experiments and state some conclusions.

2 Ridgelets Transform

The Ridgelets transform was first defined by Candès[2]. It is a family of non-
separated wavelets defined as follows. Let ψ be a wavelet. For each positive a,
any t ∈ R and θ ∈ [0, 2π), we define ψa,t,θ : R2 → R

2 as:

ψa,t,θ(x, y) = a−1/2ψ((x cos θ + y sin θ − t)/a).

This function is constant along lines x cos θ + sin θ = t and transverse to the
“ridges” - lines -, it is a wavelet. Then, the continuous Ridgelets transform of
a function f is defined as:

Rfψ(a, t, θ) =
∫

f(x, y)ψ̄a,t,θ(x, y)dxdy (1)

This transform has good properties such as coefficient sparsity and the ex-
istence of orthonormal basis[3]. Moreover, higher coefficients will be concentred
around the parameters θ and t corresponding to longer lines. Thus, sparsity per-
mits us to localize and to separate line singularities into the parameter space.
This is the main property that distinguish this wavelet from usual separate
wavelets (Haar, Daubechies, Meyer,. . . )[6].

We compute the Ridgelets coefficients using a modified Flesia et al.
algorithm[4]. Essentially, Ridgelets coefficients of an image f(x, y) are Wavelets
coefficients of f ’s Radon transform, Rf(t, θ)[1]. In the original algorithm, the
dimension of the space parameter corresponding to the orthonormal Ridgelets
is five, due to the two dimensional wavelets decomposition. However, in our im-
plementation, our dimension of the space parameter is only three: the scale a,
and the line parameters t and θ. The reason is that we only do, for each angle
θ, a 1D-wavelet decomposition in t parameter.
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2.1 Feature Extraction

We want to represent linear symbols by the parameters of their longest lines.
We will use the Ridgelets decomposition to extract the position of lines, (t, θ))
and the Radon transform to extract the length of the lines. Higher coefficients in
the Ridgelets transform will denote the position of the longest lines. The ability
to accurately detect the longest lines depends on two parameters: the scale a
used to compute the Ridgelets transform, and the threshold applied to select
the highest coefficients. At each scale, only singularities with value above the
threshold value will be taken into account. Therefore, the threshold value must
be independent to scale.

As we want to detect lines whose length is longer than some pre-fixed value,
we propose to define the threshold value as Lminα, where Lmin is the minimal
line length and α = 0.65 is a real value, obtained experimentally from the anal-
ysis, at different scales, of the response of the theoretical Ridgelets transform to
a line of length 1.

To choose a, the scale parameter, we have used the Radon transform prop-
erties explained in section 3 and the analytic expression of the square Radon
transform. In this way, we are able to compute the continuous Radon trans-
form of any gray image, with such precision as we want. This continuous Radon
transform permits us to study with precision the a’s choice. We have found,
experimentally, that scale parameters ranging from a = 1 to a = 8 are the
best suited for our problem. Lower values for a are sensible to the square Radon
transform singularities[1], and do not detect lines in arbitrary directions. In other
words, small scales see pixels but not the drawing that they compose. Higher
values loose precision to localize lines.

Thus, we compute the Ridglets transform for each scale, having, for each
value of a, an image of Ridgelets coefficients. We apply the threshold to these
images and add them, using the resulting image as a mask. Because of Ridgelets
sparsity, it is composed of clouds of points that are dense around lines’ position.
Moreover, if we haven’t chosen high a values, these clouds will be separated.

Finally, we must group each cloud, applying morphological operations to get
a blob for every line. Then, we can extract the gravidity center of each blob,
(tn, θn), which will correspond to the position of each line. The number of blobs
tells us how many line are in the image. Vertical lines present some difficulties.
They have their Ridgelets coefficients near 0 and π angle. (t, θ) and (−t, θ + π)
represent the same straight line. According to this symmetry, we extend the
Radon transform to angles [−π/2, 3π/2). In that way we duplicate blobs near 0
and π keeping lines with angle in [0, π) and, therefore, unifying representation
for vertical lines.

Figure 2.1 shows an example of this feature extraction procedure. We can
see the original image with its main lines, the Radon transform of this image,
the Ridgelet transform at scale 4, and the mask obtained after applying the
threshold to the Ridgelets coefficient. We can see the blobs corresponding to line
locations.
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Fig. 1. Feature extraction using the Ridgelets transform

Using this procedure, for a given symbol s, we can just build up a feature
vector, whose dimension, nlin denote the number of lines detected and where
each component is a structure with three fields: t and θ Let us denote ts(n) and
θs(n) the position and angle of the n-th line of the symbol s.

3 Similarity Invariance

If we want to recognize similar symbols, we need feature vectors invariant to
affine transformations (traslation, rotation and scaling). As ridgelets coefficients
are the wavelets coefficients of the image’s Radon transform, we can build up
these similarity invariant vectors using some properties of the Radon transform:

– Rotation Let Gα be the rotation of angle α, which is applied to an image
f(x):

R (f ◦Gα(x)) (t, θ) = Rf(t, θ + α).

– Shift Let Tv(x) = x+ v, v ∈ R
2, be the traslation of an image:

R (f ◦ Tv(x)) (t, θ) = Rf(t+ t′(θ), θ),

where t′(θ) = v1 cos(θ) + v2 sin(θ).
– Scale Let Ha(x) = ax, a > 0, be the scaling of an image:

R (f ◦Ha(x)) (t, θ) =
1
a
Rf(at, θ),

Suppose we have detected nlin representative lines in a symbol s. We can
define the gravidity center of s, glcs, as the point:

glcs =
1

nlin

nlin∑
n=1

ts(n)eiθs(n) (2)
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If we displace s by a vector v = (vx, vy), we get a new symbol s̃ whose gra-
vidity center, glcs̃, can be computed using the traslation property of the Radon
transform:

glcs̃ = glcs +
1

nlin

nlin∑
n=1

(vx cos θs(n) + vy sin θs(n))eiθs(n) (3)

Given a traslated symbol s̃ and making glcs̃ = 0 we can find an easy 2× 2 linear
system whose solution is vector v, which will usually be (but not always) the
vector displacement. Therefore, we can correct shift effects by subtracting to
each line the term vx cos θs(n)− vy sin θs(n).

We will correct rotation by computing the inertia angle, α from the feature
vector. We compute this angle by using the usual moments formula :

α =
1
2

arctan(
2μ11

μ20 − μ02
) (4)

For each line we take two points in computing the inertia angle: ts(n)eiθs(n) and
(ts(n)+ iλs(n))eiθs(n), the middle point and one ending point. This formula give
us an angle, α ∈ [0, π), which permit us to correct the orientation by subtracting
α, modulus π, to each line, using the rotation property of the Radon transform.
However, we can’t distinguish among rotations which change symbol sense (α
and α + π). In some cases, we can solve it by multiplying ts by the mean ts’s
sign.

Finally, we get scale invariance from the scaling property of the Radon trans-
form. The Second order moments compose a symmetric, semi-defined positive
matrix. Computing its largest eigenvalues we can estimate the scale factor. Using
the square root of the largest eigenvalue we can correct scale effects.

4 Experiments and Discussion

We have used a set of seven different linear symbols to test the validity of the
Ridgelets transform to represent them. Figure 2 shows these symbols and the
lines detected by the Ridgelets transform that will describe every symbol. We
can see how all lines, except very short lines, have been detected with position
and length close to the original ones. We could distinguish two different groups
of symbols. The first one is composed of figures containing a rectangle and some
linear structures added to it: symbols 1,2,3 and 4. The second group is a collection
of arrow symbols. Differences among the elements on this group are minima.

In order to measure the power of Ridgelet transform in capturing symbol
similarities and differences we have defined a distance d. Let us denote sl our
symbol collection, l = 1, . . . , 7, and sl(j) the j-th line’s of symbol l. The Radon
transform’s parameter space is R×[0, 2π) but we will only use half space, R×[0, π)
because points (t, θ) and (−t, θ+π) have the same Radon transform value. This
property originates some problems for lines near the horizontal because points
(t, 0) and (−t, 0) correspond to the same line. This fact can be modelled using
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1) 2) 3) 4) 5) 6) 7)

Fig. 2. Symbols used in our experiments and their main lines

a Moëbius strip and defining the distance d taking into account the geometry of
the Moëbius strip. As a preliminary approach we project each point of the Radon
parameter space into the Moëbius strip using a parametrization of the Moëbius
strip, φ, sn(j) = φ(tn(j), θn(j)). Then we define a “non-symmetric distance”
between two symbols d(n,m) taking the distance in the 3-D space as:

d(n,m) =
1
Nm

Nm∑
j=1

min
i=1,...,Nn

{‖sn(i)− sm(j)‖} (5)

where Nl is the number of representative lines for symbol sl. However, if we want
to test similarity between symbols, we need a symmetric distance D, defined as
D(sn, sm) = 1

2 (dn,m + dm,n):
Figure 3 shows the matrix of symmetric distances among all the symbols.

This distances have been normalized in the range [0, 100]. We can see how the
symbols in group one have lower distances among them than with symbols in
group two. This is due to the fact that all symbols in this group share a common
structure around a rectangle. Inside this group of symbols, the lowest distance is
between symbols 2 and 4, which corresponds to the visual evidence of similarity
between them. We also observe how distances among symbols in group 2 are the
lowest, corresponding to the fact that their similar appearance is very similar.

0.00 21.48 18.08 16.31 62.74 63.81 63.74

21.48 0.00 28.63 5.29 100.00 95.27 95.24

18.08 28.63 0.00 21.16 72.21 66.15 66.28

16.31 5.29 21.16 0.00 77.43 69.58 69.56

62.74 100.00 72.21 77.43 0.00 2.00 1.99

63.81 95.27 66.15 69.58 2.00 0.00 0.03

63.74 95.24 66.28 69.56 1.99 0.03 0.00

Fig. 3. Distance matrix between symbols
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Fig. 4. Ridgelets coefficients of symbol 1 under transformations. (a) Normal-
ized coefficients for rotation and traslation. (b) Distribution of coefficients for
deformed images

To test the invariance of the features defined in section 3, we have built
200 images of each symbol using random rotations and traslations. For each
symbol, we have plotted all images features before and after normalization. In
figure 4(a) we can see the result for symbol 1. After normalization, feature values
are grouped around normalized line location. The variability in the parameter θ
is due to the fact that we have to take one ending line point when computing the
inertia angle. However, if we only take the middle point of every line, we could
not compute the inertia angle when we only have two lines in the symbol. In
figure 4(b) we show the behavior of ridgelet coefficients under shape distortions.
We have generated 100 distorted images of symbol 1 -figure 5(b)- where we see
how features have grouped around symbol model features showing the robustness
to symbol distortions.

An important factor which can introduce some distortions in the invariant
representation of a symbol is the number of lines detected by the feature ex-
traction procedure. In some cases such as arrow symbols, short lines near the
threshold value cant’t be detected in some orientations due to discretization
problems, as we are working with one-pixel width lines. Then, as we can see in
figure 5 normalized representation of the symbol can be distorted. This problem
should disappear when working with wider lines.

5 Conclusions and Future Work

Having a good representation of images, able to capture the most relevant infor-
mation, is the basis for any application concerning matching, retrieval, browsing
or recognition. In this work we have explored the possibilities of the Ridgelets
transform to get such representation in images of lineal graphic symbols.

We have seen that the Ridgelets transform is a global transform where higher
coefficients have a clear geometric sense that permit us to accurately detect and
localize lines. As a global transform, it presents robustness to distortion and
noise, except in cases where lines are short (with respect to image size) or thin
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a) b)

Fig. 5. (a) Symbol 7’s Normalized representation. (b) Some symbol 1’s distor-
tions

(one or two pixels) and then the coefficients value is near the threshold value.
We have studied the effect of the scale parameter in feature extraction and we
propose to use scales in the range [1, 8]. We have also defined a set of invariant
features, computed from the properties of the Radon transform, and a distance to
test the ability of this representation to capture the similarity between symbols.

These results must be taken as a preliminary study in the way of getting
a general representation model for symbols. We have seen how the application
of the distance give results which correspond with our visual evidence. However
further studies must be carried on taking a wider set of symbols and images
and testing different distance definitions. Moreover, we also need to study the
effects of noise and distortion to number of lines detected in order to improve
the problems in the normalization of the feature vectors.
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Abstract. The success of the Internet has filled the net with lots of
symbolic representations of music works. Two kinds of problems arise to
the user: content-based search of music and the identification of similar
works. Both belong to the pattern recognition domain. In contrast to
most of the existing approaches, we pose a non-linear representation of
a melody, based on trees that express the metric and rhythm of music
in a natural way. This representation provide a number of advantages:
more musical significance, more compact representation and others. Here
we have worked on the comparison of melodies for identification.

Keywords: Multimedia applications, computer music, structural recog-
nition.

1 Introduction

There are lots of symbolic representations of music works in the Internet (for
example, in standard MIDI file format). Two kinds of problems arise to the
user: content-based search of music and the identification of similar works. Both
belong to the pattern recognition domain. The applications range from the study
and analysis tasks in musicology to the detection of plagiarism, useful to protect
copyrights in the music record industry.

Traditionally music has been represented by means of a set of tuple strings,
where each tuple, in diverse ways, usually contains information on pitch, dura-
tion and onset time. Both the retrieval and the comparison have been tackled
with structural pattern matching techniques in strings [4]. There are some other
approaches, seldom applied, like the geometric one, which transforms the melody
into a plot obtained tracing a line between the successive notes in the staves.
This way, the melody comparison problem is converted into a geometric one [2].

In this paper, we use a nonlinear representation of melody: by means of trees
that express the metric and rhythm of music in a natural way. The approach
to tree construction is based on the fact that the different music notation fig-
ures are designed on a logarithmic scale: a whole note lasts twice a half note,
whose length is the double of a quarter note, etc. This representation provides
us with a richness of possibilities that the strings never will: implicit description
of rhythm and more musical meaning and automatic emphasising of relevant
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notes, for example. Moreover, the way in which a string representation is coded
strongly conditions the outcome of the string processing algorithms [6].

In this work, we have dealt with the comparison of melodic lines and com-
pared the performance to that with string representations. Although tree com-
parison algorithms have higher complexity than the existing methods for strings,
the results improve the ones in the same way using strings. This preliminary re-
sults open a promising new field for experimentation in a number of applications
on the symbolic representation of music.

Firstly, the method for tree construction is presented and how it deals with
the notation problems that may appear. Secondly, a procedure for tree pruning
and labelling is described in order to deal with the complexity above described.
Then, the method for comparison and the results are presented, and finally
conclusions are stated.

2 Tree Construction Method

As described above, the tree construction method is based on the logarithmic
relation among duration of the different figures. A sub-tree is assigned to each
measure, so the root of this sub-tree represents the length in time of the whole
measure. If just a whole note is found in the measure, the tree will consist of
just the root, but if there were two half notes, this node would split into two
children nodes. Thus, recursively, each node of the tree will split into two until
representing the notes actually found in a measure (see Fig. 1).

For the representation of a melody, each leaf node represents a note or silence.
Different kind of labels can be used to represent a note, but we have used five
of them: 1) the absolute pitch (the name and octave of each note); 2) the pitch
name (same as before but without octave); 3) the contour (three possible labels:
+1 if the pitch of the note is higher than that of the one before, −1 if is lower
and 0 if is the same); 4) the high-definition contour (same as before but also
including +2 and −2 if the pitch differences exceed ±4 semitones) [10]; and
5) intervals: the difference in semitones between a note and the one before.
Silences are represented with a special label. Each node has an implicit duration
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e e e e

h

q q

e e e e

x x x x

Fig. 1. Duration hierarchy
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Fig. 2. Simple example of tree construction

according to the level of the tree in which it appears. In addition to the duration
of the notes, the left to right ordering of the leaves also establish the time in the
measure in which they begin to play. Initially, only the leaf nodes will contain
a label value, but then a bottom-up propagation of these labels is performed to
fully label the tree nodes. The rules for this propagation will be described later.

An example of this scheme is presented in Fig. 2 with pitch labels. The left
child of the root has been splitted into two subtrees to represent the quarter
note C. This one lasts the time represented by the leaf node in which it is: one
beat in the measure. In order to represent the durations of the two eighth notes
it will be necessary to unfold one more level. The half note F onsets at the third
beat and, as it lasts two beats, its position is in the second level of the tree.

In some occasions the situation can be more complicated. For example, if the
duration of a note is greater than that of the half corresponding subdivision, like
happens for dotted or tied notes (see Fig. 3). In this situation, a note can not
be represented only by the complete subtree in which it onsets. It is well known
that the ear does not perceive in a very different way a whole C note from two
half C notes played one after the other, even more if the interpreter play them
legato [9]. Thus, when a note exceeds the proper duration, we will subdivide it in
order to complete the time of the note by means of nodes in sub-trees enough to
complete the duration of the note with smaller Also, tied notes, are represented
in the same way, breaking the tie in the tree representation. In Fig. 3 an example
of these situations is presented and how they are represented in this scheme.

Fig. 3. Tree representations of notes exceeding their notation length: dotted and
tied notes. Rounded leaves correspond to those notes. ‘S’ stands for “silence”



Tree-Structured Representation of Musical Information 841

Other music notation events, like other rhythm meters, non-binary struc-
tures, compound meters, adornment notes, trills, etc., can appear, but the de-
scribed method can be extended without difficulty to cope with all these situa-
tions [8].

Once each measure has been represented by a single sub-tree, joining all of
them is needed to build the tree for the complete melody. For this, a method
for grouping the sub-trees is required. Initially we could group them by adjacent
pairs, hierarchically, repeating this operation bottom-up with the new nodes until
a single tree is obtained. Nevertheless, trees would grow in height very quickly
this way and this would make the tree edit distance computation algorithms
very time consuming. We have chosen to build a tree with a root for the whole
melody and each measure is a child of the root (Fig. 4). Thus, the level of the tree
for the whole melody only grows in one with respect to the measure’s sub-tree.
This is like having a forest but linked to a common root node that represents
the whole melody.

Fig. 4. All the measures of a melody are represented by a single tree

3 Bottom-Up Propagation of Labels and Pruning

The tree edit distance algorithms need all the nodes to have a label [1]. We
will use a set of rules for the propagation of labels from the leaves to the root
according to musicology criteria (see below). The propagation of a label upwards
implies that the note in that node is more important than that of the sibling
node. The propagation criteria proposed here are based on the fact that, in
a melody, there are notes that contribute more than others to its identity.

In addition, the resulting trees can be very complex if the rhythmical struc-
ture does not agree exactly with the successive subdivisions of the binary tree,
for example in real-time sequenced MIDI files. This implies a greater time and
space overhead in the algorithms [1] and makes it more difficult to match equiv-
alent notes between two different interpretations of the same score. Our goal is
to represent melodies in a reduced format able to keep the main features of the
melody. For this, the trees need to be pruned.
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Fig. 5. One measure-melody and its tree representation with pitch labels (only
in the leaves now) before pruning and label propagation

If a maximum tree depth level is established, when a label is upgraded from
children that are below that level, then those children nodes are pruned in ad-
dition to the label propagation.

These are the propagation (and pruning when applicable) rules:

R1 Given a node with two children, if one of those children contains the same
label as the brother of the father node, the other child is promoted. Thus,
more melodic richness is represented with less tree depth.

R2 In case that all the children of a node have the same label, they are deleted
and its label is placed in the father node. Thus, two equal notes are equivalent
to just one with double duration (see [3] for justification).

R3 If one of the brothers is the result of applying R3 three or more times (it
had originally at least one eighth of the duration of the other brothers, then
the brother of greater original duration is chosen. Thus we avoid very short
notes (adornment notes) having more importance than longer notes1.

R4 When various nodes are equivalent in original duration or when promoting
a note implies losing the other, the label of the left node is upgraded.

R5 Silences never have greater precedence than notes.
R6 In case that there is only one child (either because of the tree construction

or by propagation) it is automatically upgraded.

We will illustrate how these rules perform in an example of a melody. In
Fig. 5-left one measure with some notes with different durations is presented,
and Fig. 5-right, shows the tree originally built for its representation.

In Fig. 6-left it can be observed how the propagation rules apply and prune
the tree. In the first half of the melody, the labels E and A ascend by the rule
R1. The second part shows how an adornment note is deleted by the application
of the rules. The resulting tree corresponds to the score displayed in Fig. 6-right,
that retains the perceptually important features of the melody. Once the tree
has been pruned, the labels are propagated upwards, applying the same rules,
without deleting nodes, until the roof in order to achieve a fully labelled tree.
1 the difference of one eighth of the duration has been established in an empirical way
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Fig. 6. Propagation of the leaf labels using the rules. The nodes into the rect-
angles disappear after pruning. The resulting melody is displayed in a score on
the right

4 Tree Edit Distance

We can define the edit distance between two trees like the minimum cost of
the sequence of operations that transforms a tree into the other [1]. The edit
operations are the same as those used in the string edition: deletion of a node,
insertion, and substitution of the label of a node. In the insertion, a new node is
added to the tree in a given point. The children of the node where the new node
is inserted will become children of the new node. In the deletion, the children of
the deleted node will become children of their previous grandfather node. The
more similar the structure of the trees are, the less operations of deletion and
insertion have to be done, and the smaller distance between them is achieved.

The deletion and insertion of nodes in a tree are not trivial matters, and it
is necessary to understand the musical meaning of those actions. The impor-
tant point is to note that the tree structure is closely related to the rhythmical
structure of the melody.

5 Experiments and Results

In our experiments the influence of different pitch representations on classifi-
cation rates has been explored. Also, the application of prune rules and label
propagation has been studied in relation with performance and error rates.

Three corpora made up with monophonic melodies have been used in our
tests (in all cases only 8 measures have been taken from the melody start):

Real: built from 110 MIDI files fetched from Internet, it has 12 different classes
(musical themes) from classic, jazz and pop/rock. The track containing the
melody and the initial measure have been manually selected.

Latin: a synthetic database built from latin jazz melodies previously normalised
which have been distorted with simulated human-made mistakes to obtain 3
more melodies of each. These melody distortions are based on small changes
in both the note onset time and small errors in the pitch (e.g. errors like
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Fig. 7. Classification times and errors with different representations: (left) evo-
lution of time and error rate versus tree pruning level (averaged for all the
different labels). References for strings are plotted as horizontal lines. (right)
error rates for the trees with the different labels. Errors for non-pruned trees
and for strings are also displayed

pressing the adjacent key instead of the right one in a keyboard). The original
set had 40 melodies, and with the distorted melodies added we have obtained
160 melodies.

Classical: another synthetical database built using the same technique as
above. The original set had 99 melodies, and the hole set has 393 melodies.

The weights used for the edit distance have (in all experiments) been set to
1 for insertion and deletion. For substitution, the weight is 0 if the interval/note
is the same and 1 otherwise. Other tested weights did not improve the results.

The experiments with the three corpora have been made using the nearest
neighbour rule and a leave-one-out scheme. Figure 7 shows the average error
rates and time for the three corpora (tested separately). Experiments were run
on a 750 MHz PC under Linux.

The performances for the five different kind of labels and for maximum tree
levels ranging from 3 to 8, and without maximum level restriction (inf. in the
graphs) were tested. Other experiments were to apply propagation without any
pruning and the comparative performance of strings, coding both pitch and pitch
plus duration sequences, as a reference.

The best error rate has been obtained with non pruned trees (see Table 1),
but the high complexity of the distance calculation makes it very slow (38 s
per sample in the ‘real’ corpus), making it unpractical. So we have focused in
how much can we prune the trees keeping the error rates in a good level, always
better that those for strings (see Fig. 7-left). A maximum level of 5 seems to be
a good compromise between error and time.

In Fig. 7-right, the performance for the five codification labels is compared.
The average errors for all the corpora are plotted for each kind of label. Note
that the best results, apart from those obtained without pruning are obtained
again for maximum level 5. Note also that trees perform better than strings.
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Table 1. Best tree classification error rates (in percentage) obtained for all the
experiments, compared to those obtained for non pruned trees and strings

Kind of labels Pruned trees Corpus Non pruned trees Strings

Absolute pitch 1.25 Latin 1.25 3.75

Pitch name 1.25 Latin 1.25 3.75

Contour 13.64 Real 11.87 12.48

Hi-def. contour 14.37 Latin 11.87 12.46

Interval 9.38 Latin 10.0 12.42

6 Discussion and Conclusions

Our results show that tree coding of melodies allows for better results than
string coding. The addition of rhythmic information to string coding in order
to improve classification rates is difficult, while tree coding naturally represents
that information in its hierarchical structure.

Tree pruning has proved to be a good option in order to overcome the high
time overhead of the tree edit distance, without significantly loosing classification
accuracy. A maximum depth of 5 for pruning seems to be a good choice.

Preliminar experiments have been developed using polyphonic melodies and
the results are promising, even better than those reported in this paper. We also
plan to make use of the whole melody (not only 8 measures), developing some
new methods for automatic extraction and segmentation of melodies.
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Abstract. In this paper we compare the performance of acoustic HMMs
obtained through Viterbi training with that of acoustic HMMs ob-
tained through the Baum-Welch algorithm. We present recognition re-
sults for discrete and continuous HMMs, for read and spontaneous speech
databases, acquired at 8 and 16 kHz. We also present results for a com-
bination of Viterbi and Baum-Welch training, intended as a trade-off so-
lution. Though Viterbi training yields a good performance in most cases,
sometimes it leads to suboptimal models, specially when using discrete
HMMs to model spontaneous speech. In these cases, Baum-Welch shows
more robust than both Viterbi training and the combined approach, com-
pensating for its high computational cost. The proposed combination of
Viterbi and Baum-Welch only outperforms Viterbi training in the case
of read speech at 8 kHz. Finally, when using continuous HMMs, Viterbi
training reveals as good as Baum-Welch at a much lower cost.

1 Introduction

Most speech recognition systems use Hidden Markov Models (HMM) to represent
the acoustic content of phone-like units and words. Though other criteria may
be applied, the reestimation of HMM parameters is commonly done according
to the the Maximum Likelihood Estimation (MLE) criterion, i.e. maximizing
the probability of the training samples with regard to the model. This is done
by applying the Expectation-Maximization (EM) algorithm [1], which relies on
maximizing the log-likelihood from incomplete data, by iteratively maximizing
the expectation of log-likelihood from complete data. As shown in [2], this leads
to the Baum-Welch reestimation formulas.

The MLE criterion can be approximated by maximizing the probability of
the best HMM state sequence for each training sample, given the model, which
is known as segmental k-means [3] or Viterbi training. Viterbi training involves
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much less computational effort than Baum-Welch, still providing the same —
or slightly worse— performance, so it is a common choice among designers of
speech recognition systems.

However, the Baum-Welch algorithm shows very interesting properties: (1)
in the case of discrete HMMs it does not need any model initialization, but just
non-zero random values verifying the stochastic constraints; (2) in the case of
continuous HMMs, a suitable initialization can be done with the output dis-
tribution parameters of discrete HMMs, on the one hand, and the means and
variances of acoustic prototypes obtained by vector quantization, on the other
—though other strategies have been successfully applied [4]; and (3) it exhaus-
tively uses all the available data to produce robust and optimal estimates. With
regard to Viterbi training, (1) it is shown that even in the case of discrete HMMs,
it requires some reasonable initialization, either by using the models obtained
for other databases, or by training initial models on a hand-labelled subset of
the training database; and (2) it makes a limited use of the training data, since
only observations inside the segments corresponding to a given HMM state are
used to reestimate the parameters of that state, resulting in sharper but less
robust models. It will depend on the the amount of available data whether or
not Viterbi training produces robust enough estimates. Though the segmenta-
tion implicitly done by Viterbi training will not exactly match the right one
—i.e. that produced by an expert— they overlap to a great extent, as shown in
a previous work [5]. When the amount of training data is large enough, segmen-
tation errors will cancel each other, and the right observations —i.e. the relevant
features that identify an HMM state— will stand out.

The rest of the paper is organized as follows: Sections 2 and 3 briefly review
the Baum-Welch and Viterbi training algorithms; Section 4 presents a combina-
tion of Viterbi segmentation and Baum-Welch reestimation, intended as a trade-
off solution; Section 5 compares the amount of training data used to estimate
HMM parameters for the three training algorithms; Section 6 defines a mea-
sure of segmentation quality based on hand-labelled segmentations generated by
experts; Section 7 describes the experimental framework, and presents and dis-
cusses phonetic recognition results for read and spontaneous speech databases;
finally, conclusions are given in Section 8.

2 The Baum-Welch Algorithm: Single vs. Embedded
Model Reestimation

The Baum-Welch algorithm is based on the computation of two functions, known
as Forward and Backward probabilities, α(i, t) and β(i, t), for each state i ∈
[1, N ] of an HMM and each frame t ∈ [1, T ] of an observation sequence O =
O1, O2, . . . , OT . Computing these functions yields a complexity of orderO(N2T ).
Once computed, Forward and Backward probabilities are used to weight the
contributions of each observation Ot to the HMM parameters. Reestimation
formulas can be found in [2]. Note that each observation Ot contributes to the
reestimation of all the HMM parameters.
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If L observation sequences O(l) = O
(l)
1 , O

(l)
2 , . . . , O

(l)
Tl

, with l = 1, 2, . . . , L,
are explicitly available for an HMM, the resulting procedure is known as sin-
gle model Baum-Welch reestimation [6]. This procedure is typically applied for
training a word HMM starting from speech samples of that word, or for ini-
tializing phone HMMs starting from explicit hand-labelled phone segments. For
each observation sequence O(l), the Forward and Backward probabilities must
be computed, and then various contributions and norms accumulated, which
yields a computational complexity of order O(3N2Tl +NTl +NTlRC) for dis-
crete HMMs, and O(3N2Tl + NTl +NTlMD) for continuous HMMs, where R
is the number of acoustic streams or representations, C the number of symbols
in the discrete output distributions, M the number of gaussian components in
the mixtures used to represent the output distributions in continuous HMMs,
and D =

∑R
i=1 di —with di the dimension of the acoustic stream i— the total

number of components of acoustic vectors in the continuous case. In the most
common configurations, the last term of the summation is dominant. Summing
for all the training sequences and all the phone HMMs, we get complexities of
order O(NT RC) and O(NTMD), respectively, where T is the length of the
training database.

However, usually only a small fraction of the speech databases is hand-
labelled, so phone HMMs must be jointly trained starting from phonetic tran-
scriptions of speech utterances. This is known as embedded model Baum-Welch
reestimation [6]. For each training sequence O(l) a large HMM Λtrain(O(l)) is
built by concatenating the phone HMMs corresponding to the transcription
of O(l). If no phone skips are allowed in training, the possible state transi-
tions reduce to those ocurring inside a phone HMM or between two consecu-
tive phone HMMs. This results in that both the Forward and Backward pro-
cedures yield complexities of order O(N2TlFl), where Fl is the length of the
phonetic transcription of O(l). Not only the Forward and Backward procedures,
but also their contributions to the HMM parameters must be computed, result-
ing a complexity of order O(5NTlFl+3N2TlFl+NTlFlRC) in the discrete case,
and O(5NTlFl + 3N2TlFl +NTlFlMD) in the continuous case. Again, the last
term is dominant, so these complexities can be approximated by O(NTlFlRC)
and O(NTlFlMD), respectively. Defining F = 1

T
∑L

l=1 TlFl, and summing
for all the training utterances, we get complexities of order O(NT FRC) and
O(NT FMD), respectively. So the embedded model Baum-Welch reestimation
is approximately F times more expensive than the single model Baum-Welch
reestimation.

3 The Viterbi Training Algorithm

The Viterbi algorithm [7] can be applied to get the most likely state sequence
Ŝ(l) in the training sequence HMM Λtrain(O(l)). This is sometimes called forced
alignment, and takes a computational complexity of order O((NFl)2Tl). Viterbi
reestimation is based on maximizing the likelihood of Ŝ(l), given the observation
sequence O(l) and the model Λtrain(O(l)). It uses the most likely state sequence
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Ŝ(l) to estimate the HMM parameters, so each observation O
(l)
t only contributes

to reestimate the parameters of the most likely state at time t, s(l)t . Reestimation
formulas can be found in [3]. Without phone skips, the possible state transitions
in Λtrain(O(l)) reduce to those ocurring inside a phone HMM or between two
consecutive phone HMMs. So the computational complexity of the algorithm
reduces to O(N2FlTl). On the other hand, for each observation sequence, con-
tributions to the estimation of HMM parameters must be computed, which yields
a complexity of order O(TlRC) in the discrete case, and O(TlMD) in the con-
tinuous case. Summing for all the training utterances, we get complexities of
order O(N2T F +T RC) and O(N2T F+TMD), respectively. In practice, these
complexities are between one and two orders of magnitude lower than those of
the embedded model Baum-Welch algorithm.

The sharpness of Viterbi estimates becomes a problem in the case of dis-
crete HMMs, since some symbols not seen in training for a particular output
distribution, may appear in an independent test corpus, thus leading to zero
probability and breaking the search. So a kind of smoothing must be applied to
the output distribution parameters. The simplest technique —which we apply in
our implementation— consists of changing only values under a certain threshold
τ , by assigning them the value τ and renormalizing the distribution to verify
the stochastic constraints. Threshold smoothing only guarantees that the search
will not crash, and more sophisticated techniques can be found in the literature.
However, such techniques make assumptions —which might not be true— about
the underlying distributions. On the other hand, the embedded model Baum-
Welch reestimation provide smooth and robust parameters in a more natural
way —at the expense of higher computational costs.

4 Combining Viterbi Segmentation and Single Model
Baum-Welch Reestimation

We propose the following methodology:

1. For each training sequence O(l), the Viterbi algorithm is applied to find the
most likely state sequence Ŝ(l) in the training sequence HMM Λtrain(O(l)).

2. The single model Baum-Welch reestimation formulas are used to update the
parameters of each phone HMM, starting from the phone segments obtained
after step (1) over Ω = {O(l)|l = 1, 2, . . . , L}.

3. Steps (1) and (2) are repeated until convergence.

This is a sort of tradeoff between the Baum-Welch and Viterbi training algo-
rithms, the most likely phone segmentation —corresponding to the most likely
state sequence— playing the role of a hand-labelled segmentation in single model
Baum-Welch reestimation. On the one hand, this algorithm requires less com-
putational effort than the embedded model Baum-Welch algorithm: summing for
all the training utterances, complexity is of order O(N2T F + NT RC) in the
discrete case, and O(N2T F +NTMD) in the continuous case, which is slightly
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higher than that of Viterbi reestimation. On the other hand, the resulting es-
timates are expected to be more robust than Viterbi estimates, since all the
state sequences inside phone segments —instead of just the most likely state
sequence— are considered.

5 Counting Effective Training Data

The Baum-Welch and Viterbi training algorithms differ in the use of the data.
Whereas Viterbi uses each observation vector Ot to reestimate the parameters of
just one specific HMM state, Baum-Welch uses it to reestimate the parameters
of all the HMM states. In other words, Baum-Welch estimates are obtained
from much more data than Viterbi estimates. To evaluate these differences, we
next count the number of observation vectors effectively used to estimate HMM
parameters for the three training algorithms.

In the case of embedded model Baum-Welch, assuming no phone skips in the
training model Λtrain(O(l)) of an observation sequenceO(l), the function α(l)(i, t)
is zero for the first i/N frames, and in the same way the function β(l)(i, t) is
zero for the last Fl − i/N − 1 frames. So for each given state i of Λtrain(O(l)),
there are Fl − 1 frames for which the corresponding contributions to the HMM
parameters are zero. Summing for all the states of phone HMMs in Λtrain(O(l))
and for all the training utterances, we find that the number of effective training
observations is

∑L
l=1

∑Fl

f=1

∑N
e=1(Tl − Fl + 1) = N

∑L
l=1[TlFl − F 2

l + Fl] =
NT F −NL(F̄ 2 − F̄ ), where F̄ 2 = 1

L

∑L
l=1 F

2
l and F̄ = 1

L

∑L
l=1 Fl.

In the case of Viterbi training, each observation sequence O(l) is divided
into Fl segments, and each observation vector in those segments is assigned to
a specific state in Λtrain(O(l)). Let n(l)(f, i) be the number of observation vectors
assigned to state i of the phone HMM f . Then, summing for all the states of
phone HMMs in Λtrain(O(l)) and for all the training utterances, the number of
effective training vectors is

∑L
l=1

∑Fl

f=1

∑N
i=1 n

(l)(f, i) =
∑L

l=1 Tl = T .
In the case of combined Viterbi segmentation + single model Baum-Welch

reestimation, segmentation is done only at the phone level, and the parame-
ters of each HMM state are trained with all the observation vectors assigned
to the corresponding phone. Let n(l)(f) be the number of observation vectors
assigned to the phone HMM f in Λtrain(O(l)). Then, the number of effective
training vectors for the entire training database is

∑L
l=1

∑Fl

f=1

∑N
e=1 n

(l)(f) =
N

∑L
l=1

∑Fl

f=1 n
(l)(f) = N

∑L
l=1 Tl = NT .

This means that the embedded model Baum-Welch algorithm uses F− L
T (F̄ 2−

F̄ ) times more data than the combined approach, which, on the other hand,
uses N times more data than Viterbi training.

6 Measuring Segmentation Quality

Viterbi training depends on the quality of the segmentation implicitly associated
to the most likely state sequence, so we set out to evaluate automatic segmenta-
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tions. A subset of the training utterances may be hand labelled and segmented.
Then, hand-labelled segments may be compared with those automatically pro-
duced by forced alignment —based on a given set of HMMs. Let nr be the number
of frames assigned by forced alignment to the same phone than experts, and nw
the number of frames assigned to the wrong phones. Then S = nr

nr+nw
∗100 is the

percentage of frames correctly classified. If the HMMs used in forced alignment
were obtained through Viterbi training, S can be interpreted as the amount of
acoustic information correctly used to estimate the parameters of such models.

7 Phonetic Recognition Experiments

Experiments were carried out over four different databases, whose main features
are shown in Table 1.

The mel-scale cepstral coefficients (MFCC) and energy (E) —computed in
frames of 25 milliseconds, taken each 10 milliseconds— were used as acoustic
features. The first and second derivatives of the MFCCs and the first derivatives
of E were also computed. Four acoustic streams were defined (R = 4): MFCC,
ΔMFCC, Δ2MFCC and (E,ΔE). In the discrete case, vector quantization was
applied to get four codebooks, each one consisting of 256 centroids (C = 256)
minimizing the distortion in coding the training data. The set of sublexical units
consisted of 23 context-independent phones and two auxiliary units: silence and

Table 1. Speech databases used in phonetic recognition experiments

SENGLAR16 SENGLAR08 INFOTREN CORLEC-EHU-1

Sampling rate
(kHz)

16 8 8 16

Speech
modality

read read spontaneous spontaneous

Recording
conditions

microphone
laboratory

telephone simulated
laboratory

telephone
office

analog tape
all environments

Other design
issues

phonetically
balanced

phonetically
balanced

task specific generic, noisy

Speakers
(training/test) 109/37 109/29 63/12

79/37
73/43
80/36

Utterances
(training/test) 1529/700 1529/493 1349/308

1414/723
1433/704
1427/710

Frames
(training/test) 469620/244026 469626/179762 703719/182722

1357783/681601
1355586/683698
1365399/673985

Phones
(training/test) 60399/32034 60399/23607 62729/13683

189108/90596
187331/92373
182969/96735

F 47.93 47.93 82.88
323.25
338.25
335.06

F − L
T (F̄ 2 − F̄ ) 41.74 41.74 75.18

278.98
292.23
290.75
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Table 2. Recognition rates using discrete HMMs. Numbers in parentheses
indicate the iteration for which the maximum rate was found

w = 1.0 w = 1/H

emBW Vit Vit + emBW Vit Vit +

smBW smBW

SENGLAR16 65.67 ( 8) 65.66 (10) 65.64 ( 9) 65.28 ( 8) 65.36 ( 3) 65.35 ( 7)

SENGLAR08 63.12 ( 8) 57.71 (12) 59.55 (11) 62.70 ( 7) 57.70 (10) 59.15 ( 8)

INFOTREN 50.70 (19) 49.63 (19) 49.48 ( 8) 52.53 (20) 51.50 (11) 50.97 (19)

CORLEC-EHU-1(1) 42.27 (40) 29.98 (16) 29.74 ( 8) 42.06 (40) 30.07 (17) 30.44 (16)

CORLEC-EHU-1(2) 44.45 (20) 43.71 (20) 43.98 (20) 44.85 (20) 44.33 (20) 44.68 (20)

CORLEC-EHU-1(3) 46.10 (17) 45.27 (17) 45.45 (18) 46.29 (17) 45.70 (16) 45.95 (14)

CORLEC-EHU-1
(average)

44.27 39.65 39.72 44.40 40.03 40.36

filler, this latter used only with spontaneous speech. Each sublexical unit was
represented with a left-right HMM consisting of three states (N = 3) with self-
loops but no skips, the first state being initial and the last one final. The output
probability at each time t was computed as the non-weighted product of the
probabilities obtained for the four acoustic streams. No phonological restrictions
were applied. Instead, transitions between sublexical HMMs in the recognition
model were given a fixed weight w —sometimes called insertion penalty. Only
the most common values were applied, namely w = 1.0 and w = 1/H , H being
the number of phone HMMs.

When using discrete HMMs to model read speech at 16 kHz, all the algo-
rithms yielded almost the same performance. This reveals that applying thresh-
old smoothing to Viterbi estimates is enough to handle independent data in
recognition. However, with read speech at 8 kHz significant differences were
found, as shown in Table 2. The embedded model Baum-Welch algorithm gave
the best result (63.12%, with w = 1.0), more than 5 points better than that
obtained through Viterbi (57.71% with w = 1.0) and more than 3 points bet-
ter than that obtained through the combined approach (59.55% with w = 1.0).
Note also that including insertion penalties (w = 1/H) did not improve the
performance.
Do these differences come from a poor segmentation at 8 kHz? Table 3 shows

the value of the parameter S defined in Section 6, computed for a hand-labelled
part of the training database —the same for SENGLAR16 and SENGLAR08–,
consisting of 162 utterances. It reveals that the quality of automatic segmen-
tations produced with Viterbi HMMs reduces from almost 90% at 16 kHz to
less than 60% at 8 kHz. On the other hand, all the training approaches yielded
similar S values at 16 kHz, whereas remarkable differences were observed at 8
kHz, specially between Viterbi HMMs and embedded model Baum-Welch HMMs.
However, since these latter were not trained based on that segmentation but in-
stead on all the possible state sequences, the resulting parameters were smoother
and more robust than those obtained through Viterbi. This demonstrates that
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Table 3. Quality of automatic segmentations obtained with the best discrete
HMMs for SENGLAR16 and SENGLAR08

Vit Vit+smBW emBW

SENGLAR16 89.72 89.64 87.98

SENGLAR08 58.86 55.03 41.67

the best HMMs —in terms of recognition rates— might not provide the best
segmentations, and vice versa.

Things were quite different when using discrete HMMs to model spontaneous
speech. First, as shown in Table 2, recognition rates were much lower: more
than 10 points lower than those obtained for SENGLAR08 in the case of IN-
FOTREN, and more than 20 points lower than those obtained for SENGLAR16
in the case of CORLEC-EHU-1. Second, the embedded model Baum-Welch al-
gorithm yielded the best results in all the cases. Third, the combined approach
slightly outperformed Viterbi training in the case of CORLEC-EHU-1, but it
led to slightly worse results in the case of INFOTREN. Fourth, both Viterbi
and the combined approach might lead to very suboptimal models, as in the
case of CORLEC-EHU-1(1), where the recognition rate for the embedded model
Baum-Welch algorithm was 12 points higher than those obtained for the other
approaches. This may be due (1) to very inaccurate segmentations in the train-
ing corpus, (2) to a great mismatch between the training corpus and the test
corpus, either because of speaker features or because noise conditions, and (3)
to the increased acoustic variability of spontaneous speech, which may require
a more sophisticated smoothing technique for Viterbi estimates. Finally, inser-
tion penalties did almost always improve performance, more clearly in the case
of INFOTREN. This may reveal the presence of silences and spontaneous speech
events like filled pauses or lengthened vowels, lasting more than the average and
implying the insertion of short phones in recognition.

Attending to the asymptotic complexities given in Sections 2, 3 and 4, the
embedded model Baum-Welch algorithm should be 100 times more expensive
than Viterbi training for SENGLAR16 and SENGLAR08, 144 times more ex-
pensive for INFOTREN, and 254 times more expensive for CORLEC-EHU-1.
However, attending to the experiments, the embedded model Baum-Welch algo-
rithm took between 13 and 23 times the time of Viterbi training. This may be
due to the fact that the Forward and Backward functions were zero much more
times than expected and the corresponding contributions to the HMM parame-
ters were not really computed. This is an important result, since the embedded
model Baum-Welch algorithm, in practice, seems to be only one order of magni-
tude more expensive than Viterbi training. Regarding the combined approach,
it was in practice (with N = 3) around 2 times more expensive than Viterbi
training, which is coherent with their asymptotic complexities.

As shown in Table 4, when using continuous HMMs to model read speech,
all the training algorithms yielded similar rates. Again, insertion penalties did
not improve performance for read speech. Among the mixture sizes tested, M =
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Table 4. Recognition rates using continuous HMMs with various mixture sizes
(M = 8, 16, 32 and 64), over the read speech databases SENGLAR16 and SEN-
GLAR08

w = 1.0 w = 1/H

M emBW Vit Vit+smBW emBW Vit Vit+smBW

8 70.24 (12) 70.26 (12) 70.43 (12) 69.79 (12) 70.01 (12) 69.82 (10)

16 71.76 (12) 71.91 (12) 71.83 (12) 71.36 (10) 71.56 (12) 71.45 (12)
SENGLAR16

32 72.72 (12) 72.72 (10) 72.72 (11) 72.47 (11) 72.37 (12) 72.42 (11)

64 73.18 ( 6) 73.16 ( 6) 73.15 ( 6) 72.88 ( 7) 72.85 (11) 72.90 (11)

8 65.82 (12) 66.01 (12) 65.91 (12) 65.71 (12) 65.86 (12) 65.77 (12)

16 67.26 (12) 67.35 (11) 67.28 (12) 67.12 (12) 67.10 (11) 67.13 (12)
SENGLAR08

32 68.37 (12) 68.32 (12) 68.30 (12) 68.30 (12) 68.54 (11) 68.21 (12)

64 68.65 (12) 68.73 ( 9) 68.76 (11) 68.67 (12) 68.60 ( 9) 68.60 ( 7)

Table 5. Quality of automatic segmentations obtained with the best continuous
HMMs for SENGLAR16 and SENGLAR08

Vit Vit+smBW emBW

SENGLAR16 88.05 88.00 87.95

SENGLAR08 53.57 53.52 53.41

32 revealed as the best choice, yielding a good balance between recognition
rate and computational cost. However, the best rates were found for M = 64,
outperforming discrete HMMs in more than 7 points for SENGLAR16, and in
more than 5 points for SENGLAR08.
Does this mean that Viterbi segmentation improves when using continuous

HMMs? The answer is no. In fact, as shown in Table 5, except for the embedded
model Baum-Welch HMMs for SENGLAR08, the quality of segmentations ob-
tained with continuous HMMs is worse than that obtained with discrete HMMs.
The improvement must be claimed for the continuous representation of the out-
put distributions, which in the case of Viterbi training compensates for the
sharpness of the estimates. So Viterbi training reveals as the best choice for con-
tinuous HMMs, since it yields the same rates as embedded model Baum-Welch
at a much lower cost.

According to the asymptotic complexities obtained above, using the embedded
model Baum-Welch algorithm to train continuous HMMs with 8, 16, 32 and 64
gaussians per mixture, should be approximately 60, 85, 105 and 120 times more
expensive than using Viterbi training, for SENGLAR16 and SENGLAR08. In
practice, the embedded model Baum-Welch algorithm was only between 15 and
30 times more expensive than Viterbi training. On the other hand, according
to the experiments —and as expected from the asymptotic complexities—, us-
ing the combined approach to train continuous HMMs for SENGLAR16 and
SENGLAR08, was again around 2 times more expensive than using Viterbi.
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8 Conclusions

In this paper we showed the robustness of the embedded model Baum-Welch
reestimation of discrete HMMs, compared to Viterbi training, for both read and
spontaneous speech. In the case of spontaneous speech, the presence of noises,
filled pauses, silences, lengthenings and other long-lasting events —revealed by
the need for insertion penalties in recognition—, could seriously degrade the
performance of Viterbi training, whereas Baum-Welch estimates kept robust to
those phenomena. Experiments showed that Baum-Welch reestimation was only
an order of magnitude more expensive than Viterbi training. The combination
of Viterbi segmentation and single model Baum-Welch reestimation only out-
performed Viterbi training in the case of read speech at 8 kHz, but still yielding
lower rates than the embedded model Baum-Welch reestimation.

On the other hand, it was shown that the best models in terms of recog-
nition accuracy may not provide the best segmentations. The best models in
terms of segmentation quality were always obtained through Viterbi training,
which is coherent, since Viterbi training aims to maximize the probability of the
most likely state sequence, given the model and the sample. When using discrete
HMMs, Viterbi training led to worse estimates than Baum-Welch. This may be
explained either by a strong dependence on segmentation quality, by a great
mismatch between training and test data, or by the increased acoustic variabil-
ity of spontaneous speech, which may require a more sophisticated smoothing
technique for Viterbi estimates.

With regard to continuous HMMs, all the training approaches yielded the
same performance, so Viterbi training —the cheapest approach— revealed as
the best choice. It was shown that continuous HMMs did not yield better seg-
mentations than discrete HMMs, so —as expected— the performance of Viterbi
training did not only depend on the quality of segmentations but also on the
acoustic resolution of HMMs, which is drastically increased with the continuous
representation of output distributions. Finally, phonetic recognition experiments
with continuous HMMs are currently in progress for the spontaneous speech
databases INFOTREN and CORLEC-EHU-1, applying only Viterbi training.
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Abstract. A straightforward and efficient way to discover clustering
tendencies in data using a recently proposed Maximum Variance Clus-
tering algorithm is proposed. The approach shares the benefits of the
plain clustering algorithm with regard to other approaches for cluster-
ing. Experiments using both synthetic and real data have been performed
in order to evaluate the differences between the proposed methodology
and the plain use of the Maximum Variance algorithm. According to
the results obtained, the proposal constitutes an efficient and accurate
alternative.

1 Introduction

Clustering can be defined as the task of partitioning a given data set into groups
based on similarity. Intuitively, members of each group should be more similar to
each other than to the members of other groups. It is possible to view clustering
as assigning labels to (unlabeled) data. Clustering is very important in a num-
ber of domains as document or text categorization, perceptual grouping, image
segmentation and other applications in which is not possible or very difficult to
assign appropriate labels to each object.

There is a variety of clustering algorithms and families [5]. On one hand, hi-
erarchical approaches produce a hierarchy of possible clusters at each stage. On
the other hand, partitional approaches usually deliver only one solution based
on a certain criterion. In terms of the criterion used and the kind of represen-
tation used, clustering algorithms can be divided into square error algorithms,
graph theoretic, mixture resolving, mode seeking and nearest neighbors. Addition-
ally, the same search space can be scanned in a number of ways (deterministic,
stochastic, using genetic algorithms, simulated annealing, neural networks etc.).
Finally, the algorithms can be classified as hard/crisp or fuzzy according to the
way the membership of objects to clusters is dealt with [1].

More formally, let X = {x1, x2, . . . , xN} be a set of N = |X | data points
in a p-dimensional space. Clustering consists of finding the set of clusters C =
� Work partially supported by Spanish CICYT TIC2000-1703-C03-03.
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{C1, C2, . . . , CM} which minimizes a given criterion with given X and, usually
but not necessarily, given M .

One of the simplest and most used methods to measure the quality of clus-
tering is the square-error criterion:

Je =
∑M

i=1H(Ci)
N

(1)

where

H(Y ) =
∑
x∈Y

dist(x, μ(Y ))

is the cluster error (dist is a distance measure function, e.g. Euclidean distance)
and μ(Y ) = 1

|Y |
∑

x∈Y x is the cluster mean.
The straight minimization of equation 1 produces a trivial clustering where

each data member is in its own cluster. Consequently, some constraints should be
used in order to obtain meaningful results as in the (well-known) case of the k-
means algorithm [6] in which the number of clusters, M , is fixed as a constraint.
There are a number of algorithms [5, 3] that share this feature with the k-means
and all of them suffer from a common drawback: the difficulty of determining in
advance the number of clusters. Most of the algorithms require trying different
number of clusters and take a further stage to validate or assess which is the best
result. The fact that the criterion used at each step cannot be used for validation
makes the problem difficult [4, 7].

2 Maximum Variance Cluster Algorithm

A straightforward clustering algorithm using a constraint based on variances
of each cluster has been recently proposed [8]. This approach has a number of
advantages. First, knowing cluster variances can be easier than the final number
of clusters in some applications. Secondly, the same criterion can be used for
the cluster validation. Additionally, as the number of clusters is modified, the
algorithm seems to deal with outliers in a more natural way.

The so-called Maximum Variance Cluster (MVC) algorithm [8] requires that
the variance of the union of any two clusters be greater than a given limit, σ2max:

∀Ci, Cj , i �= j : V ar(Ci ∪ Cj) ≥ σ2max (2)

where V ar(Y ) = H(Y )
|Y | . Clusters produced with such a constraint generally (but

not necessarily) have variances below σ2max.
The way in which such a result is searched for consists of a stochastic opti-

mization procedure in which the square error criterion in (1) is minimized (thus
minimizing distances from the cluster centroids to cluster points) while holding
the constraint on the cluster variance in (2). At each step, the algorithm moves
points between neighboring clusters. In order to do this in an efficient way, the
concepts of inner and outer borders of a cluster are introduced.
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For a given point x, the qth order inner border, Gx, is a set of q furthest
points belonging to the same cluster. The kth order outer border, Fx, is a set of k
nearest points belonging to other clusters. The qth order inner border and kth
order outer border of a cluster Ca can then be defined as the union of inner
(outer) borders of all points in Ca,

Ia =
⋃

x∈Ca

Gx and Ba =
⋃

x∈Ca

Fx

respectively. Borders defined in a such a way grow when clusters grow and the
algorithm never ends up with empty borders.

The MVC algorithm starts with a cluster per data point and then repeats
iterations in which the inner and outer borders of each cluster are the candidates
to be moved from and to other clusters. To speed up the algorithm, only random
subsets of sizes ia < |Ia| and ba < |Ba| are considered instead of the whole inner
and outer borders, respectively. In particular, one of the three following operators
is applied to each cluster (taken in random order) at each iteration:

– isolation: if the variance of the current cluster is higher than the predefined
maximum, σ2max, the cluster is divided by isolating (in a new cluster) the
furthest point (with regard to the cluster mean) among the ia taken from
the inner border.

– union: if the variance constraint is satisfied, the algorithm checks if the clus-
ter can unite with one of the neighboring clusters which are found by looking
at the ba points taken from the outer border. Cluster union is performed only
if the joint variance is lower than σ2max.

– perturbation: if none of the previous operators can be applied, the algorithm
identifies the best candidate among the ba taken from the outer border to be
added to the cluster in terms of the gain this produces in the criterion Je. The
candidate is added to the cluster if the gain is positive. Otherwise, there is
a small probability Pd (occasional defect) of adding the candidate regardless
of the gain produced.

The algorithm in this form does not necessarily converge and a limited num-
ber of iterations Emax needs to be established in order to get a convenient result.
After Emax iterations, isolation is no longer allowed and the probability Pd is
set to 0. The clustering is considered as a final result when there is no change in
the cluster arrangement for a certain number of iterations.

3 Cluster Tendency Assessing Using Maximum Variance

The cluster tendency refers to looking for possible cluster structures in raw data.
In the particular case of the MVC algorithm, it is possible to assess cluster ten-
dency while finding the appropriate values of the maximum variance parameter
σ2max in (2). In order to do this, one possibility is to construct curves [8] show-
ing the mean square error as a function of the maximum variance. Plateaus in
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this curve can be defined as the regions where the square error does not change
while the maximum variance increases. The strength of the plateau ranging from
σ2A to σ2B is defined as the ratio between both variances, σ2B

σ2
A

. A plateau is con-
sidered as significant if its strength is roughly above 2. This heuristic comes
from the fact that the average distance to the new mean when two clusters are
joined has to increase about 2 times in the worst case if one starts with two real
clusters [8]. The significant plateaus in the mean square error curve have corre-
sponding plateaus (with the same variance values) if the number of clusters, M ,
is plotted as a function of σ2max.

The most important drawback of directly using MVC to discover significant
plateaus is the computational burden. One has to select the starting point and
step size in order to be able to compute the curve in terms of σ2max. Moreover,
the accurate detection of plateaus may depend on the above extra parameters
of the algorithm. At the end, the MVC algorithm needs to be run hundreds or
even thousand times in order to obtain the corresponding results.

4 Incrementally Assessing the Cluster Tendency

One of the properties of MVC is that it converges very quickly. Usually after
less than 10 iterations the algorithm is able to find a solution very close to
the finally obtained one. This happens because the algorithm works mainly by
uniting clusters. For every value of σ2max, it starts by joining one-point clusters
into groups of about 3 elements. Then it continues uniting such groups until the
variance constraint is no longer satisfied. Isolation is performed occasionally and
perturbation usually concerns a very limited number of points.

This behavior suggests a new strategy to discover significant plateaus without
having to run MVC for each possible value of σ2max.

Let us suppose that we have a stable solution (i.e. a cluster-data points
assignment) obtained by running the MVC with a value σ2A which corresponds
to the beginning of a plateau. The goal consists of directly finding the value σ2B
which corresponds to the end of the same plateau. Let us suppose that we know
the value σ2B and we run the MVC algorithm with it, starting with the previous
cluster assignment. As a consequence, we would not obtain any new isolation
(if there was any, it would have occurred with the previous value σ2A and the
initial solution would have been unstable). Perturbation would not occur neither,
because it depends only on the error criterion. The only operator which could
make profit from that increase is union which directly depends on σ2max.

Consequently, we can assume that the minimum value σ2B which leads to
changes in the cluster assignment is the minimum value required to join any 2
clusters in the assignment corresponding to σ2A.

To directly obtain σ2B once σ2A is given, any two neighboring clusters (in terms
of their outer borders) are tentatively merged and the corresponding joint vari-
ances are computed. The smallest joint variance is taken as σ2B. Three different
cases are then possible:
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1. If the MVC algorithm with variance σ2B converges to a solution with exactly
one cluster less, we can conclude that the previous assumptions were correct.
The value σ2B is the starting point of a new plateau and its corresponding
cluster assignment can be used without having to fully run MVC starting
with singletons.

2. If the MVC algorithm with variance σ2B converges to a solution with more
than one cluster less, this implies that the true end of the plateau is smaller
than σ2B . In such a case, our proposal runs again the MVC algorithm with σ2A
but using the cluster assignment obtained for σ2B . With very high probability,
the algorithm will increase the number of clusters but with an assignment
different from the one originally obtained with σ2A. This newly obtained
stable solution can be used as explained above to compute the end of the
sought plateau. It may happen that this produces an infinite loop if the
original assignment is arrived at again. The proposed solution in this easily
detectable case is to mark the whole zone as an unstable plateau and proceed
from σ2B .

3. It is strictly possible but very unlikely that the MVC algorithm with variance
σ2B converges to a solution with the same (or even bigger) number of clusters.
In this case, we proceed with the algorithm from this starting point but the
whole zone has to be marked as unstable (in this case, even the σ2B value
cannot belong to any significant plateau).

The above introduced procedure which starts from a small value for σ2A and
proceeds by obtaining the corresponding ends of plateaus, will be referred to
in this work as Incremental Maximum Variance Clustering (IMVC) algorithm.
This procedure, obtains a list of variance values, {σ2i } where some of them are
marked as unstable. The algorithm always runs the original MVC algorithm with
σ2i starting from the cluster assignment obtained at σ2i−1. The corresponding
computational burden is then certainly bounded by the cost of one run of the
MVC algorithm times the number of plateaus.

5 Experiments and Results

Basically the same experiments reported in [8] using synthetic and real data
have been repeated using MVC and the methodology of cluster validation and
tendency assessment proposed in this work. The Euclidean distance has been
used in the mean square criterion which implies that hiperspherical clusters are
implicitly considered. The parameter setting for the basic algorithm is also the
same: The number of points randomly selected from the inner and outer borders
are fixed as the square root of the corresponding border sizes. The number of no
change iterations needed to consider a cluster assignment as stable for the MVC
algorithm is set to 10.

In particular, 3 artificial data sets (shown in Figure 1) consisting of spheri-
cally shaped bivariate Gaussian clusters have been considered. The R15 data set
consists of 15 clusters of 40 points each positioned in two rings (7 each) around
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Fig. 1. Scatter plot of the three synthetic data sets used in the experiments

a central cluster. Two possible clustering results are possible: one with the 15
clusters, and the other with the 8 central clusters united in one big cluster. The
O3 data set consists of 3 clusters of 30 points plus three outliers. A good solution
for O3 consists of finding the three true clusters and isolate the outliers. The
D31 data set consists of 31 randomly placed (non overlapping) clusters. As there
are 100 points in each cluster, this can be considered as a large-scale clustering
problem with regard to the previous ones.

Also the well-known Iris data set has been considered [2]. This consists of
three dimensional data corresponding to three different classes of iris flowers.
The goal consists of identifying these three classes in an unsupervised way.

The cluster tendency plots corresponding to the plain MVC and the incre-
mental version are shown in Figure 2. In all cases the solid and dashed lines
show the results obtained (number of clusters and squared error, respectively)
by running the MVC using a fixed step size for the maximum variance param-
eter, σ2max. The algorithm has been run 10 times for each value of σ2max and
the corresponding average value is plotted. Significant plateaus are identified by
looking for approximately constant regions in this plots which are usually sur-
rounded by oscillations. The standard deviations (not shown in the figures) are
negligible at the plateaus and are relatively small in the transition zones.

The circles and diamonds show the exact values of σ2max used (once) by the
IMVC algorithm. Horizontal wide grey lines represent the corresponding induced
plateaus identified by the algorithm.

In the case of the R15 data set in Figure 2a, there is a significant plateau
discovered by both approaches ([6.23 . . .22.47]) with strength 3.60 which cor-
responds to 15 clusters. The next plateau discovered by IMVC is located at
[96.14 . . .185.62] (8 clusters) with strength 1.93. In this case the plateau identi-
fied by MVC is slightly smaller but still is the second most important. In general,
the plots induced by the IMVC algorithm closely follow the ones obtained di-
rectly with MVC for σ2max values below 150.

In the Figure 2b corresponding to the O3 data set, there is a significant
plateau (strength 3.91) at [21.12 . . .82.61] with 6 clusters discovered by both
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Fig. 2. Number of clusters, M , and criterion value, Je, as a function of the max-
imum variance, σ2max, using the MVC algorithm and the incremental procedure
IMVC

approaches. However, the plateau induced by IMVC at [90.58 . . .113.77] corre-
sponds to a region of big instabilities (switching among solutions with 5, 4 and
3 clusters) and consequently is not taken into account (This plateau is the only
one marked as unstable in the presented figures). The only zone in which the
plots induced by IMVC are different from the MVC plots is the above mentioned
plateau. It is worth noting that besides this difference the IMVC algorithm does
not identifies any significant plateau in the unstable zones.

The plots corresponding to D31 data set in Figure 2c has the most significant
plateau (strength 1.87) identified by both approaches at [0.0033 . . .0.0063] with
31 clusters. Apart from this, the MVC plots show a very unstable behavior and
the plots induced by the IMVC differ significantly from them. From σ2max = 0.02,
the IMVC produces one more cluster in average than the MVC which roughly
corresponds to the standard deviation (in 10 runs) measured for the MVC curve
in these regions. The IMVC results can be seen as an upper approximation (in
terms of number of clusters) of the results obtained by MVC.
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The Iris data set in Figure 2d gives rise to two most significant plateaus found
by both approaches at [0.80 . . .1.40] and [1.40 . . .4.54] with strengths 1.74 and
3.25, respectively. In this case, the whole plots obtained by both approaches are
very similar.

6 Concluding Remarks and Further Work

A straightforward and efficient way to discover appropriate values of the max-
imum variance parameter for the recently proposed MVC algorithm has been
presented. One of the major benefits of this algorithm is the possibility of using
it for exploratory data analysis by looking for cluster tendencies. The algorithm
presented constitutes an efficient and accurate alternative to the plain and ex-
haustive use of the MVC as proposed in [8].

We have found evidence about the ability of our proposal to quickly find the
right clustering results. Only when the original algorithm exhibits severe insta-
bilities (which means there is no real clustering result there) the approximation
given by the proposed approach is not tight.

In our opinion, more experimentation is needed to properly assess the ben-
efits of the original MVC algorithm with regard to other clustering approaches
(which has been partially done in [8]) and also to fully test our approach to
discover cluster tendencies in real data corresponding to challenging and non-
trivial clustering problems. Nevertheless, the preliminary results obtained in this
work give enough evidence to see the proposed methodology as very promising
both because the good results obtained and the relatively small computational
burden.
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Abstract. In this paper the problem of texture description for image
browsing or annotation is approached. Previous works in this direction
have proposed solutions that have shown to be limited due to the high
degree of complexity natural textures can achieve. This problem is solved
here by defining textures as a combination of several subtexture compo-
nents, whose description is simpler since they only have one characteris-
tic element. A computational method based on multiscale filtering with
Laplacian of Gaussian is presented to identify the subtexture compo-
nents of a texture, and a texture description based on these subtexture
components attributes is given.

1 Introduction

Texture is an important visual cue for image understanding that still lacks
of a standard and general definition in Computer Vision. Texture is neces-
sary for many machine vision applications, and thus several computational ap-
proaches to build texture representations have been presented[1] In most cases
the representations obtained were directed by specific taks such as image classi-
fication [2],image retrieval [3]or image segmentation [4],however psychophysical
studies on human texture perception have been the motivation for others [5].
Some texture spaces have been derived from these studies, but for the moment
none of the approaches leads to a general texture representation space.

A texture description in textual terms and related to how textures are per-
ceived by human beings is necessary for image browsing or image annotation.
In this scope, the MPEG-7 standard, devoted to provide a set of standardized
tools to describe multimedia content, proposes a perceptual browsing descriptor
(PBC) [6]. In this paper we present a new approach to texture description based
on perceptual considerations. We try to extend the PBC descriptor so that it
comprehends all the texture information and a wider and adaptable description
is obtained.

To this end, the paper is organised as follows. Section 2 sets the background
and section 3 defines the concept of subtexture component giving the compu-
tational details on how to obtain them. The texture description based on the
subtexture components is presented in section 4. Some results are shown in sec-
tion 5 and finally section 6 presents the conclusions and further work.

F.J. Perales et al. (Eds.): IbPRIA 2003, LNCS 2652, pp. 884–892, 2003.
c© Springer-Verlag Berlin Heidelberg 2003
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(a) (b) (c) (d) (e)

Fig. 1. Examples of simple textures

2 Background

As mentioned in the introduction, texture does not have a standard definition in
Computer Vision. In this paper, a grey-level image is considered to be a texture
if it presents homogeneity in its grey-level distribution along the image which
is given by the repetition of basic primitives across the image. We will consider
an image as a texture when at least four non-overlapped windows can be taken
from the image sharing the same texture properties.

Any approach to texture description should be based on how human beings
perceive and describe textures. To this end, let us analyse the results that have
been obtained in psychophysics on texture perception. Two approaches are con-
fronted as being the basis for an internal visual representation of texture. On
one hand, local feature extraction processes have received a hard support from
the Julesz’s [7] texton theory, and on the other hand, a global spatial analysis
has been demonstrated to be necessary by Beck [8]. Examples in figure 1 show
that both methods form part of the process by which the human visual system
deals with texture: textures in images (a) and (b) are segregable due to differ-
ences in the blob contrast, i.e. local features, whereas images (b) and (c) are
segregable because of the orientation of the patterns emerging from the texture
image. Therefore, not only global methods but also local properties should be
taken into account when dealing with texture description.

It can be shown that if textures are regarded as blobs and emergent patterns,
the complexity level of textures, both natural and synthetised, is unlimited, like
textures in figure 1 (d) and (e), which are made out of combination of different
simpler textures, i.e. (e) is obtained by combining (a) and (b). Despite this
wide range of complexity degrees in texture, in previous texture descriptors all
textures are described with the same number of features. However, if human
subjects are asked to describe more complex textures, they will use more words
or features than they use for simpler textures.

Another advantage of considering textures as a combination of properties
from blobs and emergent patterns is the ability to build objective descriptors.
Most of the experiments that have been done to derive the dimensions of the
texture space have been based on texture comparison or segregation. Therefore,
the results that are obtained might not be suitable for texture description, but
for texture comparison. Rao et al, in [9], presented a serie of psychophyiscal
experiments concluding there are three main dimensions for texture, namely
structure or regularity, scale, and directionality, nonetheless these concepts can
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(a) (b) (c) (d) (e)

Fig. 2. Textures having different number of subtexture components which are
defined by the property presented below each image

not be clear and objective enough for description when both regular and random
patterns appear in a texture at the same time. The foregoing discussion makes
us consider that a texture descriptor willing to be general and meaningful should
fulfil two conditions: (i) different texture degrees of complexity must be taken
into account and (ii) textures have to be represented by attributes of their own
characteristic elements, and not only by comparison to other textures. These
considerations have motivated the introduction of the concept of subtexture
component, which is defined in the following section.

3 Subtexture Components

Previous considerations lead us to define a subtexture component of a texture
image as a set of blobs or emergent patterns sharing a common property all over
the image. Then, a texture image will be formed by several subtexture compo-
nents, each one characterized by only one kind of blobs or emergent patterns. In
figure 2 textures with different number of subtexture components are shown. The
texture in image (a) has only one subtexture component defined by bright blobs
randomly positioned, the image in (c) has two components due to the different
size of the bright blobs and in (d) there are also two subtexture components,
since there are bright blobs but also triangles emerging from the blobs grouping.
Finally, texture in (e) has three subtexture components, since the triangles are
positioned forming a stripped emergent pattern.

The fact that textures are understood as a combination of components al-
lows to describe textures in terms of the attributes of their components, instead
of describing the whole texture. This approach to texture description fulfils the
aforesaid conditions: (i) a texture can be made out of as many subtexture com-
ponents as necessary, and thus the adaptation to different degrees of complexity
is assured, and (ii) the subtexture components can be described in terms of the
attributes of its own blobs or emergent patterns, and not by comparison with
other textures.

Once this concept has been defined and explained, now the goal is to define
a computational approach to automatically extract them since it will be the base
of the texture descriptor presented in the following section.
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We propose a multiscale filtering approach to obtain the subtexture compo-
nents, since it allows detecting blobs and emergent patterns with different sizes.
The images will be smoothed by a gaussian filter, so that at higher scales the
details disappear and only global structures of the image remain. For each scale,
blobs will be detected and subtexture components are obtained by gathering
those sets of blobs having the same contrast. In [10] the laplacian of gaussian
filter was used to detect blobs in texture images; in this case the method will be
extended by varying the size of the filter. Filtering with the laplacian of gaussian
presents several advantages: (i) if no threshold is considered, the zero-crossings
are closed, and thus its duals can be interpreted as blobs, (ii) the multiscale
filtering permits tunning with different blob sizes and (iii) the sign of the pixels
in the filtered image gives its contrast with the neighbouring pixels, which will
be used to determine the contrast of the blobs.

Thus, the first step to obtain the subtexture components is to find the blobs
or emergent patterns for a given scale. For a given texture image I, for each scale
σ, the smoothed version of the image, Sσ and its Laplacian, Lσ, are calculated:

Sσ(I) = I ∗Gσ ; Lσ = ∇2(I ∗Gσ) = I ∗ (∇2Gσ) = I ∗ LoGσ (1)

where Gσ is a gaussian filter with standard deviation ,σ, which takes p values
within the range [σmin, σmax]. The zero-crossings of Lσ are the closed edges
of the smoothed image; therefore, its duals can be considered as blobs. The
following step consits on classifying the blobs according to their contrast [11],
which is given by the grey-level values of Lσ in each blob : bright blobs are those
verifying Lσ < 0 and dark blobs those where Lσ > 0.

At this point, the blobs of an image Sσi having the same contrast form a sub-
texture component if they appear uniformly through all the image. Otherwise,
it is supposed that the blobs are not characteristic elements of the texture and
therefore they are rejected. Thus, for an image I we obtain n subtexture com-
ponents {Si}i=1,...n where n ≤ 2p.

I Sσ1(I) Bright blobs Dark blobs
of Sσ1(I) of Sσ1(I)

Sσ2(I) Bright blobs Dark blobs
of Sσ2(I) of Sσ2(I)

Fig. 3. Extraction of subtexture components by multiscale filtering
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The images in figure 3 show different steps to obtain subtexture components.
The original image I, the smoothed image and the subtexture components for
bright and dark blobs are shown for two different scales, σ1 = 0.75 and σ2 = 3.

4 Texture Description

Once we have outlined the method to obtain the subtexture components of a tex-
ture, let us present the texture descriptor based on their attributes. In [12] the
PBC descriptor for a texture image is given by the regularity, two predomi-
nant directions and two predominant scales. In our case, we propose to describe
a subtexture component Si(I) of a texture I by

D(Si(I)) = [c, sc, st, d1, d2, d3, d4] (2)

where the meaning of the 7 components is the following:

– c gives the contrast of the blobs, b for bright blobs and d for dark blobs
– sc represents the scale, ranging from 1 (small) to 5 (large).
– st is the structure, ranging from 1 (completely random) to 5 (structured).
– d1, d2, d3 and d4 are the orientations of the predominant directions.

Let us define the steps to compute the subtexture attributes.

Contrast and Scale
In previous section it has been stated that the contrast and scale of the blobs
or emergent patterns forming a subtexture component are the attributes that
identify it. As it has been shown, the contrast of the blobs has been derived
from Lσ, and the scale is directly given by corresponding filter.

In order to estimate the remaining features of the subtexture components
we have chosen to calculate the Fourier Spectrum, which has already been used
for texture feature extraction [14]. Moreover, there are psychophysical evidences
that support frequential analysis plays an important role in human perception
of textures [13].

Degree of Structure
In order to determine the degree of structure of a subtexture component, we
will study the shape and location of its Fourier Spectrum peaks. Firstly, we
will estimate a measure of the stability of them by gradually thresholding the
spectrum. Afterwards, we will evaluate the alignement of the peaks by computing
a modified Hough transform of the maxima, since only the lines which have been
voted by several points are selected. Several measures are extracted from this
analysis:

- sp : number of stable peaks (i.e. appearing in 3 or 4 thresholds)
- vsp : number of very stable peaks (i.e. appearing in 5 or more thresholds)
- l : number of straight lines
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Fig. 4. Examples of subtexture components analysis for the evaluation of the
degree of structure: images 1.a and 2.a are the subtexture components, their
spectrums are shown in 1.b and 2.b respectively, and 1.c and 2.c illustrate the
maxima and the straight lines obtained from the analysis

The calculation of the degree of structure is then given by a weighted sum of
these parameters:

st = α× l + β × sp+ γ × vsp (3)

The values for [α, β, γ] have been estimated to be [0.2, 0.3, 0.5] from a preliminar
psychophysical experiment where 16 subjects were asked to describe textures in
terms of their subtexture components features.

Predominant Orientations
The predominant orientations of the subtexture components are easily detected
in the spectrum, since they also appear as predominant orientations in the fre-
quency domain. The spectrum is transformed to polar coordinates and a his-
togram of the orientations with 8 equally distributed bins is computed. The
predominant orientations of the subtexture component are those having more
than 20% of the points. This value has also been deduced from the psychophys-
ical experiment mentioned above. The descriptor will take into account up to
4 orientations, since it is difficult to find subtextures with more predominant
directions.

Building the Global Texture Descriptor
Since the presented computational approach can extract more than one compo-
nent representing the same subtexture, we will firstly apply a selective step that
removes redundant subtexture components. This redundancy is easily removed
by doing a similarity test. We will denote the number of relevant subtexture
components as k.

The texture global descriptor, GD(I) is a matrix whose rows are the descrip-
tion of the relevant subtextures:

GD(I) = (D(Si(I)), . . . ,D(Sk(I)))T (4)

As it can be seen, the number of rows of the texture descriptor depends on
the texture complexity. In next section some examples of texture descriptions
are given.
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(a) (b) (c) (d)[
b 3 2 135 . . .
d 2 2 135 . . .

] [
b 2 1 . . . .
d 2 3 . . . .

] [
b 2 2 0 90 . .
d 2 2 0 90 . .
d 4 3 0 45 90 .

] [
b 2 2 90 112 . .
b 4 1 90 112 . .
d 2 1 90 112 . .

]

(e) (f) (g) (h)[
b 2 5 0 45 90 .
d 2 5 . . . .
d 5 5 0 45 90 135

] [
b 1 3 . . . .
d 1 4 . . . .
d 3 2 . . . .

] [
b 2 4 90 . . .
b 4 4 0 90 . .
d 2 3 90 . . .

] [
b 2 5 0 90 . .
d 1 5 0 90 . .

]

Fig. 5. Examples of texture descriptions

5 Results

The description of several textures is presented in figure 5, under every image I
the corresponding global descriptor GD(I) is given. For example, image (a) is
formed by two subtextures, one made out of bright blobs of medium scale (sc =
3) with an almost random structure (st = 2) and a predominant orientation of
135◦, and another one made out of small dark blobs with the same structure
and predominant orientation. On one hand it can be seen that the number of
subtexture components that are obtained matches the complexity the texture,
images (c) and (e) which can be considered complex textures are described by
three components and images (a) and (h), which are much simpler, are described
by two components only. On the other hand, we can see that the contrast,
degree of structure and orientations of the subtexture components are quite well
detected in most cases, whereas the scale needs to be improved. Finally, it can be
seen from the examples that the presented texture description is enriched by the
fact that subtexture components are treated separately. For instance, in image
(g) the horizontal orientation due to the emergent pattern is only detected for
a high scale, while the vertical orientation due to small elongated blobs appears
at smaller scales.
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6 Conclusions and Further Work

This paper has mainly two contributions. Firstly, the concept of subtexture
component has been introduced, which allows a texture description that can be
interesting both from a computational and a perceptual point of view. Secondly,
we have presented a first approach to a computational texture descriptor which
is shown to be general enough to give the description of any natural texture.

The fact that the number of subtexture components can vary makes this
approach suitable to all levels of texture complexity, which is very important
for Computer Vision applications where all types of images can be found. The
presented texture descriptor is based on perceivable characteristics of the image
without the need of comparison. This is indispensable for applications such as
image browsing where images have to be described in terms of its own properties
and in a way that makes it easy to go from natural language to computational
representations. Further work will be focused on the improvement of the scale
detection and on the introduction of more complex information such as the shape
of the emergent patterns.
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Abstract. This paper presents a system for 3D ultrasound which aims
to reconstruct a volume of interest from a set of ultrasound images.
A Bayesian reconstruction algorithm has been recently proposed to per-
form this task. However, it is too slow to be useful in practice. This paper
describes several techniques to improve the efficiency of the reconstruc-
tion procedure based multi-scale principles and based on the expansion
of the likelihood function in a Taylor series. This allows the use of suf-
ficient statistics which avoid processing all the images in each iteration
and leads to a space-varying recursive filter designed according to the
statistical properties of the data. Experimental results are provided to
assess the performance of the proposed algorithms in medical diagnosis.

1 Introduction

Ultrasound is a non ionizing, non invasive and cheap medical imaging technol-
ogy. Current systems, operating in B-scan mode, allow real time observation of
cross sections of the human body. Several attempts have been made to extend
ultrasound techniques in order to compute and visualize 3D representations of
the human organs leading to three dimensional ultrasound systems [1].

Three dimensional ultrasound has several advantages with respect to classic
ultrasound systems. First it provides new visual information since it allows the
observation of the organs surface, as well as cross sections of the human body
which can not be observed in B-scan mode, due to physical constrains. Second
it provides quantitative measurements of volumes which can not be accurately
obtained using standard B-scan mode. Both issues are important for medical
diagnosis.

Three dimensional ultrasound can be performed either by using special types
of probes, e.g. mechanical scanners which automatically sweep a region of inter-
est by varying the inspection plane in a predefined way, or by using free hand
scanning systems [1]. Mechanical scanners are simpler but they are more expen-
sive and can only reconstruct small regions of the human body, while free hand
scanners can be be used to reconstruct larger regions. They require complex
reconstruction algorithms though.
� This work was partially supported by FCT in the scope of project
POSI/33726/CPS/2000.
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This paper describes a free-hand 3D ultrasound system. This system allows
the estimation of a volume of data from a sequence of ultrasound images, cor-
responding to non parallel cross sections of the human body. This is a difficult
task since we have to estimate the whole volume from a finite number of noisy
images, corrupted by speckle noise. The system must be able to perform noise
reduction, to interpolate the data in regions which are not observed and also to
compensate for the geometric deformations of the human organs during the data
aquisition process. Bayesian techniques have been recently proposed to address
these problems in a principled way but they are very time consuming [8] and
can not be directly used in practice.

This paper describes several techniques to improve the efficiency of the re-
construction procedure based on multi-scale principles and on the expansion
of the likelihood function in a Taylor series. This allows the use of sufficient
statistics which avoid processing all the images in each iteration, leading to a
space-varying recursive filter designed according to the statistical properties of
the data. Experimental results are provided to assess the performance of the
proposed algorithms in medical applications.

2 System Overview

This paper aims to reconstruct a volume of interest from a sequence of ultra-
sound images. The data acquisition system adopted in this work has three main
components (see Fig.1),

– a medical ultrasound equipment with an ultrasound probe operating at 1.7
MHz.

– a spatial location system used for real time measurement of the probe posi-
tion and orientation.

– a personal computer to capture the probe positions and ultrasound images
at 25Hz rate, and reconstruct the volume.

During a medical exam a sequence of ultrasound images is provided, correspond-
ing to non parallel cross sections of the human body. The probe position and
orientation, associated to each image, are also available. This allows to estimate
the position of each pixel in 3D space, provided that we know the geometric
transformation from the image coordinates into the probe coordinate system.
This is estimated by a calibration procedure, similar to the single-wall calibra-
tion described in [13].

The volume of interest is reconstructed from the pixel intensities and posi-
tions, using a Bayesian reconstruction algorithm which is briefly described in
section 3. This algorithm manages to interpolate the observed data, filling the
gaps, and combines multiple observations to reduce the speckle noise. This is
performed by adopting a parametric model for the function to be estimated,
which depends on a large number of coefficients (many thousands), estimated
using Bayesian techniques.
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Fig. 1. Acquisition system

Visualization techniques (re-splicing, ray casting and thresholding) are used
to display the results of the 3D reconstruction algorithm. All the software mod-
ules (data acquisition, sensor calibration, reconstruction and visualization) were
developed in C++ in a Windows 2000 platform.

3 3D Reconstruction

Let V = {(x, y)i} the observed data after calibration, i.e., after the estimation
of the transformation that relates the image coordinate system with the patient
coordinate system. Each element of the vector V , contains the intensity, yi and
the corresponding 3D position, xi, of each observed pixel from all images that
form the sequence. This observed data is used to reconstruct the volume.

Let consider the region to be estimated Ω ∈ R3 formed by a set of cubic cells
called voxels.

The scalar function f(x), describing the acoustic properties of the volume of
interest, is obtained, inside each voxel, by interpolating the values of its vertices,
i.e.,

f(x) = Φ(x)TU (1)

where Φ(x) = {φ1(x), φ2(x), ...φn(x)} is a vector of interpolation functions and
U = {u1, u2, ...., un} a vector of intensity values associated to the grid nodes.
The estimation of the volume is performed by estimating the vector U .

Each interpolation function is a separable function of the form φi(x) =
φ1i (x)φ

2
i (x)φ

3
i (x) where

φji (x
j) =

{
(1 − dj

i
(x)

Δ ) dji (x) ≤ Δ
0 otherwise

(2)

Using the MAP method, the estimation of U is obtained by minimizing an
energy function, i.e.

Û = argmin
U

E(Y,X) (3)



896 João Sanches et al.

where E(Y,X) = −l(V, U) − log(p(U)). l(V, U) = log(p(V |U)) is the log likeli-
hood function and p(U) is the prior associated to the vector of nodes to estimate.
The prior plays two important roles. First it allows to interpolate the data in
points which were not observed, i.e., which do not belong to any observation
plane. Second it improves the numerical stability of the iterative reconstruction
algorithm.

Ultrasound images are very noisy being corrupted by multiplicative noise.
A Rayleigh model is used in this paper to describe the observations. This noise,
called speckle, is usually observed in process involving coherent radiation like
LASER or SAAR.

It is assumed that the elements of Y are i.i.d. (independent and identically
distributed) random variables with Rayleigh distribution ([2]),

p(yi) =
yi

f(xi)
e
− y2

i
2f(xi) (4)

where yi denotes the amplitude of i-th pixel and f(xi) is the value of the func-
tion f computed at position xi. The likelihood functions is generated by

l(V, U) =
∑
i

{log [
yi

f(xi)
]− y2i

f(xi)
} (5)

The statistical independence of all elements of V is assumed ([3]), despite
the PSF (point spread function) of the image acquisition system be, in general,
larger than the inter-pixel distance. In fact, it is not easy to estimate the PSF
of the acquisition system. This function depends, not only on the impulsive
response of the ultrasound probe and the associated electronics, but also on the
image processing performed by ultrasound equipment. In particular, the filtering
procedure that smoothes the original raw data by converting the polar grid of the
RF signal to grid the image in cartesian coordinates introduces correlation among
the pixels which is difficult to model. Furthermore, the improvement achieved
in the reconstruction results by considering the statistical dependence among
the pixels of the image is not relevant when compared with the computational
complexity introduced in the algorithm, as noted by [4].

To derive p(U) let us consider X as being a Markov random field. According
the Hammersley-Clifford theorem, p(U) is a Gibbs distribution. In this paper
a Gibbs distribution with quadratic potential function is used

p(U) =
1
Z
e
− α

Nv/2

∑
g,s

(ug−us
g)

2

(6)

where Z is a partition function, Nv is the number of neighbors of ug, α is
a parameter and usg is the s-th neighbor of ug (see details [7]). A 6-neighborhood
system is considered in this paper. Note, that only half of the neighbors are
considered in this summation to guarantee that each clique appears only once.

Using (5) and (6) leads to

E(V, U) = −
∑
i

{log [
yi

f(xi)
]− y2i

f(xi)
}+

α

Nv/2

∑
g,s

(ug − usg)
2 (7)
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The minimization of (7) with respect of U is a difficult task. The number
of coefficients to estimate is of order of a million and E(V, U) is a non convex
function. To solve (3) the ICM algorithm, proposed by Besag is used [5]. In each
iteration, the ICM algorithm minimizes the energy function with respect to only
one variable, keeping all the others constant. To optimize (7) with respect to the
variable un the following condition must be met

∂E(V, U)
∂un

= 0 (8)

which leads to

1
2

∑
i

y2i − 2f(xi)
f2(xi)

φn(xi) + 2αNv(un − ūn) = 0 (9)

where Nv is the number of neighbors of un, φn(x) is the interpolation function
associated to the n-th node and ūn = 1

Nv

∑Nv

j=1 (un)j is the average value of the
neighboring nodes of un.

This equation can be solved using the fixed point method leading to the next
recursion expression

ûn =
1

2αNv

∑
i

y2i − 2f(xi)
f2(xi)

φn(xi) + ūn (10)

The solution of (3) using the ICM method leads to a set of non-linear equa-
tions, (9) which requires processing the pixels of the whole image sequence.
Therefore, the reconstruction algorithm is computationally demanding and slow.
To speed up the reconstruction process, several measures can be taken. In the
next section three methods are proposed to simplify and speed up the solution
of (10): i) a multi-scale approach, ii) the linearization of (10) allowing sufficient
statistics and iii) a IIR filter to efficiently compute the MAP estimation of the
volume.

4 Fast Algorithms

Three methods are considered to speed-up the reconstruction process. Detailed
descriptions of these methods are published in [9, 10, 12].

Multi-scale The propagation of the information along the lattice due the prior
is one of the main factors that slows down the convergence rate of the algo-
rithm described in section 3. To overcome this difficulty, a multi-scale version
is used. In this approach, coarse grids are used in the initial iterations being
progressively refined until the final resolution is achieved. In this way, the
long range interactions propagate fast in the first iterations speeding up the
global convergence rate. In the last iterations the algorithm only performs
small local adjustments. In this method the estimated volume obtained in
a given iteration is used as starting point for the next iteration, and the
resolution is doubled in consecutive iterations [9].
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Linearization It is not possible to compute sufficient statistics associated to
eqn (10) since he can not factorize the pdf. To obtain sufficient statistics
a linearization of the likelihood function in the vicinity of the maximum
likelihood estimate is performed. With this method, a small set of statistics
computed in the initialization stage of the reconstruction algorithm and used
along the whole optimization process. Therefore, the observations only have
to be read from the disk and processed at the beginning. The observed data,
compressed into a smaller number of coefficients, speeds up the processing
time by more than one orders of magnitude [10]. The resulting equations are

ûn = (1 − kn)uML
n + knūn (11)

uML
n =

∑
i y

2
i φn(xi)∑

i φn(xi)
(12)

kn =
1

1 + 1
4α

∑
i
φn(xi)

(uML
n )2

(13)

Filtering Equation (13) defines an IIR filter. This filter is not wedge sup-
ported [11]. Each output depends on past and future outputs since it de-
pends on ūp. Therefore, it is not possible to recursively compute the output
in a single iteration. To overcome this difficulty we consider a set of eight
wedge supported filters (see details on [12]), which can be recursively com-
puted. The reconstructed volume is obtained by averaging the outputs of
the eight wedge supported filters. This approach allows to improve the re-
construction time exploiting the computational efficiency of the recursive
processing. With this methodology, reduction up to 25 times in the process-
ing time can be achieved.

In this paper these three methods are used and combined into five different
reconstruction strategies. They will be compared, using three figures of merit:
the number of iterations, the processing time and the likelihood function. In
the case of experiments using synthetic data a fourth figure of merit is also
used: the signal to noise ratio. The methods considered in the experiments are

i) NLMAP-SS Non multi-scale and non linear base algorithm.
ii) NLMAP-MS Multi-scale and non linear base algorithm.
iii) LMAP-SS Non multi-scale and linear algorithm.
vi) LMAP-MS Multi-scale and linear algorithm.
v) IIRMAP Recursive algorithm.

5 Experimental Results

Experimental tests were carried out to evaluate performance of the five recon-
struction techniques with synthetic and medical data using several figures of
merit. Two examples are described in this section to illustrate the performance
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Fig. 2. Intensity profiles of the original and reconstructed volumes using i)
NLMAP-SS and NLMAP-MS (bold); ii) LMAP-SS and LMAP-MS (bold); iii)
IIRMAP

of the system with synthetic and medical data. More tests were performed but
can not be included here due to space restrictions.

Synthetic Data This example considers the reconstruction of a binary func-
tion f defined as follows: f(x) = A, ifx ∈ [−.5, .5]3, f(x) = B, otherwise. Volume
reconstruction is obtained from a set of 100 parallel cross-sections of the region
[−1, 1]3 corrupted by Rayleigh noise according to (4).

Figure 2 shows the intensity profiles of the original and reconstructed volumes
along a given line. It is concluded that all the methods manage to estimate the
original object reasonably well, showing some distortion at the transitions (blur-
ring). The best transitions are obtained with the IIRMAP algorithm although
this algorithm has the worst performance in stationary regions.

Table 1 shows four figures of merit which allow an objective comparison of
several techniques in terms of SNR, final energy, iterations and computational
effort. All methods manage to minimize the energy function and provide similar
SNR results, except LMAP-MS which achieves worse results. The computational
time is strongly dependent on the reconstruction method, the fastest reconstruc-
tions being achieved by the IIRMAP algorithm. The multi-scale approaches also
achieve significant savings with respect to the single scale methods since they
reduce the number of iterations. The fast algorithms reduce the computational
effort of the NLMAP algorithm by 70 times (almost two orders of magnitude).

Table 1. Results with synthetic and medical data

Method

NLMAP-SS

NLMAP-MS

LMAP-SS

LMAP-MS

IIRMAP

Synthetic Data

SNR E Time iterations
(dB) (×103) (s)

20.1 8000.8 1534.53 64

18.2 7999.5 403.32 17

19.2 8000.8 298.17 36

16.6 8002.5 113.63 9

20.4 8020.1 22.44 8

Medical data

E Time iterations
(×193) (s)

8990.5 1893.4 96

8983.0 737.7 37

9013.4 263.7 59

8982.9 216.8 38

9156.3 21.4 8
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Fig. 3. Results with medical data: original cross section (i) and reconstructed
cross sections obtained with ii) NLMAP-SS; iii) NLMAP-MS: iv) LMAP-SS; v)
LMAP-MS; vi) IIRMAP; vii)Surface rendering of the gall bladder

Medical Data Reconstruction tests were performed using the experimental
setup described in section 2. This example shows the reconstruction of a gall
blader from a set of 100 images corresponding to non parallel cross sections of
the human body.

Figure 3 shows a cross section of the human body and the reconstructed
results obtained by the five algorithms. These results are achieved by comput-
ing f along the inspection plane. Acceptable reconstruction results are obtained
by all the algorithms. Table 1 shows the figures of merit associated to all the
algorithms. Similar energy functions are obtained by all the methods, the best
results being obtained by NLMAP-MS method.

Significant computational savings are achieved by using the fast algorithms,
the fastest reconstruction being obtained by the IIRMAP method. The IIRMAP
is 90 faster than the NLMAP algorithm. This can also be concluded from fig. 4
which displays the evolution of the energy during the optimization process as
a function of the number of iterations. The surface of the gall bladder obtained
with etdips 2.0 package is shown in Fig. 3.vii).

6 Conclusions

This paper considers the reconstruction of human organs from a set of ultra-
sound images, using five algorithms. A Bayesian approach is adopted in all these
algorithms, leading to the optimization of an energy function which depends on
a large number of variables (typically, a million variables). Two key ideas were
explored: i) the use of multi-scale techniques which use coarse grids in the first
iterations and finer grids afterwards and ii) a second order approximation of the
energy function using the Taylor series. The Taylor series approach allows to
reconstruct the volume of interest by low pass filtering the data with a space
variant IIR filter, reducing the computational effort by almost two orders of mag-
nitude. The best results were obtained by the IIRMAP method which provides
a good trade off between accuracy and computational time.
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Fig. 4. Convergence 3D reconstruction methods i) NLMAP-SS; ii) NLMAP-MS:
iii) LMAP-SS; iv) LMAP-MS; v) IIRMAP
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08193, Bellaterra, Barcelona, Spain.
{juanma,xavierb}@cvc.uab.es

Abstract. We present a shot segmentation method based on the rep-
resentation of visual contents in video using a coupled Markov chains
approach. This representation allows us to combine different image fea-
tures and to keep information about all the images since the beginning
of the shot, instead of simply comparing adjacent frames. We also define
an adaptative detection threshold that depends on the distance measures
that are obtained, instead of trying to find a fixed threshold. Results
show that the combination of color and motion image features in the
same representation provides a more robust detection of shot boundaries
than using each feature separately.

1 Introduction

Shot boundary detection is the basic first step for indexing and organizing digital
video assets. Most of the algorithms found in the literature follow the same
paradigm [3]. They obtain a certain feature of each frame, and then a distance
between the features of adjacent frames is computed. When this distance exceeds
a certain pre-defined threshold, a shot boundary is detected. This approach has
been used either on compressed and uncompressed video. The feature that has
been reported to provide better results is the global intensity or color histogram,
and using the cosine distance [7].

This kind of algorithms have two main problems. First, the selection of a pre-
defined threshold is extremely difficult. A fixed threshold depends on the domain
of the contents (sports, news, commercials, ...). O’Toole et al. proposed in [4]
a semi-automatic selection of the threshold depending on the domain of video,
which must be known a priori. However, even within the same domain, threshold
selection requires a trade-off between recall and precision that depends on the
target application. Usually, a small number of false detections is harmless, while
a missed boundary can be dramatic. However, a threshold tailored to avoid
missing true boundaries can report an overwhelming number of false shots.
� Work supported by CICYT grant TEL99-1206-C02-02. Partial funding from Visual
Century Research.
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XtXt-1

XtXt-1

YtYt-1

( a) Single Markov chain (b) Coupled Markov chain

Fig. 1. Graphical representations of the single and coupled Markov chain models

Second, the frame-to-frame approach works well with abrupt transitions, also
known as cuts. However, it is not appropriate for gradual transitions [2]. Par-
ticularly, the variation of a global intensity or color histogram between adjacent
frames in a gradual transition is very subtle and difficult to detect. Zabih et al.
developed in [9] an interesting approach to gradual transitions detection based
on the analysis of intensity edges. This method also has limitations due to the
edge detection process. Boreczky and Rowe argue in [1] that a combination of
features might produce better results than each of them individually. Sánchez et
al. extended Zabih’s approach in [6] by combining edges and color information.

In this paper, we present a shot segmentation method based on the rep-
resentation of visual contents in video using coupled Markov chains from [5].
This method has the several advantages. It allows us to combine multiple fea-
tures in the same representation. Also, information from all the frames since the
beginning of the shot is kept in the representation, instead of using a simple
frame-to-frame comparison. Finally, we define an adaptative threshold that only
depends on the distance measures obtained during the process.

2 Description of Visual Contents in Video

A discrete Markov chain (MC) is a sequence of random variables Xt, t ∈ [1,m],
taking values in state space S = {1, . . . , n}, which fulfills the Markov property:

P (Xt|Xt−1, . . . , X1) = P (Xt|Xt−1) (1)

Figure 1(a) shows a graphical representation of this model. The MC is charac-
terized by the n2-matrix of state transition probabilities T , where Tij = P (Xt =
j|Xt−1 = i). Following its definition, T fulfills

∑
j∈S Tij = 1, ∀i ∈ S.

The likelihood of a realization x = {x1, . . . , xm}, xi ∈ S, of a MC with
respect to a MC model Ψ is given by:

P (x|Ψ) = P (x1|Ψ)
m∏
t=2

P (xt|xt−1, Ψ) (2)

To simplify, we will omit the conditioning of the probabilities to the model
Ψ , unless it may lead to confusion. The likelihood can be also expressed as:

P (x) = P (x1)
∏

(i,j)∈S2
T
Cij

ij (3)
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where Cij is the number of times that state j follows state i in the MC, i.e. the
temporal cooccurrence of states i and j. We can take logarithms for simplicity
and efficiency:

P (x) = P (x1) exp

⎡⎣ ∑
(i,j)∈S2

Cij logTij

⎤⎦ (4)

Clearly, a MC is the particular case of a 1-dimensional causal Markov ran-
dom field (MRF). In order to apply this model to the representation of visual
contents in a video sequence, we consider the video as a 3-dimensional MRF.
Given a sequence of L images of size M ×N , the set of sites of the MRF is Xuvt,
(u, v, t) ∈ M × N × L. The state of each site is given by the quantization of
a scalar measure on a particular image feature. The set of cliques is formed by
every pair of sites with the same spatial position and consecutive time instants.
In this way, a global model of the temporal behavior of the feature is obtained.

The parameters of the model are obtained from a training sequence as relative
frequencies of transitions. Particularly, the maximum likelihood (ML) estimate
is computed from the state cooccurrence matrix C:

Tij =
Cij∑
j∈S Cij

, ∀i ∈ S (5)

Our goal is to extend the MC model in order to include information about
a set of image features F = {1, . . . , f}. A straightforward way to do this is by
considering one independent MC for each image feature, which become a set of
independent MRF’s in the case of video contents representation. The likelihood
of a realization is then computed as:

P (x) = P (x1, . . . , xf ) =
∏
i∈F

P (xi) (6)

where xi are the observations of feature i, and P (xi) is computed as in eq. (2).
The assumption of independence between features is not necessarily true. A more
realistic approach should consider interactions that may exist between different
features.

We propose a representation of the dependencies between multiple image
features by coupling their corresponding MC’s. In this way, the random variable
of one feature at time t, not only depends on the value of the same feature at t−1,
but also on the values of other features at t− 1. This structure of dependencies
is graphically shown in fig. 1(b). The causality of the model has the particular
advantage that the likelihood of a realization can be expressed as a product of
conditional likelihoods:

P (x) =
∏
i∈F

P (xi1)
m∏
t=2

P (xit|{xjt−1, ∀j ∈ F}) (7)



Shot Segmentation Using a Coupled Markov Chains Representation 905

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

5

10

15

20

25

30

35

40

Frame number
0 200 400 600 800 1000 1200 1400 1600 1800 2000

0

5

10

15

20

25

30

35

40

Frame number

(a) thr = 4 (b) thr = 2

Fig. 2. Selection of a fixed detection threshold. A high threshold (a) misses
some boundaries, while a low one (b) reports too many false detections. The
threshold is shown as a dashed line.

The likelihood of a CMC can also be expressed as a Gibbs distribution similar
to eq. (4), and its ML parameters can be estimated as well from the cooccurrence
matrix in a similar way as in eq. (5). For video contents representation, this model
becomes a set of coupled 3-dimensional MRF’s with dependencies between their
sites.

This representation allows us to compare two distributions with parameters
Ψ1 and Ψ2 obtained from two observed image sequences S1 and S2 in different
ways. For example, we can use the Kullback-Leibler distance (KLD):

KLD(Ψ1||Ψ2) = log
P (S1|Ψ1)
P (S1|Ψ2) (8)

KLD, also known as relative entropy, is a measure of the loss of accuracy to
represent the image sequence S1 if we used the distribution with parameters Ψ2
instead of the real distribution given by Ψ1. Note that it is not symmetric.

3 Shot Segmentation

A change of shot is characterized by a change of the contents in the images (either
sudden or gradual). Given the representation of visual contents in an image
sequence briefly discussed above, we can define a shot segmentation scheme that
checks the consistency of the transition into a new image with respect to the
images already contained in the representation. That is, we can compute how well
the observations attached to the next step in the image sequence fit a probability
distribution obtained from the previous images. This can be expressed as:

Dt+1 = P (It → It+1|I1 → I2 → I3 · · · It−2 → It−1 → It) (9)

where Ii → Ij represents the image feature transitions between images i and j
in the sequence. If the transition from It to It+1 fits the probability distribution,
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then it is included in the representation. Otherwise, a shot change is detected.
The KLD measure from eq. (8) can be used by defining the image sequences S1 =
{It, It+1} and S2 = {I1, . . . , It}, and computing the parameters Ψ1 and Ψ2 of
their corresponding distributions.

The main advantages of our approach with respect to most shot segmentation
algorithms found in the literature are: (1) we are not based on the degree of
correlation between adjacent frames. In our case, the contents of all the images
from the beginning of the shot are considered in the representation. And (2),
multiple features can easily be integrated in the representation in order to obtain
a more robust detection.

Besides all the disadvantages that we can enumerate when a fixed pre-defined
threshold is used, the selection of a detection threshold is particularly difficult
in our case. The probability distribution that represents the images in the shot
gets more accurate as the number of images considered grows. When the number
of observations is large, we obtain a better estimation of the parameters. At the
beginning of the shot, we may have a less accurate estimation and the distances
computed can be higher than when the estimation is correct. For this reason,
a fixed threshold can not be used in order to detect shot boundaries and we
have defined an adaptative threshold. If we compute the mean μ and standard
deviation σ of the distribution of distance measures from the beginning of the
shot, μ will tend to a value that depends on the contents, and σ will tend to 0, as
the distribution representing video contents gets more accurate. The adaptative
threshold can be established, for instance, at thr = μ + 3σ, so that distance
values that do not correspond to expected values will be detected. Note that
this threshold only depends on the contents, and that no model is defined on,
for example, shot duration like in [8].

4 Experimental Results

We have focused our experiments on a short sequence of 2000 frames from a news
video. This sequence was particularly selected in order to analyze two main
things: (1) the selection of a fixed pre-defined detection threshold vs. the use
of an adaptative one, and (2) the improvement achieved by coupling multiple
image features in the model with respect to the use of individual features alone.
The interest of our test sequence is found in the variety of transition effects in
it: 8 cuts and 5 gradual transitions (4 wipes and 1 dissolve). The location and
type of these transitions are detailed in table 1. Besides, there are two complex
computer-generated sequences that mark the beginning and the end of the news
summary (see fig. 4(a)).

The image features considered in our experiments were color and motion.
Many shot segmentation methods have been based on these two features. In
our case, the color feature is the hue component from the HSV color model,
while the motion feature is the normal flow. Each feature is computed for every
non-overlapping 16× 16 image block. Both features were quantized in 8 levels.
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Table 1. Location and type of the shot transitions in our test sequence

Frame number Transition Frame number Transition Frame number Transition

246 Cut 767 Wipe 1154 Cut

374 Cut 850 Cut 1187 Wipe

568 Wipe 938 Cut 1405 Dissolve

671 Cut 964 Wipe 1527 Cut

727 Cut

The problems of a fixed pre-defined detection threshold are shown in fig. 2.
The plots show the distance measure defined combining eqs. (8) and (9) as
a solid line, and the threshold value as a dashed line. All plots in this test were
obtained using the coupled motion and color model. When the threshold selected
is too high (thr = 4 in fig. 2(a)), false positive detections are avoided, but some
actual transitions are missed. Particularly, wipes around frames 568, 767 and
964 were not detected. Moreover, the cut at frame 938 was not detected either.
On the other hand, when the threshold is too low (thr = 2 in fig. 2(b)), gradual
transitions can be correctly detected, but we obtain 20 false positive detections.
Furthermore, the cut at frame 938 is still not detected. This means that the
threshold should be even lower, and more false positive detections would be
reported. We can conclude that a fixed threshold is very difficult to define, and
in many cases there will not exist an appropriate threshold. The results obtained
with the adaptative threshold are shown in fig. 3. All the transitions in the
sequence were correctly reported, with only 3 false positive detections at frames
1158, 1191 and 1482. Note that the probability distribution representing shot
contents is initialized every time a shot boundary is detected. For this reason,
a fixed threshold may report several detections during a gradual transition. The
adaptative threshold minimizes these false detections because it depends on the
distance measures, so that the threshold is high when distances are high too.
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Fig. 3. Shot segmentation results using the coupled model of motion and color
features and the adaptative threshold, shown as a dashed line
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(a) Frames from a complex computer-generated shot.
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(b) Motion feature. (c) Color feature. (d) Coupled features.

Fig. 4. (a) Frames from a complex computer-generated sequence (frames 1-245
of our test sequence). (b) Motion and (c) color features individually do a poor
job and report false positives. (d) When they are coupled, one compensates the
errors of the other. The adaptative threshold is shown as a dashed line

Table 2. Summary of results using single-feature and multiple-feature models
on our short test sequence

Feature Correct Missed False Precision Recall

Motion 11 2 22 .33 .85

Color 13 0 21 .38 1

Coupled 13 0 3 .81 1

One of the computer-generated shots in the sequence spans from frame 1
to 245 (1 of every 40 frames are shown in fig. 4(a)). Figures 4(b) and (c) show
detection results using single-feature motion and color models respectively. These
plots are very noisy, specially with color. Several false positive detections are
reported during the shot (2 with motion, 3 with color). On the other hand,
when both features are coupled (fig. 4(d)), the plot is much smoother and no false
positives are reported. Errors caused by one feature are compensated by the other
one. Both features thus cooperate in order to better determine when a real shot
boundary is found and the behavior of both color and motion change, and also
when we are still in the same shot and one of the features may have changed but
the other keeps the same behavior. Considering the full video sequence, we obtain
the results summarized in table 2. Single-feature models have good recall, i.e.
most actual transitions are correctly detected. However, they are quite unstable
in the sense that the variations in the distance measures are too significant and
many false positive detections are reported. That is, their precision is low. The
combination of multiple features in the model shows higher precision. In other
words, the detection is more robust and less noisy.
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5 Conclusions

We have presented a shot segmentation method based on the representation
of visual contents in video using a coupled Markov chains approach, with the
following advantages: (1) multiple image features can be easily combined in the
same representation, and (2) information from all the images since the beginning
of the shot is kept in the representation, so that not only adjacent frames are
compared. Experimental results have lead us to the following conclusions:

– The selection of a fixed pre-defined detection threshold is usually difficult,
and many times it is not appropriate for the video contents we are dealing
with.

– An adaptative threshold that depends on the distance values that are com-
puted is more appropriate in order to allow the method to work correctly on
different video contents.

– The combination of different image features in the same model provides
a more robust representation than each of them individually. In our case,
color and motion features cooperate in order to better detect actual shot
boundaries and avoid false detections.

– Both abrupt and gradual transitions are detected by our method with high
recall and precision.
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Abstract. Verification in speech recognition systems can be seen as a
conventional pattern classification problem in which each hypothesized
word is to be transformed into a feature vector and then classified
as either correct or incorrect. Thus, our basic problems are to find
appropriate pattern features and to design an accurate pattern classifier.
In this paper, we present a new feature and a smoothed naive Bayes
classification model. Experimental results are reported comparing the
new feature with a set of well-known features. The best performance is
obtained using the new feature in combination with Acoustic Stability.

Keywords: Utterance verification, confidence measures, naive Bayes,
smoothing.

1 Introduction

Current speech recognition systems are not error-free, and in consequence it
is desirable for many applications to predict the reliability of each hypothesized
word. From our point of view, this can be seen as a conventional pattern recogni-
tion problem in which each hypothesized word is to be transformed into a feature
vector and then classified as either correct or incorrect [1]. Thus, our basic prob-
lems are to find appropriate pattern features and to design an accurate pattern
classifier.

The problem of finding appropriate (pattern) features has been extensively
studied by several authors. Some of them have noticed that correctly recognized
words are often among the most probable hypotheses. Accordingly, they suggest
the use of features derived from n-best lists [2, 3] or word graphs [4, 6]. Other
authors have found that incorrectly recognized words are especially sensitive to
theGrammar Scale Factor (GSF), i.e. a weighting between acoustic and language
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model scores [7]. In section 2, we combine these two ideas to derive a new feature
that is referred to as Word Trellis Stability (WTS).

To design an accurate pattern classifier, we first consider a word-dependent
naive Bayes model in which the estimation of class posteriors is carried out
using conventional relative frequencies (we assume that features are discrete).
Due to the lack of training data, this model underestimates the true probabilities
involving rare words and the incorrect class. To deal with this problem of data
spareness, our basic model is smoothed with a generalized, word-independent
naive Bayes model. The details are given in section 3.

In section 4, we present some experimental results comparing the WTS with
a set of well-known features suggested in the literature. The best performance
achieved using a naive Bayes combination of different features is also presented.

2 Word Trellis Stability Feature

The motivation of the Word Trellis Stability feature (WTS) comes from the
following observations: a word is most probably correct if it appears, within
approximately the same time interval, in the majority of the most probable hy-
potheses; and, on the other hand, incorrect words are more sensitive to variations
of the GSF.

Let us assume that, during the recognition stage, we maintain all the
partial hypotheses that survived the pruning process for each time frame t.
For our propose, only those partial hypotheses which end in a word-level fi-
nal state are considered. We also store, for these hypotheses, the boundaries
between the words obtained through Viterbi segmentation. Following these
assumptions, in general, a hypothesis h of k words can be represented as:
h = {(w1, ts1 , te1), . . . , (wk, tsk , tek)}; where tsi corresponds to the starting time
and tei the ending time of word wi, for all i = 1, . . . , k. Obviously, tsi −1 = tei−1
for all i = 2, . . . , k; and tek corresponds to the last time frame.

Given a sequence of feature vectors Θn
1 = {Θ1, . . . ,Θn}, the path score for

a partial hypothesis h of k words is computes as:

Sc(h) = α · PLM (h) + PAC(h) (1)

where α is the GSF, and PLM (h) and PAC(h) denotes the N -gram language
model log probability and the acoustic log-score, respectively, for partial hy-
pothesis h.

Clearly, equation (1) is a function of the GSF value; that is, a partial hy-
pothesis can be most probable or not depending on the value α (see figure 1).
In the calculation of the WTS feature, we consider the word-boundary partial
hypotheses that are the best-first for any interval of α values within a fixed
range.

Let h = {(w1, ts1 , te1), . . . , (wk, tsk , tek)} be a first-best partial hypothesis for
the interval [αi . . . αf ] at time frame t. The interval size δ(h) = (αf − αi) for
which the hypothesis h is the most probable can be considered as a measure of
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Fig. 1. Path scores of three competing partial hypotheses, as a function of the
GSF value. The range of GSF values is restricted to interval [0, 10]

the hypothesis stability. In a first step, we accumulate the value δ(h) for each
hypothesized word, at each time frame t′ within its boundaries; that is:

C(wi, t
′) = C(wi, t

′) + δ(h) (2)

for all i = 1, . . . , k and tsi ≤ t′ ≤ tei .
This is calculated for all word-boundary hypotheses that are the most probable
for any valid interval of the GSF, at every time frame of the recognition process.

In a second step, when the recognized sentence is obtained, we compute the
WTS feature for each hypothesized word wi as:

WTS(wi) =
1

tei − tsi + 1

tei∑
t′=tsi

C(wi, t
′)

C(t′)

where C(t′) is the total sum of interval size values contributed by all first-best
partial hypotheses for the frame t′.

Note that the WTS feature can take values in the interval [0, 1]. Figure 2
shows the frequency histograms of WTS values for correct and incorrect class.
These histograms, obtained using the training corpus described in section 4.1,
show that words with a lower WTS value are more likely to be incorrect.

3 Smoothed Naive Bayes Model

We denote the class variable by c; c = 0 for correct and c = 1 for incorrect.
Given a hypothesized word w and a D-dimensional vector of (discrete) features
x, the class posteriors can be calculated via the Bayes’ rule as

P (c|x, w) =
P (c|w)P (x|c, w)∑
c′ P (c′|w)P (x|c′, w)

(3)
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Fig. 2. Distribution of WTS values for correct and incorrect class

Therefore, our basic problem is to estimate P (c|w) for each word and P (x|c, w)
for each class-word pair. For simplicity, we make the naive Bayes assumption
that the features are mutually independent given a class-word pair,

P (x|c, w) =
D∏
d=1

P (xd|c, w) (4)

Given N training samples {(xn, cn, wn)}Nn=1, we can estimate the unknown
probabilities using the conventional frequencies

P (c|w) =
N(c, w)
N(w)

(5)

P (xd|c, w) =
N(xd, c, w)
N(c, w)

d = 1, . . . , D (6)

where the N(·) are suitably defined event counts; i.e., the events are (c, w) pairs
in (5) and (xd, c, w) triplets in (6).

Unfortunately, these frequencies often underestimate the true probabilities
involving rare words and the incorrect class. To circumvent this problem, we have
considered an absolute discounting smoothing model imported from statistical
language modelling [8]. The idea is to discount a small constant b ∈ (0, 1) to
every positive count and then distribute the gained probability mass among the
null counts (unseen events). Thus, for each word w, if N(c, w) = 0 for c = 1 (or
c = 0), (5) is replaced by

P (c|w) =

⎧⎪⎪⎨⎪⎪⎩
N(c, w) − b

N(w)
if N(c, w) > 0

b

N(w)
if N(c, w) = 0

(7)
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Similarly, for each (c, w), if N(xd, c, w) = 0 for one or more possible values of xd,
the probability function (6) becomes

P (xd|c, w)=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
N(xd, c, w)− b

N(c, w)
if N(xd,c,w)>0

M
P (xd|c)∑
P (x′d|c)

x′d:N(x′d,c,w)=0

if N(xd,c,w)=0
(8)

where M denotes the gained probability mass ( b
N(c,w) times the number of seen

events). Note that P (xd|c) is used as a generalized distribution to divide M
among the unseen events. To prevent null estimates, it is also smoothed by
absolute discounting (with a uniform backoff)

P (xd|c) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

N(xd, c)− b

N(c)
if N(xd, c) > 0

b

N(c)

∑
1

x′d:N(x′d,c)>0∑
1

x′d:N(x′d,c)=0

if N(xd, c) = 0

(9)

In practice, there are many (c, w) pairs for which nearly all N(xd, c, w) counts
are null and, therefore, even the smoothed model (8) gives inaccurate estimates.
To deal with these extreme cases, we have defined a global threshold for the
N(c, w) counts. For those (c, w) pairs with counts below this threshold, the
generalized model (9) is used instead of (8). Similarly, if a word w does not
occur in the training data, P (c|w) is approximated by P (c).

Using the models trained as explained above, in the test phase, utterance
verification is performed by classifying a word as incorrect if P (c = 1 | x, w) is
greater that a certain threshold τ (cf. section 4.2).

4 Experiments

4.1 Experimental Setup

For the experimental study we have used a speech corpus composed of 4 subcor-
pus with the following characteristics:

Speakers

Subcorpus Utterances Words Male Female

A 1, 530 10, 700 4 5
B 1, 249 10, 960 8 8
C 330 2, 768 2 2
D 396 3, 390 6 6

The subcorpus A was designed to contain a representative sample of all the
Spanish phonemes for acoustic training purposes.
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The subcorpus B, C and D are part of the so-called Traveler Task, a speech
recognition task involving communication situations at the reception desk of
a hotel, with a vocabulary size of 683 Spanish words, acquired within the Eu-
Trans project [9]. All the utterances have been processed to obtain, every 10
milliseconds, 10 cepstral coefficients of a Mel-filter bank plus the energy and the
corresponding first and second derivatives.

A bigram language model has been estimated using the whole training text
corpus of the Traveler Task [9]. Each one of 24 context-independent Spanish
phonemes has been modeled by a continuous-density hidden Markov model
(HMM) with three emitting states, a left-to-right topology with loops in the
emitting states, and a emission distribution in each state which is a mixture
with a maximum of 32 Gaussian distributions. These HMMs have been esti-
mated using the subcorpus A and B. The final HMMs have a total of 2, 174
Gaussian distributions.

Finally, a conventional continuous speech recognizer based on Viterbi beam
search has been run using this bigram language model and HMMs. The word
features to estimate the smoothed model parameters were obtained with the
subcorpus B and C. The classification results presented were achieved using the
subcorpus D. The speakers of the subcorpus D are a subset of the speakers of
the subcorpus B but the utterances differ. The test-set Word Error Rate of the
speech recognizer using the same bigram and HMMs with the subcorpus D is
5.5 %.

4.2 Experimental Results

In evaluating verification systems, two measures are of interest: the True Re-
jection Rate (TRR, the number of words that are incorrect and are classified
as incorrect divided by the number of words that are incorrect) and the False
Rejection Rate (FRR, the number of words that are correct and are classified
as incorrect divided by the number of words that are correct). The trade-off
between TRR and FRR values depends on a decision threshold τ (see section 3).
A Receiver Operating Characteristic (ROC) curve represents TRR against FRR
for different values of τ . The area under a ROC curve divided by the area of
a worst-case diagonal ROC curve, provides an adequate overall estimation of
the classification accuracy. We denote this area ratio as AROC. Note that an
AROC value of 2.0 would indicate that all words can be correctly classified. We
have used both ROC curves and the AROC measure to conveniently evaluate
and compare the classification accuracy for different feature combinations.

For the experimental study, we chose a set of well-known alternative features:

– Acoustic stability (AS): Number (or the percentage) of times that a hy-
pothesized word appears at the same position (as computed by Levenshtein
alignment) in K alternative outputs of the speech recognizer obtained using
different values of the GSF [7].

– LMProb: Language model probability [2].
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Fig. 3. ROC curves for each individual feature

– PercPh (PPh): The percentage of hypothesized word phones that match the
phones obtained in a “phone-only” decoding [2].

– Hypothesis density (HD): The average number of the active hypotheses
within the hypothesized word boundaries [4].

– Duration (D): The word duration in frames divided by its number of
phones [2].

– ACscore: The acoustic log-score of the word divided by its number of
phones [5].

Figure 3 represents the ROC curves obtained through the (single-feature)
smoothed model (eq. 3). It can be observed that AS is the best performing
feature, which confirms previous works results [7, 2, 4]. On the other hand, the
newly introduced WTS feature significantly outperforms all the other traditional
features but, in general, does not improve AS performance. Table 1 shows the
AROC values.

To further exploit the usefulness of the features, the smoothed naive Bayes
model presented in section 3 was used to combine different features in the clas-
sification process. The best performance was achieved through the combination

Table 1. AROC value for each individual feature

Feature AROC

AS 1.73
WTS 1.73
HD 1.65
PercPh 1.65
LMProb 1.62
Duration 1.62
ACscore 1.59
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Fig. 4. The comparative ROC curves for the single best feature (AS) versus the
best feature combination (AS+WTS)

of the two best features: AS and WTS. Figure 4 shows that, in general, the
combination of these two features slightly (but consistently) outperforms the
AS-only performance. The AROC value obtained for this combination was 1.77.
We confirmed that to add one or more features to this combination does not
produce significantly better classification accuracy. Also, in general, the com-
bination of one or more features with only one of these two best features just
outperformed insignificantly the best single-feature performance. On the other
hand, combinations without AS or WTS features did not improve the best single-
feature performance. For all the experiments, different values for the discounting
constant were tested without significantly affecting the classification accuracy.

5 Conclusions

This paper has presented a smoothed naive Bayes model along with a new feature
for speech recognition verification. Smoothing is based on traditional techniques
applied in the context of statistical language modelling for speech recognition.
The results show that the new feature improves the single-feature performance
of a set of well-known features but, in general, it is not better than another
useful feature: the Acoustic Stability [7]. Nevertheless, the best performance was
achieved through the (naive Bayes) combination of these two features.
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Abstract. This paper describes a method for automatically assessing
the quality of manufactured roof-tiles using digital audio signal process-
ing and pattern recognition techniques. A prototype system has been de-
veloped that is based on a mixed PC/DSP platform, where the real-time
constraint is one of the main key issues.
The suitability of the classification process for implementation in an in-
dustrial environment is also addressed.

1 Introduction

Ceramic industries have a long tradition within the Iberic Peninsula and, al-
though they have benefited from significant technological improvements of the
production process, quality-control procedures have basically been the same for
many centuries. It generally consists of a manual procedure, conducted by human
experts, who apply a non-destructive stroke on the ceramic pieces, using a metal-
lic object. The structural quality of the pieces is directly assessed through the
resulting audio impulse response heard by the expert. Obviously, this is a phys-
ically and psychologically agressive task that frequently leads to classification
mistakes, which bring additional costs to the production flow. As a result, this
quality control procedure is typically applied to only a few samples of the whole
production (e.g. red-bricks, roof-tiles, mosaics, etc.) output.

This paper presents an efficient computational method for the automatic
classification of the structural integrity and quality of ceramic roof-tiles, based
on the digital processing of their acoustical response to a mechanical stimulus.

Throughout this paper, the simple case of a binary GOOD/BAD classifica-
tion scheme is considered.

The feasibility of the idea has been demonstrated by preliminary research
studies involving red-bricks [1].

This paper is organized as follows. The various parts of the system are de-
scribed in Section 2, as well as the kind of technologies and algorithms used.
Results are presented in Section 3, where the influence of noise in the classi-
fication system is also analyzed. Finally, some relevant conclusions about the
experiments and topics for future developments are presented in Section 4.

F.J. Perales et al. (Eds.): IbPRIA 2003, LNCS 2652, pp. 927–934, 2003.
c© Springer-Verlag Berlin Heidelberg 2003
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Feature
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Fig. 1. Basic processing tasks of the DSP algorithm

2 System Modules

The framework for this project is basically a laboratory prototype composed of
three basic modules: a stimulation module responsible for the task of applying
a stroke on the piece to be analyzed; a signal acquisition and analysis module
that captures the acoustic signal produced at the stimulation stage, that ana-
lyzes it and that extracts relevant signal features; and a classification module
that provides a final binary GOOD/BAD decision, based upon the features that
were collected by the signal acquisition and analysis module. A more detailed
description of each of these modules as well as of the interactions between them
is presented in the next sections.

2.1 The Stimulation Module

This module is composed of a metallic arm with a spherical tip (hammer), which
moves by the influence of a pneumatic actuator. In order to avoid stroke re-
bounds, so as to obtain a good impulse response estimate, the spherical tip was
made mechanically flexible by using a spring. This is all supported by a metal-
lic structure, which also holds the ceramic piece to be analyzed. A view of the
system can be seen at http://telecom.inescn.pt/research/audio/tiles/.
The orders to the pneumatic actuator are given by a PC, which also plays an
important role in the classification stage.

2.2 The Signal Acquisition and Analysis Module

The signal acquisition is implemented by using a set of two measurement mi-
crophones. There are two main reasons for using more than one microphone for
capturing the impulse response of the piece. On one hand, the acoustical en-
ergy emitted by the piece varies along its structure. Therefore, it is reasonable
to put more than one microphone in carefully selected spots, namely near the
hot spots, as are the edges of the piece. On the other hand, critical reflections
and other perturbances related with the propagation of sound may influence the
analysis process. Considering more than one capture spot creates a diversity that
somewhat compensates this problem.

The sound captured by the microphones is digitized and analyzed by a DSP
platform. Samples are taken at 44.1 kHz with 16-bit resolution. After having
extracted the relevant features of the acquired signal, the DSP board transmits
them to the PC via serial port, using the RS232 protocol.

The algorithm executed by the DSP is illustrated in Fig. 1. The different
processing steps are explained next.
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Stroke Detection. This stage consists on a transient detector capable of iden-
tifying acoustic pulses existing in the signal captured by the microphones. These
pulses correspond, with high probability, to the impulse responses that one in-
tends to store and analyze in this module.

The implemented transient detector works by searching relevant changes on
the energy of the output of a 5th order inverse LP filter, applied over the 128
newest samples (∼2.9 ms) of the input signal1, as detailed in [2, 3].

Frame Acquisition. This stage is triggered once a relevant transient period
has been detected in the captured signal. Basically, this stage is in charge of
acquiring a per-channel 4864-point length signal frame (including the first 128
points already used in the transient detector), representing approximately 95 ms
of audio content. All samples are stored in memory for the subsequent processing
stages.

Feature Extraction. Direct inspection of time or frequency information of the
captured signals does not permit to accurately assess on whether the piece under
analysis is a GOOD or a BAD one. Therefore, the used analysis scheme follows
a mixed time-frequency approach. It basically consists in the inspection of the
evolution of certain spectral characteristics through time. For that, sixteen 1024-
point FFTs are computed, overlapping with each other by 75%. The hanning
window function is used in the segmentation of the audio signal.

The spectral content (512 points) is partitioned in 4 non-uniform frequency
bands as detailed in [2], and all features are obtained through the analysis of the
evolution of the energy within each band through time. The energy contained
within each band is computed using the expression

Eb(s) = 10 log10

{
1
Nb

startb+Nb−1∑
k=startb

[Xs(k)]
2

}
, (1)

where b = 1, 2, 3, 4 is the frequency band, startb and Nb are, respectively, the
start bin and number of bins of the corresponding band b, s = 1, 2, . . . , 16 is the
time segment, and X(k) represents the FFT value at the k-th frequency bin.

The number of obtained features is 6, which gives a total of 12 available
features (considering both input channels). They are presented next.

Persistence (energy decay per band) - F1 to F4. Comparing the typical audio
impulse responses of both GOOD and BAD kinds of pieces, one can see that the
former kind has a longer, thus more persistent, response. Four features, one per
each band, are extracted as

Fb =
16∑
s=1

|max [Eb(·)]− Eb(s)|, b = 1, 2, 3, 4. (2)

1 Notice that the energy is calculated within 128-sample periods.
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Stability (energy decay regularity) - F5. Analysing the energy decay within each
frequency band, it is seen that the logarithmic value of the energy evolves in
an approximately linear way. However, for the BAD pieces, this evolution is
more unstable. The 5th feature is obtained through the standard deviation of
the energy differences between consecutive time segments of the signal, and
computed as

F5 =
1
4

4∑
b=1

√√√√ 1
15

15∑
s=1

{
Δb
E(s)− avg

[
Δb
E(·)]}2, (3)

where
Δj
E(i) = Ej(i)− Ej(i+ 1) (4)

is the energy difference between the i-th segment and its subsequent one, given
the frequency band j.

Dispersion (spectral evolution profile) - F6. From a subjective analysis, it can
be seen [2] that there are differences in the timbres of the two kinds of pieces,
although they are not structured in an evident way. From here, another relevant
feature can be extracted, that evaluates the spectral balance of the response of
the piece under analysis.

From the existing 4 frequency bands, the 3 most consistent ones are selected,
which have been found to correspond to the first 3 bands. From these bands, an
average value of their energy for each time segment s, is calculated:

A(s) =
1
3

3∑
b=1

Eb(s), s = 1, 2, . . . , 16. (5)

To obtain F6, the Euclidean distances between all Eb(s) and A(s) are used, as
can be seen in the expression

F6 =
1
16

16∑
s=1

√√√√ 4∑
b=1

[Eb(s)− A(s)]2. (6)

The value of F6 from Eq. 6 represents a measure of the syntony or spectral
openness through time.

Figure 2 illustrates the class separation obtained using these features for a set
of 17 GOOD and 17 BAD roof-tiles which have been previously classified by hu-
man experts. Also, as the histograms of the features can be modeled by Gaussian
functions, the plots presented in the figure refer to the Gaussian distributions
obtained through the mean and standard deviation values, as estimated from
data pertaining to each one of the two classes.

Feature Transmission. This stage is responsible for transmitting the 12 fea-
tures calculated in the precedent processing stage to the PC, one by one, as soon
as they are calculated. The RS232 serial protocol is used.
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Fig. 2. Plots of the Gaussian functions that represent the probability distri-
butions for each extracted feature for only one audio channel, denoting their
contribution for class separation within the analyzed set of ceramic pieces. Class
GOOD is represented by solid lines, while class BAD is plotted by dashed curves

2.3 The Classification Module

This module consists of aMatlab application running on a PC. This application
has a graphical user interface capable of providing flexibility, interactivity and
ease of use.

In the current implementation of the system, the command activating the
stroke to be applied to the ceramic piece (which will trigger the whole classifi-
cation algorithm) is given by the user from the user-interface application2. The
command is transmitted to the pneumatic actuator through the parallel I/O
port of the PC.

After having received the processed signal features from the serial I/O port,
the user-interface application will provide the final classification result. This
result, as well as the received features, are displayed on the computer screen.

Several pattern recognition techniques were implemented, including the
Fisher Linear Discriminant function (FLD), k–Nearest-Neighbor estimation
(kNN), Learning Vector Quantization (LVQ), and Gaudio techniques [2].

The Gaudio Classifying Technique. This technique corresponds to a super-
vised, parametric classifying method [2]. The classifier has a non-linear behaviour
and assumes that the probability density function of each feature follows a Gaus-
sian distribution. For the simple case of a two-class problem and given the input
2 Note that, in the final implemented system, it is intended that the stroke orders be
given automatically upon detection of the presence of a piece.



932 Vasco C. F. Santos et al.

vector x = [x1, x2, . . . , xM ], the output of the classifier will be

Cx =
M∑
i=1

Wi ·max
[
0,min

[
1,

xi − μAi
μBi − μAi

]]
, (7)

where Wi is a weighting factor for feature i, and μαi represents the mean value of
the distribution of class α for feature i. The output of the classifier is limited in
the interval [0, 1], which requires that

∑M
i=1Wi = 1. The final decision is taken

through the use of the following rule:

x ∈
{

class A, if Cx ≤ 0.5
class B, if Cx > 0.5 . (8)

The weighting factors are obtained by calculating the point that intersects both
distributions, which is

θi =
μBi − μAi
σBi + σAi

, (9)

where σαi are the standard deviations of the class distributions. The weights are
then found by [2]

Wi =
θi∑M

m=1 θm
. (10)

LVQ-Based Experiments. A series of experiments using this kind of technol-
ogy were made, and meaningful results have been achieved. The N ×M cells
network is initialized using the Self-Organizing Map (SOM) algorithm [4]. The
training process is accomplished using OLVQ1 and LVQ2 [2, 4].

Automatic Feature Selection. Not all 12 features have good discrimination
properties, as they may even somewhat confuse the training process. Besides
that, their ability to separate the classes varies with different training sets. More-
over, for practical reasons, one surely prefers an as-simple-as-possible classifier.

The selected algorithm for the task of selecting the subset of K most discrimi-
nant features is the Forward Sequential Search algorithm [5], following a wrapper
strategy [6], which means that the final classifier itself is used in every iteration.
The inputs of the algorithm are the training examples and the number of de-
sired features, K. The outputs are only the K features selected by the algorithm.
Several values of K have been specified for evaluation purposes, as detailed next.

3 Results

A set of 34 roof-tiles (17 GOOD, 17 BAD) was used in the experiments. They
were all obtained from the same manufacturer and are all of the same type. As
the available set is short, and because the differences on the results obtained
for different strokes on the same piece are somewhat considerable, 10 strokes
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Table 1. Some results obtained for each of the experimented classifying tech-
niques

Technique FLD kNN (k = 1) kNN (k = 3) Gaudio

Number of
features 4 6 12 4 6 12 4 6 12 4 6 12

Performance
(error %) 2.1% 1.8% 2.6% 1.5% 2.1% 1.8% 2.1% 2.1% 2.4% 1.8% 1.2% 1.5%

Technique LVQ LVQ LVQ LVQ
(2× 4 cells) (3× 3 cells) (4× 5 cells) (5× 5 cells)

Number of
features 4 6 12 4 6 12 4 6 12 4 6 12

Performance
(error %) 4.1% 2.4% 3.8% 3.8% 2.6% 4.4% 3.5% 2.4% 4.7% 4.7% 4.4% 4.7%

were applied to each one of the pieces, giving a total of 170 examples for each
class. The whole set of 340 examples is divided into 10 equally sized subsets, and
a cross-validation scheme is used. So, 9 subsets are used for training, while the
remainder is used for performance measure. All combinations are executed, and
the final performance measure is the average of the performances of each of the
combinations3.

Some of the most interesting results obtained, regarding the variation of
the number of features used for each technique, are presented in Table 1. In
particular, the Gaudio classifier exhibits a remarkable performance. In fact, the
lowest error percentage obtained is 1.2%, which is a good result. As a parametric
classifier, its suitability for real-time implementation is obvious, and is a strong
candidate for the final implementation of this system. On the other hand, the use
of the weighting factors Wi permits the classifier to be more independent with
respect to the dimension of the input feature vectors, which adds flexibility to
the process. The FLD and the kNN classifiers present also good results, but the
former lacks a bit on flexibility and the latter lacks on computational simplicity.
The LVQ presents less good results but should not be ignored because, as many
neural network classifiers, it is very flexible. Also, it exhibited error percentages
as low as 2.4%, which is comparable to the results of the other techniques.

3.1 Analysis of the Influence of Noise

The performance of the system was also tested in an industrial environment
which, for this kind of industry, is rather hostile for an application based on
sound analysis. Several minutes of the noise present in the production unit were
recorded and digitally stored on a DAT tape. The classifying system was tested
in the laboratory, with the help of a DAT player. The speaker was directed to
the system prototype and the sound volume set to 80 dB SPL, which is a typical
3 Note that for the kNN technique this does not apply, since the Leave-one-out strat-
egy [7] is used instead.
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value of the sound intensity in the factory. The Gaudio classifier was chosen
and all 12 available features present to the input of the classifier. There were no
errors using the referred set of example pieces. It is only when the noise intensity
exceeds 90 dB SPL (which corresponds to an SNR of about 5 dB) that mistakes
start to appear, as well as undetected strokes.

4 Conclusions and Future Work

As can be seen in Table 1, good results may be achieved by using the methods
described in this paper. The Gaudio classifier, that has been derived in an em-
pirical way [2], appears to be capable of a particularly interesting performance.
Considering the low representativeness of the set of examples used in the experi-
ments, one cannot assume that the LVQ classifier is not suitable in this context.
In general, all the techniques presented here exhibit a satisfactory performance,
which somehow indicates that the success of the classification process depends
primarily on an appropriate choice of the signal features and associated discrim-
ination power.

The influence of noise was shown to be low, despite the fact that the system
does not have any noise cancellation scheme implemented yet.

In summary, one can conclude that this system is suitable for integration in
an industrial roof-tile production flow.

Topics for future work include: the inclusion of an active noise cancellation
scheme; the study of other kinds of features extracted from more sophisticated
analyses (like wavelets, for example); experiments with other classifying tech-
nologies; and adaptation of the mechanical sub-system to the continuous flow of
roof-tiles in a production line.
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Abstract. In this paper we describe clustering of web documents repre-
sented by graphs rather than vectors. We present a novel method for clus-
tering graph-based data using the standard k-means algorithm and com-
pare its performance to the conventional vector-model approach using
cosine similarity. The proposed method is evaluated when using five dif-
ferent graph representations under two different clustering performance
indices. The experiments are performed on two separate web document
collections.

1 Introduction

Clustering is an active area of research that has been applied in many domains.
With clustering the goal is to partition a given group of data items into clusters
such that items in the same cluster are similar to each other and dissimilar to
the items in other clusters. When representing data items for clustering, a nu-
merical vector representation is often used. This model is simple and allows
the use of numerical techniques that deal with real-valued feature vectors in
a Euclidean space. However, using a vector representation potentially discards
useful structural information that is inherent in the original data items, such
as web documents. By keeping information such as term ordering and location,
which is lost when using a vector representation of web documents, we could
possibly improve clustering performance. Traditional clustering methods require
the computation of distances between data items or the calculation of cluster
representatives, both of which are easily accomplished in a Euclidean space.

In order to overcome this problem, we have introduced an extension of clas-
sical clustering methods that allows us to work with graphs as fundamental
data structures instead of being limited to vectors of numeric values [8]. Our
approach has two main benefits: (1) it allows us to keep the inherent structure
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Inputs: the set of n data items and a parameter, k, defining the number of clusters to create
Outputs: the centroids of the clusters and for each data item the cluster (an integer in [1,k]) it

belongs to

Step�1. Assign each data item randomly to a cluster (from 1 to k).
Step�2. Using the initial assignment, determine the centroids of each cluster.
Step�3. Given the new centroids, assign each data item to be in the cluster of its closest centroid.
Step�4. Re-compute the centroids as in Step 2. Repeat Steps 3 and 4 until the centroids do not

change.

Fig. 1. The basic k-means clustering algorithm

of the original data items by modeling each as a graph instead of a vector, and
(2) we can apply straightforward extensions to existing clustering algorithms,
such as k-means, rather than having to create new algorithms from scratch.

In this paper we will address comparison of different graph representations of
web documents in the context of document clustering performance. We will use
the k-means clustering algorithm to cluster two web document collections. The
web documents will be modeled using five different graph representations in or-
der to compare and evaluate the performance of each representation. Clustering
of web documents is an important problem for two major reasons: (1) clustering
a document collection into categories enables it to be more easily browsed, and
(2) clustering can improve the performance of search and retrieval on a doc-
ument collection. Clustering with graphs is well established. However in those
methods the entire clustering problem is treated as a graph: nodes represent the
items to be clustered and weights on edges connecting two nodes indicate the
distance between the objects the nodes represent. The usual procedure is to cre-
ate a minimal spanning tree of the graph and then remove the remaining edges
with the largest weight until the number of desired clusters is achieved [11].

This paper is organized as follows. In Sect. 2, we briefly describe our extension
of the k-means algorithm that allows the use of graphs instead of numerical
vectors. In Sect. 3, we propose several graph representations of web documents.
Experimental results comparing clustering using alternative representations with
respect to ground truth under two performance measures are given in Sect. 4.
Conclusions are provided in Sect. 5.

2 k-Means with Graphs

The k-means clustering algorithm is a simple and straightforward method for
clustering data [5]. The basic algorithm is given in Fig. 1. The common paradigm
is to represent each data item, which consists of m numeric values, as a vector
in the space )m. The distance measure used by the algorithm is usually the
Euclidean distance, however in vector-based models for information retrieval the
cosine similarity measure is often used due to its length invariance property.
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If methods of computing distances between graphs and determining a rep-
resentative of a set of graphs are available, then it is possible to extend many
clustering methods to work directly on graphs instead of vectors. First, any
distance calculations between data items to be clustered, which are now rep-
resented by graphs and not vectors, is accomplished with a graph-theoretical
distance measure. Second, since it is necessary to compute the distance between
data items and cluster centers, it follows that the cluster centers (centroids) must
also be graphs. Therefore, we compute the representative “centroid” of a cluster
as the median graph of the set of graphs in that cluster. The graphs we use in
this paper are the regular directed graphs with labeled nodes and edges.

A method for computing the distance between two graphs using the maxi-
mum common subgraph has been proposed:

dist(G1, G2) = 1− |mcs(G1, G2)|
max(|G1|, |G2|) (1)

where G1 and G2 are graphs, mcs(G1, G2) is their maximum common subgraph,
max(. . .) is the standard numerical maximum operation, and | . . . | denotes the
size of the graph [1]. For our application of clustering web documents, the size of
a graph will usually be defined as the number of nodes and edges in the graph (i.e.
|G| = |V |+ |E|). Other distance measures which are also based on the maximum
common subgraph have been suggested [3][10]. However, the distance measure
of Eq. (1) has the advantage that it requires the least number of computations
when compared to the other two distance measures we mentioned above. In
the general case the computation of mcs is NP-Complete [4], but for our graph
representations the computation of mcs is polynomial time due to the existence
of unique node labels in the graph representations (i.e. we can just look at the
intersection of the nodes and edges, since each node is unique).

Finally, as a cluster representative we use the median of a set of graphs,
which is defined as that graph from a set of graphs which has the minimum
average distance to all the other graphs in the set. Here the distance to every
other graph is computed (with Eq. (1)) and the sum of those distances is divided
by the number of graphs in the set. Note that the computation of the median
requires only O(n2) graph distance computations and then finding the minimum
among those distances.

3 Graph Representations

In this section we will detail the five methods we will use to represent web doc-
uments using graphs instead of vectors, which are called the standard, simple,
n-distance, n-simple distance, and frequency representations. First, we have the
standard representation. This representation, and all the others presented here,
are based on the adjacency of terms in a web document. Under the standard
method, we represent each document as a graph as follows. First, each term
(word) appearing in the document, except for stop words such as “the”, “of”,
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YAHOO NEWS

SERVICE

MORE

REPORTS REUTERS

TI L

TX

TX

TX

NEWS

SERVICE

MORE

REPORTS REUTERS

Fig. 2. Example of standard (left) and simple (right) graph representations of
a document

and “and” which convey little information, becomes a vertex in the graph rep-
resenting that document. This is accomplished by labeling each node with the
term it represents. Note that we create only a single vertex for each word even
if a word appears more than once in the text. Thus each vertex in the graph
represents a unique word and is labeled with a unique term not used to label
any other node. Second, if word a immediately precedes word b somewhere in
a “section” s of the document, then there is a directed edge from the vertex
corresponding to a to the vertex corresponding to b with an edge label s. We
take into account certain punctuation (such as periods) and do not create an
edge when these are present between two words. Sections we have defined are:
title, which contains the text related to the documents title and any provided
keywords (meta-data); link, which is text that appears in clickable hyper-links
on the document; and text, which comprises any of the readable text in the doc-
ument (this includes link text but not title and keyword text). Next, we apply
a simple stemming method and conflate terms to the most frequently occurring
form by re-labeling nodes and updating edges as needed. Finally, we remove the
most infrequently occurring words on each document, leaving at most m nodes
per graph (m being a user provided parameter). This is similar to the dimension-
ality reduction process for vector representations [7]. An example of this type of
graph representation is given in Fig. 2 (left side). The ovals indicate nodes and
their corresponding term labels. The edges are labeled according to title (TI),
link (L), or text (TX). The document represented by the example graph has the
title “YAHOO NEWS”, a link whose text reads “MORE NEWS”, and text con-
taining “REUTERS NEWS SERVICE REPORTS”. Note there is no restriction
on the form of the graph and that cycles are allowed.

The second type of graph representation we will look at is what we call the
simple representation. It is basically the same as the standard representation,
except that we look at only the visible text on the page (no title or meta-
data is examined) and we do not label the edges. An example of this type of
representation is given in Fig. 2 (right side).

The third type of representation is called the n-distance representation. Under
this model, there is a user-provided parameter, n. Instead of just looking to see
what term immediately follows a given term in a web document, we look up
to n terms ahead and connect the terms with an edge that is labeled with the
distance between them. For example, if we had the following text on a web page,
“AAA BBB CCC DDD”, then we would have an edge from term AAA to term



Graph Representations for Web Document Clustering 939

AAA BBB

CCC DDD

1

1

1

2 2

3

Fig. 3. Example of an n-distance graph representation

BBB labeled with a 1, an edge from term AAA to term CCC labeled 2, and so
on. The complete graph is shown in Fig. 3. Similar to n-distance, we also have
the fourth graph representation, n-simple distance. Under this representation,
any two words separated by n terms or less are connected by an unlabeled edge.

Finally, the fifth graph representation is what we call the frequency represen-
tation. This is similar to the simple representation, but each node and edge has
associated with it a frequency measure. For nodes this indicates how many times
the associated term appeared in the web document; for edges, this indicates the
number of times the two connected terms appeared adjacent to each other in the
specified order. For this representation the graph size is defined as the total of
the node frequencies added to the total of the edge frequencies. Further, when
we compute the maximum common subgraph we take the minimum frequency
element (either node or edge) as the value for the mcs.

4 Experimental Results

Our experiments were performed on two different collections of documents, called
the F-series and the J-series. The data sets are available under these names
at ftp://ftp.cs.umn.edu/dept/users/boley/PDDPdata/. Each collection contains
web documents in HTML format. The F-series originally contained 98 docu-
ments assigned to one or more of 17 sub-categories of four major category areas.
Since there are multiple and sometimes conflicting sub-category classifications,
we have reduced the categories to just the four major ones in order to simplify
the problem. There were five documents that had conflicting classifications (i.e.,
they were classified to belong to two or more of the four major categories) which
we removed, leaving 93 total documents. The J-series contains 185 documents
and ten classes; we have not modified this document collection.

There are already several pre-created term–document matrices available for
our vector model experiments (from the above site). For the F-series documents
there are 332 dimensions (terms) used, while the J-series has 474 dimensions.
With the vector model experiments we used a distance based on the cosine sim-
ilarity [7]. For both approaches we repeated the same experiment ten times and
took the average in order to account for the variance between runs due to the
random initialization of the clustering algorithm. Our graph-based experiments
used the graph representations described above in Sect. 3. For the distance re-
lated graph representations, n-distance and n-simple distance, we used n = 5
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Fig. 4. Experimental results for F-series data set: Rand index (top); mutual
information (bottom)

(i.e. 5-distance and 5-simple distance). We have evaluated performance using
two clustering performance measures which measure the matching of obtained
clusters to the “ground truth” clusters. The first performance index is the Rand
index [6], which is computed by examining the produced clustering and check-
ing how closely it matches the ground truth clustering. It produces a value in
the interval [0, 1], with 1 representing a clustering that perfectly matches ground
truth. The second performance index we use ismutual information [2][9], which is
an information-theoretic measure that compares the overall degree of agreement
between the clustering under consideration and ground truth, with a preference
for clusters that have high purity. Higher values of mutual information indicate
better performance.

From our experimental results, which are presented in Figs. 4 and 5 as a func-
tion of the maximum number of nodes allowed in a graph for the F-series and
the J-series, respectively, we see that the various graph representations can per-
form as well or better than the conventional vector model approach in terms
of clustering accuracy. The F-series showed good results for the graph represen-
tations, but the J-series was not quite as good, especially for representations
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Fig. 5. Experimental results for J-series data set: Rand index (top); mutual
information (bottom)

other than standard. In terms of ranking the various graph representations, the
results do not show a clear ordering that is consistent for both data sets with
the exception that the standard representation is generally the best performing
and it outperformed the vector representation in nearly all cases for both data
sets. The effect of the maximum graph size (number of nodes) on the clustering
performance is not obvious: in the J-series, the accuracy is steadily decreasing
after reaching its maximum at 20 nodes for standard, while in the F-series we
see a sharp increase in accuracy between 40 and 50 nodes. We intend to further
study the effect of graph size in our future work.

5 Conclusions

In this paper we have compared the performance of several graph representations
for web documents, which are used during clustering instead of the traditional
vector representation. The graph representations were used in the k-means clus-
tering algorithm by employing a graph-theoretical distance measure and the
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concept of median graphs instead of the typical distance measure and centroid
calculation, respectively. Our experimental results show an improvement in clus-
tering performance with graph representations, as measured by the Rand index
and mutual information, over the typical case of vector model representation,
especially for our “standard” representation.

Finding the optimal number of nodes in a graph and the optimal value of n
for our distance-based representations is a subject of our future research. We
also intend to apply our method to other data sets with different characteristics.
Other avenues to explore include developing graph-based methods for automati-
cally determining the number of clusters when no information about the number
of actual categories is available, and the modification of other clustering algo-
rithms, such as hierarchical agglomerative clustering and fuzzy c-means, for use
with graphs.
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Abstract. Decision trees have been widely used for different tasks in
artificial intelligence and data mining. Tree automata have been used
in pattern recognition tasks to represent some features of objects to be
classified. Here we propose a method that combines both approaches to
solve a classical problem in pattern recognition such as Optical Charac-
ter Recognition. We propose a method which is organized in two stages:
(1) we use a grammatical inference technique to represent some struc-
tural features of the characters and, (2) we obtain edit distances between
characters in order to design a decision tree. The combination of both
methods benefits from their individual characteristics and is formulated
as a coherent unifying strategy.

1 Introduction

Syntactic Pattern Recognition is a well known research area from Artificial
Intelligence in which the target task is to recognize objects from the real
world (speech, image, medical signals, ...) which are represented as formal lan-
guages [HU79]. Mainly, the most common representations in these tasks have
been some families of string languages (regular, context-free, ...), some families
of tree languages (regular ones) or some families of graph languages (graphs
based on vertex substitutions or hypergraphs with edge replacement). So, the
goal in any syntactic pattern recognition learning task is to guess the hidden
formal language from examples (strings, trees or graphs).

By the other hand, decision trees [Qu93] can be considered as tree-like rep-
resentations of finite sets of if-then-else rules. This representation allows to take
some decisions for the analysis of a set of attributes of a given concept. Mainly,
the decision can be applied to a classification task, a predictive task or an advise-
ment task (i.e. expert systems). During the last years, decision trees have been
applied in the very promising area of data mining [MBK98] to extract knowledge
from large databases.

In this work, we combine these two different approaches to the learning pro-
blem in order to construct a system to solve an Optical Character Recognition
(OCR) task. Here, we will work only with handwritten isolated digits from 0

� Work supported by the Spanish CICYT under contract TIC2000-1153.
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to 9. Our solution is based on a two stages system. First, the system learns a set
of tree automata (one per digit) by using an error-correcting technique based on
a grammatical inference method. Basic concepts and methods on grammatical
inference can be viewed in [AS83, Sa97]. Then, the system obtains a set of edit
distances of every digit to every tree automaton. In the last stage, the system
learns a decision tree from the last set of distances that will classify any digit
according to a set of rules based on distances.

The structure of this work is as follows: First, we will explain the OCR task
that the method attempts to solve. We will explain the learning methods on every
phase (i.e. learning of tree automata and learning of decision trees). Finally, we
will show some preliminary results from an experimentation using our approach
and we will give some research guidelines for future works.

2 The Problem: Optical Character Recognition

The target problem of this work is related to the working area of Handwritten
Recognition. Here, the general goal is to construct a robust system which be
able to recognize any phrase or text that has been previously handwritten by
a human being. This task has not yet completely solved. So, some subproblems
are involved to solve this task. For example, there exists an increasing area that
attempts to construct good segmentation rules in order to factorize any phrase
in words an any word in letters or digits. Other researchers have focused their
interest on constructing good language models for task-oriented systems (for ex-
ample, some systems are focused on medical writings, or mathematics writings
and so on). We will focus on another task which consists on isolated digits recog-
nition. The solution to this task is important to construct more sophisticated
systems. Here, the task is quite simple given that phrase and word segmentation
tasks are avoided. This is the problem that we try to solve with a syntactic
pattern recognition approach.

2.1 Representation of the Digits

First, we will consider how the real world objects will be represented. Let us
observe in Figure 1 a digit 2 that has been obtained from a handwriting scanning.

Under our approach, the first stage to represent any digit is to obtain a quad
tree (qtree) [HS79] from its digital image. A qtree can be constructed by drawing
a square window around the digit and splitting the window in four windows of
the same size recursively up to a predefined depth. In Figure 2 we can observe
how the window of digit 2 is recursively split.

Once the system obtains the windows of the digit, then it assigns a label
to every window of the smallest size. The systems assigns one label to every
window depending on the grey scale (black, white or grey). So, every smallest
window is represented by a label of a three symbols alphabet (i.e. {a, b, c}). The
relationships between windows can be represented by a tree by using an up-
down and left-to-right scanning of the qtree. In Figure 3 we can observe the tree
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Fig. 1. Handwritten digit 2

Fig. 2. Constructing a qtree for digit 2

a

b b b b
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a a a a
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a a c c

σ

c c a a

σ

c c a a
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σ

σ

Fig. 3. Handwritten digit qtree with a depth that equals to 3. Label a corre-
sponds to a at least 75% white square, label b corresponds to a at least 75%
black square, and label c corresponds to a grey square

obtained for digit 2 by using a depth that equals to 3 while constructing the
qtree. From now on, we will use this tree representation.

3 Learning Methods

We will use two different learning paradigms to solve the learning stage of the
previously defined problem. First, we will use grammatical inference methods to
construct a tree automaton from every set of trees representing the same digit.
Then, we will go to a second learning stage to obtain a different representation
of the digit based on distances of every digit (every tree) to every concept (every
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learning method
for tree automata

tree automata 
for digit 0

qtrees for every digit

qtrees for digit 0 qtrees for digit 9

distances to model 0 distances to model 9

learning method
for tree automata

learning method
for decision trees

DECISION TREE

tree automata 
for digit 9

Fig. 4. Our learning strategy to solve the OCR problem

automaton). From this second representation we will infer a decision tree by
using standard methods based on the entropy of the examples and distances.
The learning scheme is showed in Figure 4.

Now we will explain the different methods that we have used at every learning
stage.

3.1 Grammatical Inference of Error-Correcting Tree Automata

The first stage of our learning approach is based on a grammatical inference
method for tree languages. Grammatical inference [AS83, Sa97] is an inductive
approach to the learning problem based on the representation of concepts as
formal languages. Here, as previously explained, we use trees to represent the
digits for the OCR task.

Several methods have been proposed to infer tree languages from exam-
ples [Ga93, GO93, Sa92]. We will apply a method based on error-correcting
distances from trees to tree automata. The definition of such distance is based
on classical editing distances for strings to finite string automata [LSG00]. Once,
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the distance has been defined then, the learning method is an error-correcting
grammatical inference technique [LE02].

3.2 C4.5 Learning Algorithm

Learning decision trees is a classical topic on machine learning. A decision tree
is a representation of a finite set of if-then-else rules. The main characteristics
of decision trees are the following:

1. The examples can be defined as a set of numerical and symbolic attributes.
2. The examples can be incomplete or contain noisy data.
3. The main learning algorithms work under Occam’s razor principle and Min-
imum Description Length approaches.

The main learning algorithms for decision trees have been proposed by Quin-
lan [Qu93]. First, Quinlan defined ID3 algorithm based on the information gain
principle. This criterion is performed by calculating the entropy that produces
every attribute of the examples and by selecting the attributes that save more
decisions in information terms. Later, Quinlan defined C4.5 algorithm [Qu93]
which is an evolution of ID3 algorithm. We will use C4.5 algorithm for the
second learning phase. The main characteristics of C4.5 are the following:

1. The algorithm can works with continuous attributes (i.e. real data).
2. Information gain is not the only learning criterion.
3. The trees can be post-pruned in order to refine the desired output.

4 Experiments and Results

We have performed two experiments in order to carry out a first evaluation
of our learning strategy. The digits that we have used for training and test is
a subset from the data set ”NIST SPECIAL DATABASE 3, NIST Binary Images
of Handwritten Segmented Characters” [Ga94].

The protocol that we have performed in both experiments is the following
one: First, we obtain the qtree representations of every digit in the data set.
Then, we divide this set in two disjoint subsets (Set 1 and Set 2) and we ap-
ply to Set 1 the Error-Correcting inference technique in order to obtain a tree
automaton for every digit. We calculate the distance of every digit to every au-
tomaton (so, every digit has ten attributes that represent the distances to every
model). Then, we calculate the distances of every digit in Set 2 to every tree
automaton.

From Set 1 and Set 2 we perform a learning plus testing phase for decision
trees. We have used an implementation of C4.5 algorithm in C which is available
from internet at J.R. Quinlan’s Home Page [QuHTTP]. Observe that for every
digit at Set 1 there is at least one distance with value 0, while this is not true
in general for digits of Set 2.
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Experiment 1

We have selected 3000 digits for Set 1 (300 samples for every digit) and 1000
digits for Set 2 (100 samples for every digit). We have performed three rounds
on C4.5 algorithm in order to use different samples with or without distance 0.
The results of this experiment are showed in Figure 5.

Round 1 Round 2
Evaluation on training data (2666 items)
Before Pruning After Pruning
Size Errors
189 44(1.7 %)

Size Errors Estimate
173 48(1.8 %) 5.8 %

Evaluation on test data (1334 items)
Before Pruning After Pruning
Size Errors
189 122( 9.1%)

Size Errors Estimate
173 120( 9.0%) 5.8%

Evaluation on training data (2667 items)
Before Pruning After Pruning
Size Errors
167 54( 2.0%)

Size Errors Estimate
159 55( 2.1%) ( 5.7%)

Evaluation on test data (1333 items)
Before Pruning After Pruning
Size Errors
167 116( 8.7%)

Size Errors Estimate
159 114( 8.6%) ( 5.7%)

Round 3
Evaluation on training data (2667 items)
Before Pruning After Pruning
Size Errors
205 56( 2.1%)

Size Errors Estimate
187 60( 2.2%) 6.5%

Evaluation on test data (1333 items)
Before Pruning After Pruning
Size Errors
205 87( 6.5%)

Size Errors Estimate
187 86( 6.5%) 6.5%

Fig. 5. Results for the first experiment

Experiment 2

We have selected 3000 digits for Set 1 (300 samples for every digit) and 2000
digits for Set 2 (200 samples for every digit). We have performed three rounds
on C4.5 algorithm in order to use different samples with or without distance 0.
The results of this experiment are showed in Figure 6.

Conclusions

It can be observed that, for every round that we have carried out on the exper-
iments, the error median in training data is less than the one in test data. This
is a trivial result that all learning methods would hold.

After, the pruning of the decision trees the median error decreases. It implies
that some rules that C4.5 obtains are not useful for the classification task.

The results on the first experiment are better than in the second. Here, the
input sample defines how the rules are extracted. In the first experiment, there
is a number of examples with distance 0 to any tree automata which is three
times those examples whose distances to every tree automata is not equal to 0.
So, the input sample for constructing the tree automata is very important to
obtain not only the distances but the decision tree.
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Round 1 Round 2

Evaluation on training data (3333 items)
Before Pruning After Pruning
Size Errors
315 88( 2.6%)

Size Errors Estimate
293 93( 2.8%) 8.1 %

Evaluation on test data (1667 items)
Before Pruning After Pruning
Size Errors
315 189(11.3%)

Size Errors Estimate
293 185(11.1%) 8.1%

Evaluation on training data (3333 items)
Before Pruning After Pruning
Size Errors
305 86( 2.6%)

Size Errors Estimate
281 93( 2.8%) 7.9%

Evaluation on test data (1667 items)
Before Pruning After Pruning
Size Errors
305 186(11.2%)

Size Errors Estimate
281 185(11.1%) 7.9%

Round 3
Evaluation on training data (3334 items)
Before Pruning After Pruning
Size Errors
323 88( 2.6%)

Size Errors Estimate
289 97( 2.9%) 8.1%

Evaluation on test data (1666 items)
Before Pruning After Pruning
Size Errors
323 207(12.4%)

Size Errors Estimate
289 208(12.5%) 8.1%

Fig. 6. Results for the second experiment

Finally, an important remark is that the method has a better perfor-
mance than some other methods that uses only a grammatical inference ap-
proach [LE02]. Furthermore, if we compare this method with some other meth-
ods based on geometrical approaches then, the differences between median errors
can be balanced with the complexity behaviors (i.e. geometrical methods have
a worst behavior than our approach under time and space complexities).

5 Future Works

From the initial results that we have obtained, our approach to the OCR problem
has showed itself as a promising one. Anyway, we can point out to the following
research guidelines in order to improve this work.

– We should enrich the attributes of every digit by including not only the
distances but some other structural features.

– The criteria for decision tree learning could be change in order to take into
account the distribution of the distances obtained from tree automata.

– Finally, we should apply this method to other pattern recognition tasks.
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Abstract. The MOTRICO project plans the development of an ad-
vanced environment that will offer computer assistance for cardiac ther-
apy and diagnosis, which would be useful in the hemodynamics units
of those hospitals that have access to the instrumental techniques of
Angiography and Intravascular Ultrasounds. The work presented in this
paper will describe modeling and finite element mesh generation of an
anatomically realistic model of the human left coronary artery bifurca-
tion. The computational geometric model has been developed on the
basis of real anatomical information and it has a coronary vessel seg-
ment developed on the basis of the information obtained by means of
the fusion of angiograms and intravascular ultrasound images(IVUS).

1 Introduction

The MOTRICO project plans the development of an advanced environment that
will offer computer assistance:

– For constructing an anatomically realistic model of segments of the human
vascular system. This three-dimensional geometric model is generated on the
basis of the information obtained by means of the fusion of angiograms and
intravascular ultrasound images(IVUS).

– For simulating blood flow through arteries in order to calculate the wall
shear stress distribution in these arteries.

– For allowing the user to interact with the system as friendly, quickly and
intuitively as possible using virtual and augmented reality techniques for
the visualisation of 3D data.

The aim of this paper is to describe the modeling and finite element mesh gen-
eration of an anatomically realistic model of the human left coronary artery bi-
furcation. The structure of this paper is organized as follows: Geometric Model
Construction of the Left Coronary Bifurcation, Finite Element Mesh Gener-
ation, The Problem of Bifurcations, Geometric Model and Meshes Obtained.
Mesh Quality Assessment and Conclusions and Future Work.
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2 Geometric Model Construction
of the Left Coronary Bifurcation

2.1 Geometry and Morphology

The root of the Left Coronary Tree is the left main coronary artery (LM or
LMCA). This artery arises from the aortic sinus of Valaslva and it covers around
1 cm before it branches into two slightly smaller arteries: the left anterior de-
scending coronary artery(LAD) and the left circumflex coronary artery(LCX).
As far as morphology is concerned, there is a large body of literature that
deals with quantification of coronary diameters using angiography and IVUS
images [1] [2]. Moreover, Zamir and Chee (1987) carried out measurements of
lengths and diameters in a total of 1614 vessel segments in two human hearts [3].
Regarding branching characteristics, two principles suffice to model the human
coronary network and to determine diameters of child vessels and branch an-
gles: the principle of minimum pumping power and the principle of minimum
volume [4] [5]. In addition, there are several studies on coronary branching
sites [6] [7] [8].Finally, it is important to mention that the blood vessel wall
consists of three layers: the intima, the media and the adventitia. The intima is
the innermost layer, the media is the middle one and the adventitia is the out-
ermost layer. The thickness of the media layer is between two and three times
the thickness of the adventitia.

Dimensions in Lengths, Diameters, Branching Angles and Thickness
of the Bifurcation Model. According to the geometry information described
in this section, an idealized geometric model of the LM-LAD-LCX bifurcation is
modeled (See figure 5) on the following dimensions: The lengths are 0.9 cm, 2.7
cm and 1.06 cm for the LM, LAD and LCX, respectively. The vessel of the LM
artery has an average diameter of 3.8 mm. The LAD and LCX vessels have 3.1
mm and 2.7 mm for initial diameters and 2 mm and 2.3 mm for final diameters,
respectively. The total branch angle is 76 degrees and the angles between the
LM-LAD and the LM-LCX are 116 and 168 degrees. It is easy to observe that
these dimensions in angles and diameters are in keeping with the principles cited
in this section. The thicknesses are 0.1 mm, 0.3 mm for the adventitia and media
layers, respectively. The thickness of the intima layer is considered null because
it consists only of the endothelium.

2.2 Idealized 3D Construction of the LM-LAD-LCX Bifurcation

The following operations have been performed in order to construct the idealized
bifurcation geometric model :

– A semi-circle with the LMCA’s diameter is created and the bifurcation tra-
jectory is described using three cubic NURBS curves.

– Three NURBS surfaces are created by extruding the semi-circle along each
of the NURBS curves.
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Fig. 1. The snap of three NURBS surfaces created using the techniques “snap
to grid” and “snap to point”

Fig. 2. The model of the Left Coronary Bifurcation placed in a heart model

– In order to eliminate the hole formed where the three surfaces meet in a com-
plex way, they must meet at a point. However, this can pose a problem, be-
cause simply joining them at the central point causes overlapping edges. To
solve the problem, knots of multiplicity 3 are created. The multiknots pro-
duce a discontinuity that helps align the surfaces, so continuity is maintained
across the multiknot curves as if they were junctions.

– Similar points in each curve are aligned (See figure 1) by activating the
techniques called “snap to grid” and “snap to point” [9].

– In order to perform the adjustment of the vessel diameters, the control points
related to each section are scaled according to the diameters cited in the
section Sect. 2.1.

– Branching angles are also modified according to the angles cited in the sec-
tion Sect. 2.1. The adjustment of branching angles are made in two steps.
The first step is to create a set of thin and long reference objects and to place
them in space according to the correct orientation and the second one is to
align the control points of each branch with their corresponding reference
object.
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The following operations have been performed in order to construct the geomet-
ric model of the vessel segments of the idealized arteries: [10]

– The two semi-circular curves of the final cross section in each branch are
extruded along a NURB curve that the trajectory of each artery describes
in space.

– Cross section diameters are modified according to each individual artery.
– The NURBS surfaces of each branch are deformed with the purpose of ob-

taining the correct curvature. For this reason, the curvature of the surface
of heart is applied to each branch. A 3D model of a heart is obtained. The
constructed model is placed into the heart model and the adjustment of the
surface over the heart surface is made by rotating and traslating each control
point until it touchs the heart surface (See figure 2).

These operations have been performed for each of the surfaces that separate
vessel wall layers with different diameters. All surface patches are saved as IGES
surfaces. Afterwards, different subvolumes required for mesh techniques are com-
posed from these IGES surfaces using boolean operations. Finally, the four mod-
els (bifurcation and three vessels) are joined as a single model.

2.3 Real 3D Reconstruction of a LAD Vessel Segment

In the idealized bifurcation model, a LAD vessel segment has been replaced with
a real 3D reconstruction of the same segment (See figure 5). This segment has
an average length of 1.35 cm. This reconstruction of the LAD segment has been
obtained from the sequence of IVUS images and angiographies. Both methods
(IVUS and angiogram) provide a lot of information on the internal and the
external shape of the coronary vessels.

The vessel model is reconstructed using deformable models and compounding
methods (See figure 3). Deformable models are very well suited for lumen and
vessel wall detection, as they allow modeling of the vessel via an elastic dynamic

Fig. 3. 3D Reconstruction of a Vessel Segment. (a) The reconstruction using
deformable models and compounding methods. (b) The correspondence between
IVUS and angiogram data. The photos are courtesy of P. Radeva and D. Rotger
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model that adjusts to the image features for reconstructing the vessel. Once the
vessel boundaries have been detected, compounding methods are used to inter-
polate IVUS data [11]. This technique is complemented by a 3D reconstruction
of the vessel using biplane angiography support (See figure 3). IVUS images are
located in space thnaks to a 3D reconstruction of the catheter trajectory on the
basis of the registration of the catheter in two views of angiograms before and
after the pullback of the IVUS catheter. Note that this spatial curve represents
the trace of the centers of the IVUS images. Each IVUS plane is placed in space
in order to allow later reconstruction of vessel tortuosity [12].

3 Finite Element Mesh Generation

Coronary vessels could be defined using their cross sections and the trajectory
they describe in space. This is the reason that they could be considered to
be sweepable volumes, that is, a blood vessel could be meshed using sweeping
algorithms. The sweeping algorithms take the 2-D quadrilateral mesh from one
cross section surface (source) and project it through the vessel to another cross
section surface (target).

3.1 Mesh Generation of Blood Vessels

In the first place, it is necessary to subdivide the vessel into subregions with
different physical characteristics suitable for finite element analysis. The vessel
decomposition has as many subvolumes as materials (adventitia, media and in-
tima layers and lumen of the artery). As far as the geometry is concerned, it is
possible to distinguish two types of subvolumes:

Ring-Shaped. This type ranges the adventitia, media and intima layers of the
artery wall. The method employed for meshing the source surface of this type of
subvolumes is called Hole (See figure 4). A polar coordinate-like mesh with the
singularity removed is produced with this method [13].

Cylinder-Shaped. This ranges the lumen of the artery. The technique used to
obtain an unstructured mesh on the 2D cross section of this type of subvolumes
is called Paving (See figure 4). The Paving technique introduced by Blacker and
Stephenson presents a method for forming complete rows of elements starting
from the boundary and working inward [14].

3.2 Mesh Generation of Bifurcations

A bifurcation is not a sweepable volume because its volume has two sweep di-
rections, one for the trunk and another for its branch. This constraint has been
lifted by decompositing the initial volume into sweepable subvolumes. There-
fore, the main difference between meshing an isolated vessel and a bifurcation
is, in essence, the initial decomposition of the volume. The bifurcation model
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Fig. 4. Mesh Generation of the LM-LAD-LCX bifurcation.(a) Generated bidi-
mensional paving and hole meshes for the source surface of the cross section of
each of three subvolumes.(b) Tridimensional meshes of each of three subvolumes

Fig. 5. Geometric model of the human left coronary artery bifurcation.(a) The
tridimensional model of the LAD vessel segment developed by means of an-
giograms and IVUS. (b) The idealized geometric model with the 3D reconstruc-
tion of the LAD vessel segment

has been subdivided into three subvolumes according to the surfaces that con-
tain the bifurcation axis and are perpendicular to the bifurcation plane. After
that, each of the subvolumes is decomposed by different materials such as blood
vessels (See figure 4). The mesh generation techniques employed in each of the
three subvolumes have been Hole and Paving for meshing the source surface of
the cross section of adventitia and media layers and of the artery lumen, respec-
tively and Sweeping to generate the three-dimensional mesh by projecting the
2D paving and hole meshes through each of the three subvolumes. Finally, the
three submeshes of domains with the same material are joined adequately as
a single mesh has been generated.
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4 The Problem of Bifurcations

Both the geometric model and the finite element meshes entail certain constraints
and problems.

4.1 Constraints Related to Geometric Modeling

Surface Continuity of Geometric Models. An important characteristic
of the geometry of coronary arteries is the absence of corners and peaks on
their surfaces, so the main constraint related to geometric modeling of coronary
vessels is the smoothness and continuity of the boundary surfaces. A frequently
used branch-modeling method is to construct the geometric models of trunk and
branch separately and to intersect them afterwards. This method was dismissed
because of the corners resulting from such intersection.

Initial Decomposition of the Domain. Some constraints related to the later
descomposition of the domain have been assessed before geometric modeling of
the bifurcation, in order to model the bifurcation surfaces already divided into
as many parts as necessary. Such constraints are mainly related to the quality
of the mesh elements. In keeping with this, several possibilities of bifurcation
modeling were considered. One of them was to preserve the triangular-shaped
hole formed where the three semicylinder-shaped surfaces meet (See Sect. 2.2)
and to mesh it as another subvolume. But this option was dismissed because of
the low quality of the mesh produced for this subvolume.

4.2 Constraints Related to Mesh Generation Techniques

Hole. In this method, the number of intervals in the azimuthal direction is
controlled by setting the number of intervals on the inner and outer bounding
loops of the surface. The number of intervals must be the same on each loop.
There are usually problems with the correspondance between mesh nodes on the
inner and outer boundaries [13].

Paving. The paving boundary must always contain an even number of nodes.
This is a necessary condition when generating an all-quadrilateral mesh [14].

Sweeping. To maintain the structured mesh in the sweep direction, sweeping
algorithms require that the linking surfaces (those that connect the source to
the target) be mappable or submappable. This constraint limits the number
of solids that can be meshed with these algorithms. They specifically exclude
solids with imprints or protrusions on the linking surfaces as bifurcations. There
is an algorithm called grafting that lifts this constraint on linking surfaces. This
algorithm has three major steps: meshing of the trunk, modification of the base
surface mesh at the graft surface, and meshing of the branch. However, it is not
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Fig. 6. The finite element meshes.(a) Meshes obtained for the tridimensional
reconstruction of the LAD vessel segment.(b) Meshes obtained for the geometric
model of the left coronary bifurcation

employed in this case because of the decomposition of materials required by the
finite element method and because the solids that generally benefit from the
grafting algorithm have one major sweep direction which is perpendicular to the
other one, that is, solids with corners [15].

5 Geometric Model and Meshes Obtained –
Mesh Quality Assessment

A geometric model of the human left coronary artery bifurcation have been
produced. The computational geometric model has been developed on the basis
of real anatomical information. In this idealized bifurcation model, a LAD vessel
segment has been replaced with a real 3D reconstruction of the same segment.
This reconstruction has been developed on the basis of the information obtained
by the fusion of angiograms and intravascular ultrasound images (See figure 5).
A total of amount of 244844 mesh nodes has been created for the geometric
model of the human left coronary artery bifurcation (See figure 6). Five meshes
have been generated for this model:

– The first mesh contains the adventitia layer, which is formed using Hole and
Sweeping mesh techniques and is an hexahedral mesh.

– The second one is a bidimensional mesh of quadrilateral elements produced
when the first mesh is generated. It covers the outermost surface of the
adventitia layer.

– The third mesh contains the media layer and is generated in the same way
as the first one.
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Fig. 7. The inside view of the lumen surface mesh of the left coronary bifurcation
model

– The fourth one is a quadrilateral mesh produced as a result of generating
the third mesh. It covers the intima layer.

– The fifth one is the lumen mesh of the bifurcation. The paving method is
employed to generate the quadrilateral mesh of the cross section surfaces and
sweeping to form the hexahedral mesh through the lumen (See figure 7).

The quality of all the generated finite element meshes has been assessed using
a variety of verification algorithms [16]. The individual characteristics of each
element are verified by calculating common metrics like aspect ratio or jacobian,
depending on the element type. For each metric, the minimum, maximum, av-
erage, and standard deviation have been tracked. For example, the shear metric
measures element skew and ranges between zero and one, with a value of zero
signifying a non-convex element, and a value of one being a “perfect” element.
Therefore, the average of the shear metric of the finite element meshes generated
is 0.8986957, the standard deviation is 0.11968, the minimum value is 0.3954066
and the maximum value is 0.9999164.

On the other hand, hexahedral elements and quadrilateral elements are
checked to see if any faces of hexahedral elements or quadrilateral element share
three nodes with another face of a hexahedral or quadrilateral element. The
topology and the exterior surface of the mesh are carefully analyzed too, looking
for any defects in the mesh connectivity or continuity that would invalidate the
mesh.

6 Conclusions and Future Work

A geometric model and five finite element meshes of the human left coronary
artery bifurcation have been produced. In this paper, the idealized construction
of the bifurcation, the modification of this model with a real 3D reconstruc-
tion of the LAD vessel segment and the finite element mesh generation of the
definitive model have been described. Moreover, the quality of the geometric
model and the finite element meshes obtained has been assessed using verifi-
cation algorithms. As part of future work, coronary atheromas are planned to
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be modeled and to generate a finite element mesh in an attempt to seek the
validation of the hypothesis that relates the shear stress with the development
of the atherosclerosis.
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Abstract. A new version of Fisher’s discriminant analysis (FDA) is in-
troduced in this paper. Our algorithm searches also for a reduced space in
which patterns can be discriminated. However, no intermediate class sep-
arability criterion (such as Fisher’s mean distance divided by variance) is
used whatsoever. Classification performance is optimized directly. Since
no statistical hypothesis are made, the method is of general applicability.
Our evolutionary approach for optimization makes the number of pro-
jections and classes independent of each other. Even different numbers
of projections, not necessarily the means, can be used for each class. As
a proof of concept, the UCI thyroid problem (three classes) is solved
in one dimension instead of two with state of the art performance and
making use of only three of the 21 original features.

1 Introduction

Classical FDA [1, 2] is originally a supervised dimensionality reduction technique
which allows to plot patterns in a dimension equal to the number of classes minus
one. A clever class separability criterion is maximized leading to an elegant
analytical solution. It is quite common to use this solution for classification by
distance to projected means. Our proposal consists in constructing the projection
by maximizing classification performance directly, thus addressing some side
effects due to separability criteria. For instance, the number of projections and
classes are independent which is very helpful in problems with more than three
classes. Besides, since no scatter matrices are used all rank deficiency problems
are bypassed.

In order to do this a multilevel evolutionary approach is used. The first level is
a genetic algorithm (GA) [3] searching for relevant subsets of features. Starting
from individual features, the GA selects and combines subsets based on the
classification performance of the projections found for each subset. Finding the
actual projections and the classification error involved is the task accomplished
by the second level: a simple evolution strategy (ES) [4]. It is this breaking of
the task into two pieces what makes our approach powerful. To prove this point
we use the two simplest available algorithms and apply them to a difficult UCI
problem: the thyroid set.
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This problem consists in determining whether a patient referred to a clinic is
hypothyroid. There are 7200 patients in the database each characterized by 21 at-
tributes, 15 binary (from x2 to x16) and 6 continuous (x1, x17, x18, x19, x20, x21).
The categories are three: normal (2.1%), hyperfunction (5.2%) and subnormal
functioning (92.7%). The error incurred by assigning patterns to the majority
class is 7%. We will be using thyroid2, a distribution of the original patterns
into training (3600 patterns), validation (1800) and test sets (1800), prepared
by Prechelt [5].

The organization of the paper is as follows. Section 2 reviews briefly the
classical algorithm and its performance on our benchmark. The inner piece of
our algorithm is introduced in Section 3 and later applied to the UCI thyroid
problem showing improvement over classical FDA but demanding further work.
Section 4 puts the two pieces together and shows how powerful this combination
turns to be. Finally, the conclusions can be found in Section 5.

2 Fisher’s Discriminant Analysis

Let us review briefly classical discriminant analysis. Suppose we have a set of
patterns each characterized by d features and classified as belonging to one of c
different classes. Fisher’s classical algorithm looks for a projectionW from d to d′

dimensions (d′ to be specified later) maximizing the class separability criterion

J(W) =
|W′SbW|
|W′SwW| (1)

where Sb is the between-class scatter matrix and Sw is the within-class scatter
matrix. The optimization leads to the following generalized eigenvector problem

Sbwi = λiSwwi. (2)

The output dimension d′ is upper bounded by c − 1 because at most c − 1 of
the eigenvalues λi are different from zero. This is due to the rank limitation of
matrix Sb, which is constructed as the sum of c matrices whose rank is 1 at
most. The corresponding eigenvectors form the c − 1 columns of the optimal
projection W.

The space expanded by the two non-zero eigenvectors of the training set
of the thyroid2 problem works poorly: the error rates are 21.53%, 22.67% and
22.00% for the training, validation and test sets, respectively. More specifically,
the classification matrix on the test set is the following:

C(x1,...,x21) =

⎡⎣22 18 0
1 64 25
3 349 1318

⎤⎦ (3)

where element Cij represents the number of patterns of class i actually classified
as belonging to class j. It is clear from this matrix that class 1 is not confused
with class 3. The confusion comes mainly from the overlapping between the other
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two pairs of classes. This poor performance is due to the mixture of binary and
continuous features as well as to the noise introduced by some of the features
as their removal proves. We have shown elsewhere [6] that FDA can benefit
enormously from feature selection. Here a further step is taken by giving up
intermediate criteria and minimizing classification error directly as explained
next.

3 A (1+1) Evolution Strategy as Discriminant

We report in this section about the prospects of using the arguably simplest
evolutionary algorithm, a (1+1) evolution strategy [4], to optimize classification
performance directly. A (1+1) ES is an optimization procedure which in our case
follows these steps:

– The dimension for the projected space is fixed (here one for notational sim-
plicity).

– An initial projection w = (w1, . . . , w21) is chosen at random and the follow-
ing steps are repeated for a prescribed number of times:
• The weight vector is mutated by adding independent random variables
σi ∈ N(0, 1) to each component

w = (w1, . . . , w21)→ w′ = (w1 + σ1, . . . , w21 + σ21) (4)

• The classification error εw′ associated to projection w′ is calculated as
shown below.

• The weight w is replaced by w′ when εw′ < εw.
– The classification matrix on the independent test set is calculated for the

current weight vector.

Errors are calculated by classifying patterns as belonging to the class of the
closest mean as follows:

– The means of each class are projected according to the weights. These means
are calculated out of the training patterns exclusively.

– The patterns of both training and validation sets are projected and assigned
to the class of the closest mean. Excluding validation patterns from the
calculation of means tends to control overfitting.

– The error on the training and validation sets is summed into a single figure
ε(w1, . . . , w21).

Figure 1 shows that this simplest procedure can work properly if applied
to a good set of features. The figure shows test error rate versus number of
generations for two (1+1) evolution strategies: one making use of the whole set
of features (x1, . . . , x21) and the other using only the subset (x3, x8, x17), which
we know contains essentially all of the relevant information. It is clear from the
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Fig. 1. Test error rate versus number of generations for two runs of a simple
(1+1) evolution strategy applied to the thyroid problem: one makes use of the
whole set of features and the other benefits from the subset (x3, x8, x17)

figure that the ES can do the job if we provide it with the right set of features.
The classification matrix on the test set for subset (x3, x8, x17) is

C(x3,x8,x17) =

⎡⎣19 21 0
2 88 0
3 10 1657

⎤⎦ (5)

which shows an important reduction in the overlapping between the second and
third classes. The error rate is 2% while the rate reached by FDA applied to this
subset is 11%. We next show how we have actually found this subset of features.

4 A Wrapped Evolution Strategy

Previous section’s main lesson is that the simplest of the strategies is enough if
combined with selection of features. That is why we propose using a wrapper
genetic algorithm in combination with the strategy as a two level evolutionary
solution (see Figure 2):

– The first level is a genetic algorithm evolving a population of binary chro-
mosomes coding subsets of features. The fitness of each subset is calculated
by running the second level (1+1) evolution strategy.

– The second level ES evolves the projection weights as in previous section but
using only the features of the subset.

Thus the GA is in charge of discovering which features are relevant based on
what the ES is capable of doing with them. Breaking the process into these two
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Fig. 2. Two levels of evolution: the genetic algorithm evolves a population of
subsets of features and the evolution strategy evolves the projection weights for
each of these subsets

steps allows us to use the simplest available algorithms without finetuning of the
parameters. The power is not in each level since we use very simple algorithms,
but in the combination. The simple genetic algorithm works like this:

– The dimension for the projected space is fixed as before.
– The initial population is formed by 21 binary chromosomes (one for each

feature)

(1, 0, 0, . . . , 0)→ x1 (0, 1, 0, . . . , 0)→ x2 . . . (0, 0, 0, . . . , 1)→ x21 (6)

representing the 21 one dimensional subsets.
– The following points are iterated for a prescribed number of generations:

• The fitness of each chromosome is calculated by running the ES described
in previous section but applied to the selected features only.

• A new population is constructed by selecting individuals proportional to
their fitness (see below) and combining them by one-point crossover and
mutation [3].

– The best subset is used to calculate the classification matrix on the test set.

Fitness is calculated combining error and complexity. For instance, the subset
(x3, x8, x17) is assigned the following fitness

Fitness(x3, x8, x17) = ε(x3, x8, x17) + α(3/21) (7)

where ε(x3, x8, x17) is the sum of training and validation classification errors in-
curred by the evolution strategy, and the second term is a complexity penalizing
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Table 1. Evolution on the thyroid2 data set. Training, validation and test
error rates are shown for the successive improvements in fitness. Column 1 shows
the generation in which each discriminant is found. The last column shows the
features actually used to construct the discriminant

Gen. Tr. % Val. % Te. % Subset

0 53.31 53.50 53.00 x1
0 9.06 8.11 9.17 x9
0 4.78 4.17 3.89 x17
1 3.94 3.67 3.89 x10 x17
1 3.83 3.56 3.56 x9 x17
6 3.39 3.33 3.00 x3 x10 x17 x19
7 2.36 2.50 2.11 x3 x17
14 2.22 2.33 2.00 x3 x8 x17

term proportional to the percentage of input features used. Constant α combines
numerically both objectives giving priority to classification accuracy (α = 0.01).

Table 1 shows a typical evolution on the thyroid2 problem. Training, vali-
dation and test error rates of the successive improvements in fitness are shown.
The generation in which the individual is found is shown in the first column.
Thanks to the initial genetic population, simple models are tried first and noisy
or irrelevant features are discarded quickly. Only 200 generations are run for each
strategy what further penalizes complex models. The GA stopping criterion is
such that it terminates when no fitness increase is found after 50 generations.

Our evolutionary discriminants have state of the art performance as the com-
parison of Table 2 shows. The GA+ES figure corresponds to the mean per-
formance of 10 runs of our algorithm. The non-linear neural network slightly
outperforms our algorithm but involves searching for the right architecture by
hand [5]. Besides, our approach ends up with a subset of significant features
apart from the model itself. It is most surprising what a simple linear projection
can do when no statistical hypothesis are made. Notice that the linear neural
network results are far from the error rate reached by our linear projection. We
are currently working on the extension of these results to non-linear projections.

5 Conclusions

A new supervised dimensionality reduction algorithm is introduced in this paper.
It shares with classical FDA its target free nature: the algorithm does not try to
learn artificially assigned output codings but to project patterns closer to their
own mean than to the rest of means. The main difference with respect to classical
FDA is that classification error is optimized directly without any intermediate
class separability criteria. This gives rise to a number of advantages such as:

– No statistical hypothesis are made and therefore the method is of general
applicability.
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Table 2. Classical discriminant analysis versus its evolutionary counterpart
applied to the UCI thyroid2 problem. The average training, validation and test
error rates are shown for the thyroid data permutation. Column 5 shows the
average number of features used by the evolved projections

Training Validation Test Number of
error rate % error rate % error rate % features

Classical
Fisher’s 21.53 22.67 22.00 21

discriminant

Linear
Neural - - 6.56 21
Networks

Non-linear
Neural - - 1.86 21
Networks

GA+ES 2.27 2.38 2.02 2.8
discriminant

– The number of projections is not dependent on the number of classes. Here
we can generate one or two dimensional projections even with hundreds of
classes. This can be very helpful for visualization purposes.

– Although classical FDA requires that the input dimension be at least equal
to the number of classes minus one, our algorithm can use as few input
features as one, whatever the number of classes may be. In fact evolution
is started from a population of minimal discriminants in order to discard
redundant features.

– The constructive nature of the algorithm and its complexity penalizing term
gives rise to astonishingly simple models as the thyroid problem shows.

We are currently generalizing the algorithm for it to be capable of finding
projections which are not necessarily means, even several projections per class.
This is an easy way of addressing non-linear problems while keeping the original
algorithm. We hope to report soon on this work.
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New Class of Filters for Impulsive Noise

Removal in Color Images
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Abstract. In this paper a novel approach to the problem of impulsive
noise reduction in color images based on the nonparametric density es-
timation is presented. The basic idea behind the new image filtering
technique is the maximization of the similarities between pixels in a pre-
defined filtering window. The new method is faster than the standard
vector median filter and better preserves edges and fine image details.
Simulation results show that the proposed method outperforms standard
algorithms of the reduction of impulsive noise in color images.

1 Introduction

A number of nonlinear, multichannel filters, which utilize correlation among
multivariate vectors using various distance measures has been proposed [1-6].
The most popular nonlinear, multichannel filters are based on the ordering of
vectors in a predefined moving window. The output of these filters is defined as
the lowest ranked vector according to a specific vector ordering technique.

All standard filters detect and replace well noisy pixels, but their property
of preserving pixels which were not corrupted by the noise process is far from
the ideal. In this paper we show the construction of a simple, efficient and fast
filter which removes noisy pixels, but has the ability of preserving original image
pixel values.

Let F(x) represents a multichannel image and let W be a window of finite
size n+ 1 (filter length). The noisy image vectors inside the filtering window W
are denoted as Fj , j = 0, 1, ..., n . If the distance between two vectors Fi,Fj
is denoted as ρ(Fi,Fj) then the scalar quantity Ri =

∑n
j=0 ρ(Fi,Fj) is the

distance associated with the noisy vector Fi . The ordering of the Ri ’s: R(0) ≤
R(1) ≤ ... ≤ R(n), implies the same ordering to the corresponding vectors Fi :
F(0) ≤ F(1) ≤ ... ≤ F(n). Nonlinear ranked type multichannel estimators define
the vector F(0) as the filter output. However, the concept of input ordering,
initially applied to scalar quantities is not easily extended to multichannel data,
since there is no universal way to define ordering in vector spaces. To overcome
this problem, distance functions are often utilized to order vectors, [1-3].

� Supported by KBN Grant 7T11A01021.
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2 Proposed Algorithm

2.1 Gray-Scale Images

Let us assume a filtering window W containing n + 1 image pixels,
{F0, F1, . . . , Fn}, where n is the number of neighbors of the central pixel F0,
and let us define the similarity function μ : [0;∞) → R which is non-ascending
in [0;∞) , convex in [0;∞) and satisfies μ(0) = 1, μ(∞) = 0 . The similarity
between two pixels of the same intensity should be 1, and the similarity between
pixels with far distant gray scale values should be very close to 0. The function
μ(Fi, Fj) defined as μ(Fi, Fj) = μ(|Fi−Fj|) satisfies the three above conditions.

Let us additionally define the cumulated sum M of similarities between the
pixel Fk and all its neighbors. For the central pixel we have M0 and for the
neighbors of F0 we define Mk as

M0 =
n∑

j=1

μ(F0, Fj), Mk =
n∑

j=1
j =k

μ(Fk, Fj) , (1)

which means that for Fk which are neighbors of F0 we do not take into account
the similarity between Fk and F0, which is the main idea behind the new algo-
rithm. The omission of the similarity μ(Fk, F0) privileges the central pixel, as
in the calculation of M0 we have n similarities μ(F0, Fk), k = 1, 2, . . . , n and
for Mk, k > 0 we have n−1 similarity values, as the central pixel F0 is excluded
from the sum Mk.

In the construction of the new filter the reference pixel F0 in the window W
is replaced by one of its neighbors if M0 < Mk, k = 1, . . . , n. If this is the
case, then F0 is replaced by that Fi for which i = argmaxMi, i = 1, . . . , n. In
other words F0 is detected as being corrupted if M0 < Mk, k = 1, . . . , n and is
replaced by its neighbors Fi which maximizes the sum of similarities M between
all its neighbors excluding the central pixel. This is illustrated in Figs. 1 and 2.

Our basic assumption is that a new pixel must be taken from the window W
(introducing pixels which do not occur in the image is prohibited like in the VMF
and VDF). For this purpose μ must be convex, which means that in order to
find a maximum of the sum of similarity functions M it is sufficient to calculate
the values of M only in points F0, F1, . . . , Fn, [6].

2.2 Color Images

The presented approach can be applied in a straightforward way to color images.
We use the similarity function defined by μ{Fi,Fj} = μ(||Fi −Fj)|| where || · ||
denotes the specific vector norm. Now in exactly the same way we maximize the
total similarity function M for the vector case.

We have checked several convex functions in order to compare our approach
with the standard filters used in color image processing presented in Tab. 1a)
and we have obtained the best results (Tab. 1b) when applying the following
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similarity functions, which can be treated as kernels of nonparametric density
estimation, [7]

μ0(x) = exp
{
−

(x
h

)2}
, μ1(x) = exp

{
−x
h
,
}
, μ2(x) =

1
1 + x/h

, h ∈ (0;∞),

μ3(x) =
1

(1 + x)h
, μ4(x) = 1− 2

π
arctan

(x
h

)
, μ5(x) =

2
1 + exp

{
x
h

} , h ∈ (0;∞)

μ6(x) =
1

1 + xh
, μ7(x) =

{
1− x/h if x ≤ h,

0 if x > h,
h ∈ (0;∞).

It is interesting to note, that the best results were achieved for the simplest simi-
larity function μ7(x), which allows to construct a fast noise reduction algorithm.
In the multichannel case, we have

M0 =
n∑

j=1

μ(F0,Fj), Mk =
n∑

j=1
j =k

μ(Fk,Fj) (2)

where ρ{Fi,Fk} = ||Fk − Fl)|| and || · || is the L2 vector norm, as it yields the
best results, (Tab. 1c). Applying the linear similarity function μ7 we obtain

μ(Fi,Fk) =

{
1− ρ (Fi,Fk)/h for ρ (Fi,Fk) < h

0 otherwise
(3)

Then we have from (1)

M0 = n− 1
h

n∑
j=1

ρ (F0, Fj) and

Mk =
n∑

j=1,
j =k

(
1− ρ (Fk, Fj)

h

)
= n− 1− 1

h

n∑
j=1

ρ (Fk, Fj) (4)

In this way the difference between M0 and Mk is

M0 −Mk = n− 1
h

n∑
j=1

ρ (F0, Fj)−
⎡⎣n− 1− 1

h

n∑
j=1

ρ (Fk, Fj)

⎤⎦
= 1− 1

h

n∑
j=1

[ρ (F0, Fj)− ρ (Fk, Fj)] (5)

M0 −Mk > 0 if h >

n∑
j=1

[ρ (F0, Fj)− ρ (Fk, Fj)] (6)

If this condition is satisfied, then the central pixel is considered as not disturbed
by the noise process, otherwise the pixel Fi for which the cumulative similarity
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value achieves maximum, replaces the central noisy pixel. In this way the filter
replaces the central pixel only when it is really noisy and preserves the original
undistorted image structures. The parameter h can be set experimentally (Fig.
5a) or can be determined adaptively using the technique described in [6].

a) b) c)

Fig. 1. Cumulative similarity values dependence on the pixel gray
scale value for a window containing a set of pixels with intensities
{15, 24, 33, 41, 45, 55, 72, 90, 95}, (see Fig. 2), using the μ0 function (a) and μ7
function (b). Plot (c) shows the comparison of the total similarity functions M0

when using two different kernels

3 Results and Conclusions

For evaluation purposes, the color test image LENA was corrupted with impul-
sive noise defined by xij = vij with probability p, where i, j define a pixel posi-
tion, p describes the intensity of the noise process, xij denotes the original image
pixel and vij denotes a pixel corrupted by the noise process vij = {νR, νG, νB},
where νR, νG, νB are random integer variables from the interval [0, 255] updated
for each corrupted pixel.

The root of the mean squared error (RMSE), peak signal to noise ratio
(PSNR), normalized mean square error (NMSE) [1,2] were used for the anal-
ysis. The comparison shows that the new filter outperforms by far the standard
vector median filter, which can be treated as a reference filter, and other filters
listed in Tab. 1a). The efficiency of the new filtering technique is shown in Tab.
1b), in Figs. 3, 4 and also in Fig. 5b) and 5c).

The new algorithm presented in this paper can be seen as a fast modifica-
tion and improvement of the Vector Median Filter. The comparison with stan-
dard color image processing filters, (Tab. 1b, Fig. 3-5) shows that the new filter
outperforms the standard procedures used in color image processing. Another
advantage of the proposed filtering class is its lower computational complexity
compared to the VMF, which makes the new filter class interesting for real-time
applications



974 Bogdan Smolka

References

[1] I. Pitas, A.N. Venetsanopoulos, ’Nonlinear Digital Filters : Principles and Appli-
cations’, Kluwer Academic Publishers, Boston, MA, (1990)

[2] K.N. Plataniotis, A.N. Venetsanopoulos, ’Color Image Processing and Applica-
tions’, Springer Verlag, (June 2000)

[3] I. Pitas, P. Tsakalides, Multivariate ordering in color image processing, IEEE
Trans. on Circuits and Systems for Video Technology, 1, 3, 247-256, (1991)

[4] J. Astola, P. Haavisto, Y. Neuovo, Vector median filters, IEEE Proceedings, 78,
678-689, (1990)

[5] K.N. Plataniotis, D. Androutsos, A.N. Venetsanopoulos, Colour Image Process-
ing Using Fuzzy Vector Directional Filters, Proceedings of the IEEE Workshop
on Nonlinear Signal/Image Processing, Greece, 535-538, (1995)

[6] B. Smolka, A. Chydzinski, K. Wojciechowski, K. Plataniotis, A.N. Venetsanopou-
los, On the reduction of impulsive noise in multichannel image processing, Optical
Engineering, vol. 40, no. 6, pp. 902-908, 2001.

[7] D.W. Scott, ”Multivariate Density Estimation”, New York, John Wiley, 1992



New Class of Filters for Impulsive Noise Removal in Color Images 975

a) b) c)

d) e) f)

g) h) i)

Fig. 2. Illustration of the new filter construction using the Gaussian ker-
nel. The supporting window W of size 3 × 3 contains 9 pixels of intensities
{15, 24, 33, 41, 45, 55, 72, 90, 95}, (see Fig. 1). Each of the graphs from a) to i)
shows the dependence of M0 and M/0, (M/0 < M0), where M/0 denotes the
cumulative similarity value with rejected central pixel F0 on the pixel gray scale
value. Graph a) shows the plot of M0 and M/0 for F0 = 15, plot b) for F0 = 24
and so on till plot plot i) which shows the graphs of M0 and M/0 for F0 = 95.
The arrangement of pixels surrounding the central pixel F0 is not relevant. The
central pixel will be replaced in cases: (a), (b), (f)- (i), as in those cases there
exists a pixel Fi for which M0 < Mi
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Fig. 3. Illustration of the efficiency of the new algorithm of impulsive noise re-
duction in gray scale images: a) test image, b) image corrupted by 4% impulsive
salt&pepper noise, c) new filter output, d) effect of median filtering (3×3 mask),
e) and f) the difference between the original and restored images
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Fig. 4. Illustration of the efficiency of the new algorithm of impulsive noise
reduction in color images: a) test image, b) image corrupted by 4% impulsive
salt&pepper noise, c) new filter output, d) effect of median filtering (3×3 mask),
e) and f) the difference between the original and restored images
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Notation Filters [1-2]
AMF Arithmetic Mean
VMF Vector Median
ANNF Adaptive Nearest Neighbor
BVDF Basic Vector Directional
HDF Hybrid Directional
AHDF Adaptive Hybrid Directional
DDF Directional-Distance
FVDF Fuzzy Vector Directional

a)

METHOD NMSE RMSE PSNR
[10−4] [dB]

NONE 514.95 32.165 17.983
AMF 82.863 12.903 25.917
VMF 23.304 6.842 31.427
ANNF 31.271 7.926 30.149
BVDF 29,074 7.643 30.466
HDF 22.845 6.775 31.513
AHDF 22,603 6,739 31.559
DDF 24.003 6.944 31,288
FVDF 26.755 7.331 30.827
FILTERING KERNELS

μ0(x) 5.056 3.163 38.137
μ1(x) 4.959 3.157 38.145
μ2(x) 5.398 3.294 37.776
μ3(x) 9.574 4.387 35.288
μ4(x) 5.064 3.190 38.054
μ5(x) 4.777 3.099 38.307
μ6(x) 11.024 4.707 34.675
μ7(x) 4.693 3.072 38.384

b)

L1 L2 L3 L∞
μ1(x) 3,615 3,157 3,172 3,462
μ5(x) 3,579 3,099 3,167 3,694
μ7(x) 3,838 3,072 3,138 3,752

c)
Table 1. Filters taken for compari-
son a), comparison of the new algo-
rithm based on different kernel func-
tions with the standard techniques, us-
ing the LENA color image contami-
nated by 4% of impulsive noise b) and
evaluation of the efficiency of the new
algorithm in terms of RMSE using dif-
ferent vector norms c)

a)

b)

c)

Fig. 5. a) Dependence of the the fil-
tering results on the h parameter,
LENA image with 12% of corrupted
pixels. b) Efficiency of the new algo-
rithm in terms of PSNR in compar-
ison with standard filters. The color
image LENA has been contaminated
by impulsive noise with p from 1% to
20% and independently on each chan-
nel with p from 1% to 10%, c)
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Abstract. This paper presents a new filtering scheme for the removal
of impulsive noise in multichannel images. It is based on estimating
the probability density function for image pixels in a filtering window
by means of the kernel density estimation method. The filtering algo-
rithm itself is based on the comparison of pixels with their neighborhood
in a sliding filter window. The quality of noise suppression and detail
preservation of the new filter is measured quantitatively in terms of the
standard image quality criteria. The filtering results obtained with the
new filter show its excellent ability to reduce noise while simultaneously
preserving fine image details.

1 Introduction

The reduction of noise in multichannel images has been the subject of extensive
research during the last years, primarily due to its importance to color image
processing. In order to achieve optimal filtering results, the knowledge of the
underlying statistical distribution of the signal and noise are needed. These dis-
tributions are often unknown and must be estimated from the data to prevent
unrealistic assumptions that deteriorate the filter performance. If no informa-
tion on the shape of the density distribution is known, non-parametric density
estimation can be used, [1, 2]. The filter proposed in this paper is based on the
non-parametric technique of Parzen or Kernel Density Estimation (KDE), [3],
which is widely used in the field of pattern recognition and classification.

2 New Filter Design

Let the mapping: Zl → Zq represents a multichannel image, where l is an image
dimension and q characterizes a number of channels (q = 3 for color images). Let
W = {xi ∈ Zl; i = 0, 1, . . . , n} represents the samples in the filter window, Fig. 1.
Each input vector xi can be associated with the cumulative distance measure Di

given by Di =
∑n

j=0 ||xi − xj || , i = 0, . . . , n, where xi = (xi1 , . . . , xiq ) and
xj = (xj1 , . . . , xjq ) characterize two q-dimensional vectors and ‖ · ‖ denotes

� Supported by KBN Grant 7T11A01021.
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a chosen vector norm. Since D0, D1, . . . , Dn are scalar values, their ordered set
can be written simply as D0 ≤ D1 ≤ . . . ≤ Dn. If the same ordering is implied to
the input set x0, . . . ,xn, the ordered input set is described as x(0), x(1), . . . ,x(n)
and the vector median filter (VMF) output is given by the sample x(0) from the
input set that minimizes the sum of vector distances with other vectors, [4].
Density Estimation describes the process of modelling the probability density

function f(x) of a given sequence of sample values drawn from an unknown
density distribution. The simplest form of density estimation is the histogram:
sample space is first divided into a grid, then the density at the center of the
grid cells is approximated by the number of sample values that fall into one bin
divided by the width of one grid cell. The main disadvantage of the histogram
is the strong dependence of the histogram’s shape on the chosen bin-width and
the origin of the grid.

Kernel Density Estimation, (KDE) avoids this disadvantage by placing a ker-
nel function on every sample value in the sample space and then summing the val-
ues of all functions for every point in the sample space. This results in a smooth
density estimates that are not affected by an arbitrarily chosen partition of the
sample space, Fig. 2.

The multivariate kernel density estimator in the q-dimensional case is defined
as [1, 2]

f̂h(x) =
1
N

n∑
i=0

1
h1...hq

K
(
xi1−x1
h1

, ...,
xiq−xq
hq

)
, (1)

with K denoting a multidimensional kernel function K : R
q → R and h1, . . . , hq

denoting bandwidths for each dimension and N = n+1 is the number of samples
in W . A common approach to build multidimensional kernel functions is to use
a product kernel K(u1, ..., uq) =

∏q
i=1K(ui) ,where K is a one-dimensional kernel

function. Intuitively, the kernel function determines the shape of the ’bumps’
placed around the sample values and the bandwidths h1, ..., hq their width in each
dimension. In case bandwidth is equal for all dimensions, multivariate radial-
symmetric kernel functions can be used. Equation (1) then changes to

f̂h(x) =
1
nhq

n∑
i=1

K

( ||xi − x||
h

)
. (2)

The shape of the approximated density function depends heavily on the band-
width chosen for the density estimation. Small values of h lead to spiky density
estimates showing spurious features. On the other hand too big values of h pro-
duce over-smoothed estimates that hide structural features.

The unknown density function is assumed to be the standard normal distri-
bution re-scaled to have the same variance as the sample values. Choosing the
Gaussian kernel function for K, the optimal bandwidth is in the one-dimensional
case, [2]: hopt = 1.06σ̂n−

1
5 , where σ̂ denotes the standard deviation, and for

the q-dimensional case

hopt = (4/(q + 2))
1

q+4 σ̂ n−
1

q+4 . (3)
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Fig. 1. Illustration of the adjacency concept: a) the central pixel x0 has 8 neigh-
bors belonging to the filtering window, b) the pixel x8 has then 5 adjacent
neighbors and the pixel x1 has only three adjacent neighbors contained in W ,
(c). Below an example of the filtering window with gray scale intensities related
to Fig. 3 is shown, (d - f)

The proposed filter is based on the idea of comparing image pixels contained
in a filter window with their adjacent pixels. The filter output is that pixel in the
filter window that is most similar to its neighborhood. The estimated probability
density function therefore serves as a measure of similarity in the chosen color
space, [5, 6]. If a pixel is similar to its neighborhood, the density estimation for
that pixel results in a relatively large value. Noisy pixels on the other hand are
almost always outliers from the cluster formed by adjacent pixels. Hence the
density estimation for that pixels results in very small values.

Given a set W of noisy image samples x0,x1, ...,xn from the filter window W
let ∼ denotes the adjacency relation between two pixels contained in W . Assum-
ing the 8-neighborhood system, the central pixel will have 8 adjacent neighbors,
the pixels in the corners will have 3 adjacent neighbors and the remaining pixels
in W will have 5 adjacent neighbors determined by the ∼ relation, (see Fig. 1).

The probability density for sample xi is then estimated as

f̂h(xi) =
∑
xj∼xi

K

( ||xj − xi||
h

)
. (4)

The filter output is defined as that xi for which f̂h is maximal, (see Fig. 3). In
contrast to Eq. (2) the probability density is not normalized to bandwidth and
number of sample values. The reason is that the values of f̂h for different xi
are only used for comparison among each other and omission of normalization
results in a significant performance gain as it privileges the central sample, which
has the largest number of neighbors, (Fig. 1 a, d).

The bandwidth is determined according to Eq. (3) and hence depends on
the standard deviation σ̂. Since σ̂ is computed using only a few pixels from the
filter window, the bandwidth is sensitive to noise and may vary over a big range
of values. As an option an experimentally chosen fixed value can be used as
bandwidth to avoid this effect, (Fig. 4).

3 Filtering Results

For evaluation purposes, the color test image LENA was corrupted with 1 to 10
percent impulsive noise defined by xij = vij with probability p, where i, j define
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Table 1. Filtering results achieved using test image LENA contaminated by
impulsive noise using different kernels, (G denotes the Gaussian kernel, Ep the
kernel of Epanechnikov, Ex the exponential kernel and Tr the linear, triangle
kernel)

Noise p [%] 0.05 0.05 0.05 0.10 0.10 0.10

Criterion MAE MSE NCD MAE MSE NCD

Noisy 2.54 393.3 0.0415 5.10 790.2 0.0838
VMF 3.27 31.2 0.0387 3.42 34.2 0.0400
BVDF 3.81 39.8 0.0400 3.95 44.2 0.0412
DDF 3.39 32.8 0.0389 3.51 35.4 0.0400
HDF 3.42 31.2 0.0399 3.55 33.9 0.0412

G, L2, ad. 0.79 11.5 0.0093 0.98 20.2 0.0125
G, h = 55 0.42 11.8 0.0051 0.79 20.8 0.0100
G, L1, ad. 0.82 14.8 0.0101 1.16 24.9 0.0149
Ep, L2, ad. 1.17 15.3 0.0138 1.23 21.7 0.0151
Ex, L2, ad. 0.43 10.59 0.0055 0.84 34.16 0.0128
Tr, L2, ad. 0.45 14.01 0.0063 0.96 50.79 0.0159

a pixel position, p describes the intensity of the noise process, xij denotes the
original image pixel and vij denotes a pixel corrupted by the noise process vij =
{νR, νG, νB}, where νR, νG, νB are random integer variables from the interval
[0, 255] updated for each corrupted pixel.

The filter quality is measured using the Mean Absolute Error (MAE), Mean
Square Error (MSE) and Normalized Color Difference (NCD), [7]. In general,
these criteria reflect the filter capabilities of the signal detail preservation (MAE),
the noise suppression (MSE) and the color chromaticity preservation (NCD).

Tab. 1 and Fig. 5 show the results of a quantitative comparison between
the new filter scheme and the Vector Median Filter as well as the Basic Vector
Directional Filter (BVDF), Hybrid Directional Filter (HDF) and the Directional
Distance Filter (DDF), [7].

For experiments with fixed bandwidth an experimental value of h = 55 was
chosen, which brought subjectively good but not optimal results, (Fig. 4). As
can be seen from Tab. 1 the noise reduction capability depends on the choice of
the filter kernel. Apart from the sometimes up to a few times lower MAE and
NCD values compared with the vector median, the new filter shows enormous
improvements in detail preservation for every used filter structure. The remark-
ably good results for the density estimation with fixed bandwidth indicate that
the presented method of adaptive bandwidth selection does not work well enough
and further research on this problem is needed.

4 Conclusions

The experimental results show that the biggest advantage of the new filter is
its excellent image detail preservation (Fig. 6). The always very low values of
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a) b) c)

Fig. 2. Illustration of the concept of nonparametric kernel density estimation
using the sample values from Fig. 1 d). Figure a) shows the density estimation
for the sample set {15, 24, 33, 41, 45, 55, 72, 90, 95} using the Gaussian kernel:
(
√

2π)−1 exp{−x2/2},using the kernel of Epanechnikov: (3/4)(1− x2) for h ≤ 1,
and Fig. c) shows the estimation using the linear (triangular) kernel

a) b) c)

Fig. 3. Density estimation plot for in case of a filtering window consisting of
pixels shown in Fig. 1, a) and additional plots of the kernel density estimation
algorithm using the ∼ neighborhood concept for F1, b) and F8 c). As can be
seen the highest value of the density estimation is obtained for F8 and this pixel
will replace the central noisy pixel F0

MAE and NCD show that the new filter is clearly superior to VMF, BVDF and
DDF in terms of detail preservation for all applied filter settings. Further, the
comparison of different filter settings shows that the problem of choosing the
bandwidth adaptive to the sample data is not yet completely solved and should
be investigated in the future work.

Another advantage of the proposed filtering class is its low computational
complexity compared to the VMF. For the VMF filtering the calculation of 36
distances between pixels are needed, whereas the new filter structure with fixed
bandwidth requires only 20 different distances, which makes the new filter class
interesting for real-time applications
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Fig. 4. Dependence of the filter efficiency (SNR and NCD ) on the global, con-
stant bandwidth of the Gaussian kernel, for test images LENA, PEPPERS,
GOLDHILL contaminated by 5% impulsive noise. The value of h = 55 was
used for the comparison with standard filtering techniques shown in Tab. 1

Fig. 5. Results obtained with the new filtering technique in terms of MAE and
MSE. The plots show the new filter performance in comparison with the vector
median filter
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a) b) c) d)

Fig. 6. Illustration of the efficiency of the new filter in comparison with the
VMF: a) parts of the test image LENA, b) test images corrupted by impulsive
noise with p = 0.05, c) new filter output using the Gaussian kernel and the
adaptive scheme, d) VMF output
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Abstract. Robust hash functions for visual data need a feature ex-
traction mechanism to rely on. We experimentally compare spatial and
transform domain feature extraction techniques and identify the global
DCT combined with the cryptographic hash function MD-5 to be suited
for visual hashing. This scheme offers robustness against JPEG2000 and
JPEG compression and qualitative sensitivity to intentional global and
local image alterations.

1 Introduction

The widespread availability of multimedia data in digital form has opened a wide
range of possibilities to manipulate visual media. In particular, digital image
processing and image manipulation tools offer facilities to intentionally alter
image content without leaving perceptual traces. Therefore, it is necessary to
provide ways of ensuring integrity other than human vision.

Classical cryptographic tools to check for data integrity like the cryptographic
hash functions MD-5 or SHA are designed to be strongly dependent on every
single bit of the input data. While this is desirable for a big class of digital data
(e.g. executables, compressed data, text), manipulations to visual data that do
not affect the visual content are very common and often necessary. This includes
lossy compression, image enhancement like filtering, and many more. All these
operations do of course change the bits of the data while leaving the image
perception unaltered.

To account for this property of visual data new techniques are required which
do not assure the integrity of the digital representation of visual data but its
visual appearance. In the area of multimedia security two types of approaches
have been proposed to satisfy those requirements in recent years: semi-fragile
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watermarking and robust multimedia hashes (see [1, 2, 3, 6] for some examples
of the latter approach).

Main advantages of semi-fragile watermarking schemes are that watermarks
are inserted into the image and become integral part of it and that image ma-
nipulations may be localized in most schemes. The main advantage of hashing
schemes is that image data is not altered and not degraded at all.

In this work we focus onto robust visual hash functions to provide a means
to protect visual integrity of image data. In particular, we propose to combine
the extraction of robust visual features with the application of a classical cryp-
tographic hash function to result in a robust visual hash procedure. In section
2 we first discuss requirements of a robust visual hashing scheme. Subsequently,
we introduce several possibilities to extract perceptually relevant visual features
in the spatial and transform domain. In section 3, we experimentally evaluate
robustness against JPEG 2000 and JPEG compression and sensitivity towards
intentional image modification of visual hashing schemes based on the feature
extraction techniques proposed in section 2 and the cryptographic hash function
MD-5. Section 4 concludes our paper and provides an outlook to future work in
this direction.

2 Approaches to Robust Visual Hashing

Robust hash functions for image authentication have to satisfy 2 major require-
ments. First, for perceptually identical images, the hash values should be identi-
cal. Second, for perceptually different images, the hash values should be different.
This requirement also implies that given an image, it is almost impossible to find
a visually different image with identical hash value. In other words, it should be
impossible to create a forgery which results in the same hash value as the original
image.

In addition to these two requirements there is another often requested prop-
erty. There should exist a metric between the hash values of two images under
consideration which could serve as a measure of similarity between those images,
i.e. should give a quantitative result instead of the qualitative result of a cryp-
tographic hash function. Although desirable from the applications viewpoint,
this property excludes cryptographic hash functions as possible components of
such schemes. As a consequence, several visual hashing schemes with increased
functionality in the abovementioned sense but at least questionable security
properties have been suggested.

Our approach investigated in this work therefore basically consists of two
steps:

– First, features robust to common (non-hostile) image processing operations
(we especially focus onto compression) but sensitive to malicious modifica-
tions are extracted from the image.

– Subsequently, a classical hash function is applied to those features.
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In the following subsections, we introduce the types of feature extraction
techniques which are experimentally compared for their robustness against com-
pression and sensitivity towards intentional image modifications in this study.
Note that for simplicity we assume 512 × 512 pixels images with 8 bit/pixel
(bpp).

2.1 Spatial Domain Feature Extraction Techniques

Multiresolution Pyramids As a first step we construct a quater-sized version
of the image (“approximation”) using a 4-pixel average (AV), a 4-pixel median
(ME), or subsampling by 2 in each direction (DS). Subsequently, the construction
of the approximation is iterated to construct smaller versions. An approximation
of specific size is used as feature. Whereas the bitdepth is not influenced by
these operations (AV is rounded to integer) we only obtain a limited number of
differently sized approximations the hash function may be applied to: 2562 values
for one iteration, 1282 values after two iterations, . . . , and 162 = 256 values after
five iterations which is the maximal number of iterations we consider.

Bitplanes We consider the 8bpp data in the form of 8 bitplanes, each bitplane
associated with a position in the binary representation of the pixels. The feature
extraction approach is to consider a subset of the bitplanes only, starting with
the bitplane containing the MSB of the pixels. Each possible subset of bitplanes
may be chosen as feature, however, it makes sense to stick to the order predefined
by the significance of the binary representation. After having chosen a particular
subset of bitplanes, the hash function is applied to pixel values which have been
computed using the target bitplanes only. Note that the smallest amount of data
the hashing may be applied to (i.e. one bitplane) corresponds to 32768 pixels in
this case (1/8 of the total number of pixels in the image). Note also that this
feature extraction technique BP comes for free from a computational point of
view.

2.2 Transform Domain Feature Extraction Techniques

In contrast to spatial domain methods the feature extraction operation (i.e. the
transform) increases the bitdepth of the data significantly. To obtain compara-
bility to the spatial domain techniques, the range of coefficients is mapped to
the interval [0,255] and subsequently rounded to integer values.

DCT The DCT is well known to extract global image characteristics efficiently
and is used for watermarking applications for these reasons (see e.g. Cox’s
scheme). We use the DCT in two flavours: as full frame DCT (DCT1) and
as DCT applied to 8 × 8 pixels blocks (DCT2) due to complexity reasons. Fol-
lowing the zig-zag scan order (compare e.g. JPEG) we apply the hash-function
to a certain number of coefficients or a certain number of coefficients from each
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block, respectively. Given a 512 × 512 pixels image and using DCT2, the low-
est number of coefficients the hash function may be applied to is 4096 (i.e. the
DC coefficient is hashed only for each block), whereas the number of coefficients
subjected to hashing may be set almost arbitrarily with DCT1.

Wavelet Transform In many applications wavelet transforms (WT) compete
with and even replace the DCT due to their improved localization properties
(e.g., the WT is used in many watermarking schemes). We use the Haar trans-
form due to complexity and sensitivity reasons. Equivalently to the Multires-
olution pyramids, the decomposition depth is a parameter for this method, in
case of WT the hash function is applied to the approximation subband only.
As it is the case for Multiresolution pyramids, we only obtain a limited number
of differently sized approximation subbands the hash function may be applied
to. Note that the data subject to hashing resulting from applying the WT is
equivalent in principle to that obtained by the Multiresolution pyramid AV.

3 Experiments

The aim of the experimental section is to investigate whether the introduced
visual hashing schemes are

– indeed robust to JPEG and JPEG2000 compression and
– sensitive to intentional image modifications (i.e. attacks).

3.1 Experimental Settings

We use the classical 8bpp, 512 × 512 pixels Lena and Escher grayscale images
(see Fig. 2.a for the latter) as testimages. In order to investigate the robustness
of the visual hashing schemes, we subject the image Lena to JPEG 2000 (J2K)
and JPEG compression with different compression ratios (Cr). The sensitivity
to intentional and/or malicious image modifications is assessed by conducting
a couple of local and global image alterations:

– Adding a small artificial birthmark to Lenas upper lip (Fig. 1.a, “augmented
Lena”) - local

– Applying Stirmark [4] attack options b and i (Fig. 1.b and Fig. 1.c) - global
– Increase or decrease the luminance of each pixel of the image Lena by a value

of 5 - global
– Addition of an alternating dark/light pattern in a door arch in Eschers paint-

ing (Fig. 2.b) - local

All feature extraction schemes are implemented using MATLAB r©, as hash
function we use the well known MD-5 [5] system giving 128 output hashbits.
Note that MD-5 may be applied to a certain number of feature values given in
full 8bpp precision (“Full”) or to feature values with reduced bitdepth by simply
ignoring the bits of lower significance (where e.g. 3 BP stands for three bitplanes
and MSB for the use of the most significant bitplane only).
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(a) Augmented Lena (b) Stirmark attack
b=20

(c) Stirmark attack
i=20

Fig. 1. Local and global attacks against Lena

3.2 Experimental Results

In table 1 we display the minimal number of feature values required to detect
global attacks against the Lena image using multiresolution pyramids AV, ME,
and DS. Note that the smallest number considered is 162 = 256 which corre-
sponds to 5 iterations of constructing approximations to the image. A larger
entry in the table corresponds to higher robustness against the type of attack

(a) Escher (b) Escher attacked

Fig. 2. Local attack against a painting by Escher
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(desired or not) as indicated in the leftmost column. In this table we consider
only the three most significant bitplanes.

Table 1. Minimal number of feature values required to detect the global attacks:
Multiresolution pyramids

AV ME DS

Attack 3 BP 2 BP MSB 3 BP 2 BP MSB 3 BP 2 BP MSB

J2K Cr 2 162 322 642 162 162 642 162 162 642

J2K Cr 6 162 322 322 162 162 322 162 162 162

J2K Cr 14 162 162 322 162 162 162 162 162 162

JPEG Cr 1.7 642 642 642 162 322 322 322 322 322

JPEG Cr 2.9 642 642 642 162 162 162 162 162 162

JPEG Cr 7.6 322 322 322 162 162 162 162 162 162

Fig. 1.b b=2 162 162 162 162 162 162 162 162 162

Fig. 1.c i=2 162 162 162 162 162 162 162 162 162

Lum +5 162 162 162 162 162 162 162 162 162

Lum -5 162 162 162 162 162 162 162 162 162

We notice robustness to a certain extent against JPEG 2000 and JPEG
compression. For example, J2K compression is not detected using 162 features
up to Cr 6 using 2 bitplanes and up to Cr 14 using the MSB only when employing
AV. JPEG compression is not even detected using 322 features up to Cr 3 and
162 features up to Cr 7.6 even when employing three bitplanes and AV. ME and
DS are less robust against compression as compared to AV.

Now let us consider malicious modifications. On the one hand, sensitivity
against Stirmark attacks and luminance modifications is high as being desired.
For example, choosing AV as multiresolution pyramid and selecting the MSB
of 162 feature values (i.e. 5 decompositions) is robust against all compression
settings considered and reveals all global attacks discussed.

On the other hand, the situation changes when we investigate the sensitivity
against local attacks as displayed in table 2.

Especially in case of the augmented Lena image we notice extremely low
sensitivity against this attack. Choosing again AV as multiresolution pyramid
and selecting the MSB of 162 feature values there is no way to detect this attack

Table 2. Minimal number of feature values required to detect the local attacks:
Multiresolution pyramids

Figure Fig. 1.a Fig. 2.b

AV ME DS AV ME DS

Full 162 322 1282 162 162 322

4 BP 322 2562 1282 162 162 322
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Table 3. Minimal number of feature values required to detect the attacks:
DCT1

Attack Full 7 BP 6 BP 5 BP 4 BP 3 BP 2 BP MSB

J2K Cr 2 40 40 54 54 >200 >200 >200 >200
J2K Cr 10 40 40 40 40 162 >200 >200 >200
J2K Cr 14 40 40 40 40 79 79 174 >200

JPEG Cr 1.7 55 65 131 >200 >200 >200 >200 >200
JPEG Cr 6.1 54 54 65 65 65 >200 >200 >200
JPEG Cr 13 40 40 40 65 65 174 174 175

Fig. 1.a 40 40 40 43 43 72 72 175

Fig. 1.b b=2 4 4 4 4 4 4 4 4

Fig. 1.c i=2 40 40 40 41 41 41 41 54

Lum +5 2 2 2 2 2 2 2 2
Lum -5 2 2 2 2 2 2 2 2

Fig. 2.b 4 4 4 4 4 4 4 65

(even when using 4 bitplanes we already require 322 feature values to detect
it). The situation is even worse regarding ME and DS. In case of the Escher
image the result is not that bad but the sensitivity of multiresolution pyramid
based hashing is comparable to that against compression which is of course not
desirable.

When turning to bitplanes as a means to feature extraction it turns out
immediately that there is no way to make such a scheme robust to compression
at all. Even the slightest degradation is propagated to some extent to the MSB
information causing the hash function to identify the compressed image as being
tampered with.

Now we turn to the transform domain. In table 3 we display the results
concerning the full frame DCT (DCT1). In contrast to the multiresolution pyra-
mids, the number of feature values may be varied continously. Even when using
full 8bpp precision for the feature values we still require 40 values to detect
a J2K compression with Cr 14, the same is true for JPEG compression with
Cr 13. Consequently we may state that robustness against compression may be
achieved.

Sensitivity against intentional attacks, on the other hand, is satisfactory for
all types of attacks. Especially for luminance modification, but also for most set-
tings regarding Stirmark attack b and the modified Escher image the alterations
are detected using 4 feature values or even less. Also for the remaining attacks
sensitivity is always higher as against the strongest compression considered. As
a consequence, we may define DCT1 based visual hash functions which are sensi-
tive to all attacks considered but robust to moderate compression. As a concrete
example, we could use 2 bitplanes of 80 feature values. In this case the number of
feature values to detect J2K and JPEG compression is significantly higher (174
in either case of maximal compression) and therefore this hash function is also
robust against even more severe compression. On the other hand, all considered
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attacks are revealed including the augmented Lena which is detected using 72
feature values (displayed boldface in the table).

Contrasting to the visual hash function based on DCT1, we could not achieve
any robustness against compression for DCT2. Therefore, as it is the case for
the bitplane approach, it makes no sense to investigate the sensitivity against
intentional tampering. Note that both techniques, bitplanes and DCT2, produce
a much higher number of feature values (even using their lowest parameter, i.e.
MSB or one coefficient per block, respectively) as compared to the other schemes
which definitely is the reason for their higher responsiveness.

Finally we focus onto the wavelet transform. Due to the equivalence to the
Multiresolution pyramid AV (see previous section), the results are almost iden-
tical to this method and are therefore not discussed further.

4 Conclusion

We have found that global DCT seems to be the most suitable feature extrac-
tion approach to base a robust visual hash function upon if robustness against
moderate compression is a prerequisite for such a scheme. Although the com-
putationally most demanding approach, the robustness against JPEG2000 and
JPEG compression and the responsiveness to intentional global and local image
alterations exhibited by the DCT based system are by far superior as compared
to the competing wavelet transform and multiresolution pyramid based schemes.
Visual hash functions based on block-based DCT and selective bitplane hashing
have failed to provide robustness against compression.
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Abstract. In transmitting compressed video bit-stream over Internet,
packet loss causes error propagation in both spatial and temporal do-
main, which in turn leads to severe degradation in image quality. In
this paper, a new error concealment algorithm is proposed to repair
damaged portions of the video frames in the receiver. Conventional
BMA(Boundary Matching Algorithm) assumes that the pixels on the
boundary of the missing block and its neighboring blocks are very sim-
ilar, but has no consideration of edges across the boundary. In our ap-
proach, the edges are detected across the boundary of the lost or erro-
neous block. Once the orientation of each edge is found, only the pixel
difference along the expected edges across the boundary is measured
instead of the calculation of differences between all adjacent pixels on
the boundary. Therefore, the proposed approach needs very few compu-
tations and the experiment shows an improvement of the performance
over the conventional BMA in terms of both subjective and objective
quality of video sequences.

1 Introduction

Hybrid block based MC/DPCM/DCT algorithm has been adopted in several
international video coding standards such as the ITU-T H.261, H.263, MPEG-
1,2,4,7[1, 2]. Typical applications include video conferencing, video phone and
digital TV. For most of these applications, the bitstream will be transmitted
over a communication channel where bit error or packet loss sometimes is in-
evitable. In recognizing the need to provide reliable video communications, error
concealment methods have been developed and they play an important role as
we find more and more applications of digital video over packet networks and
wireless channels.

Due to the coding structure of the hybrid block based MC/DPCM/DCT cod-
ing algorithms, Motion Vectors(MVs) is crucial in reconstructing the predicted
frames. For example, if one block’s variable length coded motion vector is lost
by a burst error, the error propagates until a new resynchronization is occurred.
These prevalent video coding schemes use a row of MBs(macroblocks), called
slice(in MPEG-2) or GOB(in H.26x), as the minimal resynchronization unit.
Thus the effect of one erroneous block is spread out to the end of underlying
� Corresponding author
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slice in spatial domain. In addition, a motion compensation scheme employs the
images in the previous frame, an erroneous block has an influence on afterward
frames until the next new Intracoded frame(I-picture) appears.

Among many robust video coding schemes, the error concealment technique
is considered as one of the most effective ways to give error resiliency to the
system, which is used either in sole or together with other robust video coding
approaches. In most cases, existing error concealment algorithms fall into two
categories. The first one is the technique in which the DCT coefficients, partially
lost or erroneously, are recovered[3]. Secondly, lost MBs are compensated by the
recovered motion vector based on the boundary matching criterion[4].

In this paper, we propose a new error concealment method which recovers
the MV of lost or corrupted MBs in inter-frame. Once a MV is recovered, the
image in the previous frame(motion compensated image) is taken to replace the
corrupted MB[7, 8].

BMA has been proved to be one of the most effective solutions to the problem,
in which a fixed number of candidate MVs are examined and the one which
results in the minimum pixel variations at the boundaries of the lost block and
the neighboring blocks is selected[4]. Since it assumes the adjacent pixels are
highly correlated, it provides a good performance when the edges are horizontally
or vertically oriented along the boundaries of the erroneous MB. However, it may
perform poorly with edges of arbitrary orientations. To deal with such problems,
a modified BMA has been proposed[5]. But, it requires very high computations
and more than that, it assumes that all edges across a MB boundary has same
directions, which may not be true in many cases. We propose algorithms for the
detection of edges across the boundaries of the erroneous MB and the decision
of edge directions which are used in measuring distortions of the image found
by the candidate MV.

In section 2, the ideas in the conventional BMA and the modified BMA are
briefly overviewed and the proposed algorithms are given in section 3. Experi-
mental results are shown in section 4 and conclusions follow.

2 Related Works

2.1 Boundary Matching Algorithm (BMA)

Boundary Matching Algorithm aims that the corrupted block is replaced by
the most feasible block of the previous frame by means of strong correlations
among the neighboring pixels[3]. This concept basically can be explained by the
smoothness constraint measure[6]. Let the top-left pixel (p, q) denote the first
pixel ofN×N MB X in Fig. 1, and assume that the Variable Length Coded(VLC)
data for MB X is confused by a random bit error or burst error. Thus some macro
blocks after MB X are lost until the next synchronization codeword is occurred.
To recover each corrupted MB, the missing block is replaced by an image block
from the previous frame which is found by a candidate MV and the distortion
dS is computed as shown in equation (1).
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X (p,q)

XT

XB

XL lost 
block

16

16

Fig. 1. BMA(Boundary Matching Algorithm)

dL =
N−1∑
i=0

[
X̂(p, i)−XL(p− 1, i)

]2
dT =

N−1∑
i=0

[
X̂(i, q)−XT (i, q − 1)

]2
dB =

N−1∑
i=0

[
X̂(i, q +N − 1)−XB(i, q +N)

]2
dS = dL + dT + dB (1)

The set of candidate MVs are usually composed of the MV of :

1) The same block in the previous frame
2) Neighboring blocks available (Top, Left and Bottom blocks)
3) Median of the available neighboring blocks
4) Average of the available neighboring blocks
5) The ZERO MV

In this candidate set, a MV which results in the minimum error dS is finally
selected as the MV for the lost MB.

2.2 A Modified BMA

Since the differences of the neighboring pixels are computed along the boundary
of the erroneous MB for the distortion measure, BMA works well when there are
no specific edges across the boundary or there are edges vertically located across
the boundary. However, in most cases diagonal or anti-diagonal edges exist across
the boundary and the computation of errors on the boundary in BMA may devi-
ate severely from the exact distortion measure. To solve this problem, a modified
BMA(MBMA) is proposed which considers different edge orientations in com-
puting the boundary difference[5]. One of the three edge orientations, diagonal,
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anti-diagonal and horizontal(vertical), is decided by equation (2), by which pixel
differences along the boundary are computed. For example, if ELd produces the
highest value in equation (2), left diagonal edges dominate over other edge ori-
entations on the boundary of the erroneous MB. Now the pixel differences are
computed between pixels located left-diagonal across the boundary as shown in
Fig. 2.

ELd =
1

N − 1

N−2∑
i=0

[XL(p+ i, q − 1)−XL(p+ i+ 1, q − 2)]2

ELa =
1

N − 1

N−1∑
i=0

[XL(p+ i, q − 1)−XL(p+ i− 1, q − 2)]2

ELh =
1

N − 1

N−1∑
i=0

[XL(p+ i, q − 1)−XL(p+ i, q − 2)]2 (2)

lost 
block16

16

XL

XT

XB

X(p,q)

(a) ELd

lost 
block16

16

XL

XT

XB

X(p,q)

(b) ELh

lost 
block16

16

XL

XT

XB

X(p,q)

(c) ELa

Fig. 2. Decision of edge orientations at the boundary

3 Proposed Approach

MBMA requires high computations and more than that, it assumes that all
edges across a MB boundary has same directions or at least one of the edge
orientation dominates over others, which may not be true in many cases. We
propose a simple algorithm for the detection of every edge across the boundaries
of the erroneous MB. When the orientation is decided for each edge, the pixel
difference between pixels which lie across the boundary along the detected ori-
entation is computed and added to the total distortion of the candidate image
block. In this way, each edge is considered separately along the boundary and
only the pixel differences along the edges are added to the distortion, leading to
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P'(T ,0)
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: pixel 

: detected pixel position

: diagonal: anti-diagonal

: horizontal: vertical

P'(T ,15)

P(T,0,0)

P(T,1,0)
P(T,1,15)

Fig. 3. Detection Method of edge

very few computations. Details of our proposed approach for reconstructing the
lost block in interframe(P-frame) are described as follows.

Step 1) Boundary Selection: Select a boundary of the erroneous or lost MB.
If all the boundaries between a normal MB and the lost MB have been
considered, the algorithm terminates.

Step 2) Edge detection: Scanning the pixels just outside of the boundary, cal-
culate the difference between adjacent pixels on the boundary of the neigh-
boring block as in eq. 3 and shown Fig. 3. If the difference is greater than
a threshold , we assume that an edge is detected. P(K,p, q) denotes the pixel
value of the [p, q] th pixel in the 32 pixels outside of the lost MB in the
direction of K, where K=T(Top), L(Left) or B(Bottom). Note that K has
been selected in step 1). P’(K,q) denotes the pixel value of the [q] th pixel
in the 16 pixels just inside of the lost MB in the candidate image as shown
in Fig. 3.

diff = |P (k, 0, q − 1)− P (k, 0.q)|, q = 0, 15 (3)

Step 3) Decision of edge orientations across the boundary: Now if a candidate
image is presented by a candidate motion vector, the distortion value is
calculated along the edge direction detected in step 2) using eq. 4. Fig 4.
shows the edge orientations detected. If there are more boundaries to be
selected go to step 1).

(a)direction : |P (K, p+ 1, q − 1)− P (K, p, q)|
(b)direction : |P (K, p+ 1, q)− P (K, p, q)|
(c)direction : |P (K, p+ 1, q + 1)− P (K, p, q)| (4)

Step 4) Measuring distortion: Assuming that the lost or erroneous MB is re-
placed by an image block from the previous frame by a candidate MV, the
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P'(T,0)

(c) anti-diagonal(b) horizontal(a) diagonal

P(T,p+1,q-1)

P(T,p,q) P(T,p+1,q) P(T,p+1,q+1)

P'(T,q+1) P'(T,q) P'(T,q-1)

Fig. 4. Decision of edge direction and distortion

difference between pixel P(K,p, q) in Fig. 4 and the pixel P’(K,q) inside the
lost MB located along the edge orientation is computed, which is added to
the total distortion.

Step 5) Measuring edge misalignment: To improve the accuracy of the mea-
surement of edge distortion, the amount of edge misalignment is computed
as shown in Fig. 5. When the edge is not placed correctly in the candidate
image, the edge is further searched to measure the displacement d which
is the amount of misalignment. To accomplish this step, the edge in the
candidate image should be traced until the desired edge is detected. In the
real implementation, only a few neighboring pixels are searched for simplic-
ity. For example, in Fig. 5(b), the displacement of the detected edge in the
candidate image is measured to the left of the expected edge position. The
weighted amount of the misalignment d is added to the distortion measure.

Step 6) If the pixel is not the last pixel on the boundary of the lost MB, goto
step 4). Otherwise, terminate.

Step 1) through step 3) is carried out for the detection of edges and their
orientations. Step 4) through step 6) is applied to measure the distortion for
each candidate MV. The candidate MV which results in the smallest distortion
measure will be selected for the recovery of the lost MB.

(a) normal edge detected

P'(T,0)

distortion measure
d d

(b),(c) measuring misalignment

P(T,p,q) P'(T,q+1)

Fig. 5. Measuring edge misalignment
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4 Simulation Results

Experiments are carried out with H.263 video coder. Three QCIF test sequences,
Suzie, Mother&Daughter, and Foreman with a Block Error Rate(BER) of 5%
∼ 20% are used for the experiment. To simulate the effect of transmission over
practical communication channels, errors are introduced randomly in MBs or
GOBs. Note that sometimes GOBs can be lost since the loss of a GOB header
implies the loss of the whole data in the GOB. It is assumed that the conceal-
ment process is supported by an appropriate transport format which helps to
identify lost or damaged blocks at the decoder. Table 1 shows the comparison
of the quality of the recovered images using BMA, MBMA and the proposed
method. Fig. 6 displays an example image of 46th frame of the Suzie sequence
recovered from 20% block loss. In Fig. 6(c),(e),(g), the distortions incurred by
each algorithm are shown and Fig. 6(d),(f),(h) displays enlarged images of some
recovered blocks.

In terms of PSNR, the proposed method is about to 0.1 ∼ 1(dB) better
than BMA and outperforms MBMA in most cases. In terms of processing time
for the recovery of missing or erroneous MV, the proposed algorithm works
faster than MBMA because of two aspects. Firstly, for the edge detection, the
proposed approach scans the pixels just above the boundary of the missing or
erroneous block, it takes about 1/3 of the calculations needed in MBMA since
MBMA calculates the sum of pixel differences along the 3 edge directions. The
computation of edge distortion along the detected edge orientations are not of
much overhead and can be ignored in comparing the performance, since usually
few edges are detected along the boundary pixels. Secondly, scanning for the
edge detection is needed only once without respect to the number of candidate
motion vectors in the proposed approach. But in MBMA the calculation of
pixel differences has to be carried out for every candidate MV. Suppose that
k candidate MVs are used for the error concealment, the proposed approach
works k times faster than MBMA. In total, the proposed approach can perform
3k times faster than MBMA at best.

5 Conclusion

In this paper, a new error concealment algorithm is proposed to repair dam-
aged portions of the video frames in the receiver. Conventional BMA has no
consideration for the direction of edges across the boundary. In our approach,
the edges are detected across the boundary of the lost or erroneous block and its
neighboring blocks. Once the edge direction is decided for each edge detected,
only the pixel differences along the expected edges are measured, which results
in very few computations, instead of calculating differences between all adjacent
pixels on the boundary of the lost block.

The experiments showed that the proposed approach has better performance
compared with conventional BMA and MBMA in terms of both subjective and
objective quality of video sequences.
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(a) Original Image (b) Error Image(20%)

(c) BMA (d) Enlarged part by BMA

(e) MBMA (f) Enlarged part by MBMA

(g) Proposed method (h) Enlarged part by proposed method

Fig. 6. Reconstructed images using different computation methods
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Table 1. List of PSNR for the Test Sequences

Image BER(%) BMA MBMA Proposed

5 35.02 35.11 35.11
Foreman 10 34.79 34.98 34.98
#272 15 34.62 34.63 34.66

20 32.85 34.25 34.38

5 52.65 53.61 53.61
Mother& 10 52.21 52.65 52.75
Daughter 15 52.45 52.53 52.65
#15 20 50.63 50.68 50.69

5 47.39 47.85 47.85
Suzie 10 44.26 45.28 45.30
#46 15 44.05 45.17 45.48

20 43.51 43.98 44.88
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2 Unidad de Biof́ısica, Dpto de Fisioloǵıa. Universidad de Valencia, Av., Blasco
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Abstract. Through a 3D reconstruction of the human back surface us-
ing structured light techniques, we study the properties of spine curve by
means of a set of parameters related to measures commonly applied in
medicine. In this way, descriptors for measuring the abnormalities in the
projections of the front and sagittal planes can be computed. We build
the spine curve in 3D and analyse the behaviour of the Frenet frame
when along the curve the deformation processes in idiophatic scoliosis
appear.

Keywords: Biomedical pattern analysis, image analysis, structured light.

1 Introduction

Serious deformities in the human spine are present in the 0.3 percent of the
population [5]. The most common deformity is scoliosis: an abnormal lateral
curvature of the spine of congenital origin or caused by trauma or disease of
the vertebrae or hip bones. This is first noticed as a result of the changes that
occur in the shape of the human back during the adolescent growing season.
The characteristic feature is the disfiguring hump, caused by the rotation of the
vertebrae and ribs, that is presented together with a lateral bend of the spine.

In some few cases, the deterioration of the spine occurs quickly, so a preven-
tion of the illness is necessary as soon as possible. Unfortunately, the only means
of assessment has been unadvisably frequent x-ray examinations. Through a ac-
curacy clinic visualisation on the back surface of the cosmetic deformity, the
illness can be diagnosed and the treatment started, although this deformity al-
ready involves an important development of the illness. Aiming at this, several
methods of surface shape measurements have been previously used, ranging de-
formation tests, photographic methods, and direct computer input from a special
scanner [7, 12, 13].

F.J. Perales et al. (Eds.): IbPRIA 2003, LNCS 2652, pp. 1003–1011, 2003.
c© Springer-Verlag Berlin Heidelberg 2003



1004 J. M. Sotoca et al.

In the present work, we describe how a non-invasive method like structured
light can be used to detect the illness through the study of the spine deformity
to the shape of the back surface. We examine how the vertebral deformities
reflect on the back surface and what relation do they have to the information
obtained with the x-ray images. We make a reconstruction of the spine curve
and explore the projections of the curve in the front and sagittal planes of the
body. The intrinsic parameters of the curve and its corresponding properties are
also obtained. We use the nomenclature of Ponsetti and Friedman [8] to classify
the different types of scoliotic curves1.

2 Extraction of the Curve Parameters

2.1 Reconstruction of the Back Surface

Through a method based on structured light [1, 11], we obtain a reconstruction
of the back surface by means of the deformation of a known structured pattern
that is projected over the objects in the scene (object grid). So, we can obtain the
3D position points of the object surface and make the correspondence between
points or regions in smooth surfaces as it is the case of human backs.

In order to establish the deformation, and in addition to the object grid, the
utilised procedure requires the digitisation of the images of the grid projected
on a flat surface (screen) placed, respectively, behind the object (back grid),
and in the front of the object (front grid). This method allows to achieve the
correspondence of the grid nodes on the three images (back grid, front grid and
object grid) and to obtain the values of z (depths) for the nodes in the object
grid. This procedure needs to be made just once for each setup for calibration
purposes.

In the surface reconstruction phase, we analyse the list of the nodes in the ob-
ject grid and calculate the co-ordinates of the intersection points of the straight
pattern lines for the front grid and back grid images. This way, we get the po-
sitions (x, y, z) of the grid nodes as they are projected on the object and we
can build a depth map for the grid nodes on the surface of the human back, as
it is observed in Fig. 1. The rest of points on the surface are reconstructed by
a parametric approximation. The evaluation of the errors during the measure-
ment process have been estimated in less than 4 %.

2.2 Spine Curve Positioning on the Surface

Once we have the back surface depth map, the objective is to obtain the curve
that passes over the vertebrae beneath the skin. Two data sources are utilised
to obtain this spine curve:
1 This nomenclature makes a classification of the spine shape according to the position
of the principal curve in the front plane: cervical-thoracic, thoracic, thoraco-lumbar,
double major, and lumbar.
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Fig. 1. (Top-left) Clinical image of a patient with a severe thoracic scoliosis. The
vertebral spinous processes are marked on the skin. (Top-right) A radiography of
the same patient. (Down) Topographic representation of the back surface with
the values of z displayed in millimetres (on the right, in colours, not displayed)
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1. Locate on the back surface the vertebral spinous processes, from C7, also
named the prominent vertebra, to the last lumbar vertebra L52 (see Fig. 1).
In practice, marking the patient takes only one minute and the landmarks
can be positioned with an accuracy of ±5 mm.

2. The study of the shape of the spine curve in x-ray images. In this case, we
have a real knowledge about the displacements of the vertebrae and their
rotations through the projection of the vertebral pedicles. Also, we can locate
a centre point for each vertebra in the radiograph (see also Fig. 1) and, by
means of an alignment process [3], a transformation of scale, rotation and
translation is made to put the points of the spine shape in the x-ray image
over our depth map.

2.3 Study of the Front and Sagittal Planes of the Curve

When the specialists study the x-ray image and assess the lateral displacement of
the spine, they utilise the Cobb angle, defined as the angle between two vertebral
plates: those having a higher and opposite inclination respect to the horizontal
plane (see Fig. 1, top-right). So, only if the Cobb angle is larger than 12 degrees
in x-ray image, the specialist considers that there is a scoliotic process. In our
case, we study projections of the spine 3D curve in the front and sagittal planes
of the body. One measurement associated to the Cobb angle in the front plane is
the lateral asymmetry [14], that is defined as the angle between perpendiculars
drawn to the line of the spine at its inflexion points3. One problem that appears
when detecting these inflexion points is the presence of noise in the control points
when an approximation method is applied4 in the reconstruction of the curve.
So, to solve this problem it is necessary to establish which regions in the curve
are candidates to contain an inflexion point.

As a first step, we obtain the straight line that joins both extremes in the
spine curve and calculate the distance from each point in the curve to the line,
fixing a distance threshold of 7 mm as a criterion of normality for the curve.
If the distance is bigger than the threshold, we consider that the curve shows
a lateral deviation of the spine. The lateral asymmetry is given by the absolute
value of the sum of two consecutive angles with opposite sign. In Fig. 2(a), the
lateral asymmetry in the front plane is 20.9◦ in the thoracic region and 13.0◦ in
the lumbar region. Other important angle is the inclination angle. This angle
quantifies the inclination at the end of the curve in the front plane. When this
angle is small, the mobility of the L5 vertebra with the sacrum bone compensates
this deviation, but if it is severe (> 10 degrees), it causes a possible malfunction
of the inferior limbs. In the Fig. 2(a), the inclination angle is 5.9◦.
2 The vertebrae are enumerated from the head to the hip with the following sequence:
Cervical (C1...C7), thoracic or dorsal (D1...D12) and lumbar (L1...L5). The vertebrae
C7 and L5 are the extremes of the spine curve considered. Thus, only thoracic and
lumbar zones are considered in this work

3 Given a 2D discrete curve, we define its inflexion points as those where it presents
a change in the sign of the curvature.

4 We apply a cubic B-spline with C2 continuity.
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In the sagittal plane, the kyphosis angle is measured (curve in the upper
back zone) and lordosis angle (curve in the lower back). For this, the inflexion
points are calculated. In Fig. 2(a) the computed kyphosis angle was 49.2◦ and
the lordosis angle 45.1◦.

(a) (b)

Fig. 2. (a) Front and sagittal planes of the curve for a patient with a thoraco-
lumbar scoliosis with thoracic Cobb angle of 24◦ and lumbar Cobb angle of 12◦.
In the sagittal plane, a flatten zone appears in the transition of the thoracic
region to the lumbar region. (b) The dotted line is the curvature κ and the solid
one is the torsion τ . The two peaks that appear in torsion, imply a high rotation
in that region of the curve

2.4 Study of the Spine Curve in 3D

Let be C(u) : [pi, pi+1] → )3, i = 1...n, u ∈ [0, 1] a parameterisation of the
spine curve. One problem that affects the computation of the invariant param-
eters of the curve is the existence of errors in the control point positions. So,
the curve obtained from the control points must be smooth or the noise of the
curvature must be small enough [9, 10]. In our case, we have used a polynomial
fitting with regard to the co-ordinates x, y, z and we have computed the coef-
ficients Px and Pz of the polynomial by least squares, using a threshold in the
corresponding correlation index, between the values of the control points and
the estimation of the polynomial. The parameterisation of the curve C(u) can
be then computerized as:

C(u) =

(
nx∑
i=0

Px(i)ui, u,
nz∑
i=0

Pz(i)ui
)

(1)
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where nx and nz are the degrees of the polynomials. The two invariant param-
eters in a 3D curve are curvature and torsion. They can be calculated from an
arbitrary parametric curve through the following expressions that use derivatives
of the curve parameterisation:

κ(u) =
||C ′ ∧C ′′ ||
||C ′ ||3 and τ(u) =

det[C
′
, C

′′
, C

′′′
]

||C ′ ∧C ′′ || (2)

A tangent vector t can be defined for each point of the spine curve and the
plane that is perpendicular to the curve at that point can also be computed,
defining, along with t, a natural local reference system called Frenet frame. The
local system vector is given by the following expressions:

t =
C
′

||C ′ || , b =
C
′ ∧ C ′′

||C ′ ∧ C ′′ || , n = b ∧ t , (3)

where b is the binormal vector and n is the normal vector obtained by a vector
product between b and t. If we consider η and ρ as the angle variations of the
vectors t and b, respectively, we can arrive, by the first order terms of a Taylor
expansion, to the following relations for the curvature and the torsion [6]:

κ =
∂η

∂s
, τ =

∂ρ

∂s
(4)

where s is the arc length. Thus, κ and τ are the angular velocities of t and b. In
this way, the curvature gives information about the changes in the orientation of
the curve and torsion provides information about its rotation. When curves are
limited to a plane, the binormal vector is perpendicular to the plane and τ = 0.
Through the study of the evolution of κ and τ along the spine curve, we can
have a “qualitative description” of how the shape changes affect the properties
of the spine curve. With the aim of analysing these variations, Fig. 3 shows a
representation of t, b and n in the control points of the curve.

In a normal spine, the curve in the sagittal plane has a ’S’ shape, with
a concave region and other convex one with a point of inflexion where the torsion
has a peak. This implies a change of direction in the vectors b and n of about
180◦, as can be seen in Fig. 3 (left). The curvature also maintains this shape
of ’S’ and the presence of flatten regions indicates the existence of peaks in the
torsion as can be seen in Fig. 2(b).

3 Experiments and Results

In this study, we have worked with a sample of 76 patients (42 female and 36
male), where a group of 12 patients, aged from 11 to 18 years, had an idiopathic
scoliosis process with the following classification: 4 thoracic, 2 thoraco-lumbar,
1 lumbar and 5 double major curves. For all of them, we made a reconstruction
of the surface and a specialist fixed the landmarks on the skin at the detected
vertebrae.
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Fig. 3. (Left) A representation of the Frenet frame of a normal spine curve.
(Right) Frame evolution for a pathologic spine. In the top-right square, a view
from the top is displayed

Some of the studied cases can be observed in the table 1. The spine curve
parameters for the thoracic and lumbar regions are displayed both for the Cobb
angle measured using the classical technique and for the lateral asymmetry ex-
tracted through the proposed method. Note that there is a high correlation
between the values obtained using both techniques. The correlation index ob-
tained with all the studied cases was r = 0.89, being similar to other studies in
the literature [4, 14]. This fact supports the diagnostic manually in this mea-
surement.

In the sagittal plane, the average value for the kyphosis and lordosis angles
for a group of 30 normal subjects between 12-35 years were 44.5 ± 11.8 and
34.1± 10.0 degrees for male and 46.1± 11.6 and 39.1± 12.6 degrees for female.
These values change as a function of age and sex, and allow to establish intervals
of normality to detect suspicious cases in the sagittal plane [2].

4 Concluding Remarks and Further Works

We have developed a structured light scheme to obtain a reconstruction of the
back function surface. Using this structure, the curve that passes over the main
vertebral bodies beneath the skin is obtained, with the aid of a number of land-
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Table 1. Values obtained for a number of patients for the Ponsetti classification,
the Cobb angle, lateral asymmetry and its inclination angles (all measurements
are in degrees)

Thoracic Lumbar

Curve classif. Cobb Lat.Asym. Cobb Lat.Asym. inclination

Double major 30 32 20 21 7
Thoracic 50 36 − − 8
Lumbar − − 25 26 12
Thoracic 60 50 28 20 7
Double major 30 26 30 26 14
Double major 18 18 15 16 6
Double major 20 20 15 13 6
Double major 35 25 30 21 12
Thoraco-lumbar 24 20 12 13 6
Thoracic 45 27 − − −

marks placed on the back surface that indicate the positions of the spinous
processes. From these points, a parametric description of the 3D spine curve is
computed.

We have measured some characteristic parameters on the projections of the
3D spine curve in the front and sagittal planes. We get a description of the
deformity of the spine as a function of the curvature and torsion, from the
evolution of the Frenet frame along the spine curve.

We have compared this method to a classical measuring method that uses
frontal radiographies to measure the spine deviation and obtained good cor-
relations with it. The information obtained by the classical method requires
irradiation of the patient and is subjected to human measuring errors.

In this aspect, this work contributes a development in a project of a classifier
that uses the information of 3D geometric invariants from the current classifiers
based in the front projection of the curve. On the other hand, the obtaining to
a automatic reconstruction method without using the manual placing landmarks
is under study.
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Abstract. In this paper a novel method for indexing views of 3D objects
is presented. The topological properties of the regions of the segmented
images of the objects are used to define an index based on oriented ma-
troid theory. Oriented matroids, which are projective invariants, encode
incidence relations and relative position of the elements of the image and
give local and global topological information about their spatial distri-
bution. This indexing technique is applied to 3D object hypothesis gen-
eration from single views to reduce the number of candidates in object
recognition processes.

1 Introduction

In this paper a new method for indexing views of 3D objects is presented. It
is applied to 3D object hypothesis generation to reduce the number of candi-
dates in object recognition processes. Given a set of views of different objects,
the problem of object recognition using a single image can be regarded as the
problem of finding a subset of the set of regions in the image with a relational
structure identical to that of a member of the set of views. The standard way
to reduce the complexity of model matching is subdividing the problem into
a hypothesis generation followed by a verification. To be of interest in object
recognition the hypothesis generation should be relatively fast although impre-
cise in which several possible candidates for matching are generated. In this way
the verification can be carried out using a more complex and, therefore, slower
procedure [1] over a reduced number of candidates. The hypothesis generation
can be made very efficient if it is formulated as an indexing problem where views
of a set of 3D objects are stored into a table that is indexed by some function
of the views themselves.

In this paper an indexing technique based on oriented matroid theory is pre-
sented. More precisely, the topological properties of the regions of the segmented
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views of 3D objects are encoded into a data structure called set of cocircuits.
The sets of cocircuits of the different views of a database merged together are
used as an index of the database itself. The set of cocircuits, that are one of the
several combinatorial data structures called oriented matroids, encode incidence
relations and relative position of the elements of the image and give local and
global topological information about their spatial distribution. Since index tables
are by definition discrete, the discrete nature of the combinatorial structure of
the set of cocircuits nicely fits with this technique. This method is employed to
the hypothesis generation for 3D object recognition from single views. The prin-
cipal aspects of oriented matroid theory together with some applications were
compiled in 1993 in the comprehensive monograph [2]. For shorter introductions
see [3] or [4]. For another approach to shape representation and indexing based
on combinatorial geometry see [5].

The paper is organized as follows: in Section 2 oriented matroids are intro-
duced and their invariance properties are illustrated. In Sections 3 the proposed
indexing method is described together with the strategy used for hypothesis gen-
eration. In Section 4 some experimental results obtained applying the proposed
method to 3D object recognition are reported. Finally, Section 5 contains the
conclusions.

2 Oriented Matroids

Oriented matroid theory is a broad setting in which the combinatorial properties
of geometrical configurations can be described and analyzed. It provides a com-
mon generalization of a large number of different mathematical objects usually
treated at the level of usual coordinates. In this section oriented matroids will be
introduced over arrangements of points using two combinatorial data structures
called chirotope and set of cocircuits.

2.1 Oriented Matroids of Arrangements of Points

Given a point configuration in R
d−1 whose elements are the columns of the ma-

trix P = (p1, p2, . . . , pn), the associated vector configuration is a finite spanning
sequence of vectors {x1, x2, . . . , xn} in R

d represented as columns of the ma-
trix X = (x1, x2, . . . , xn) where each point pi is represented in homogeneous
coordinates as xi =

(
pi
1

)
. To encode the combinatorial properties of the point

configuration we can use a data structure called chirotope [4] which can be com-
puted using the associated vector configuration X . The chirotope of X is the
map

χX : {1, 2, . . . , n}d → {+, 0, −}
(λ1, λ2, . . . , λd) �→ sign ([xλ1 , xλ2 , . . . , xλd

])

that assigns to each d-tuple of the vectors of the finite configuration X a sign
+ or − depending on whether it forms a basis of R

d having positive or negative
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p1

p2

p3 p4

p5
p6

Fig. 1. A planar point configuration

Table 1. Vector configuration that corresponds to the planar point configura-
tion represented in Fig. 1

x1 = (0, 3, 1) x2 = (−3, 1, 1) x3 = (−2,−2, 1)
x4 = (2,−2, 1) x5 = (3, 1, 1) x6 = (0, 0, 1)

orientation, respectively. This function assigns the value 0 to those d-tuples that
do not constitute a basis of R

d. The chirotope describes the incidence struc-
ture and relative position of the points of the arrangement with respect to the
hyperplanes passing through them.

Example 1. Consider the point configuration represented in Fig. 1 whose asso-
ciated vector configuration X is given in Table 1.

The chirotope χX of this vector configuration is given by the orientations
listed in Table 2.
The element χ(1, 2, 3) = +, for instance, indicates that, in the triangle formed
by p1, p2, and p3, these points are counterclockwise ordered. These orientations
can be rearranged in an equivalent data structure called set of cocircuits of X
shown in Table 3. In this case, the set of cocircuits of X is the set of all partitions
generated by lines passing through two points of the configuration. For example,
(0, 0,+,+,+,+) means that the points p3, p4, p5, and p6 lie on the same half
plane determined by the line through the points p1 and p2. Changing the signs
of the set of cocircuits we obtain an equivalent description of the arrangement
of points.

Besides chirotopes and sets of cocircuits there are several data structures
capable of encoding the combinatorial properties of a point configuration [4]. It

Table 2. Chirotope of the planar point configuration represented in Fig. 1

χ(1, 2, 3) = + χ(1, 2, 4) = + χ(1, 2, 5) = + χ(1, 2, 6) = + χ(1, 3, 4) = +

χ(1, 3, 5) = + χ(1, 3, 6) = + χ(1, 4, 5) = + χ(1, 4, 6) = − χ(1, 5, 6) = −
χ(2, 3, 4) = + χ(2, 3, 5) = + χ(2, 3, 6) = + χ(2, 4, 5) = + χ(2, 4, 6) = +

χ(2, 5, 6) = − χ(3, 4, 5) = + χ(3, 4, 6) = + χ(3, 5, 6) = + χ(4, 5, 6) = +
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Table 3. Set of cocircuits of the planar point configuration represented in Fig. 1

(0, 0,+,+,+,+) (0,−, 0,+,+,+) (0,−,−, 0,+,−)
(0,−,−,−, 0,−) (0,−,−,+,+, 0) (+, 0, 0,+,+,+)

(+, 0,−, 0,+,+) (+, 0,−,−, 0,−) (+, 0,−,−,+, 0)

(+,+, 0, 0,+,+) (+,+, 0,−, 0,+) (+,+, 0,−,−, 0)

(+,+,+, 0, 0,+) (−,+,+, 0,−, 0) (−,−,+,+, 0, 0)

can be proven that all of them are equivalent and are referred to as oriented
matroids.

In the next section a method to represent with an oriented matroid the
combinatorial structure of views of three dimensional objects will be presented.
It will be used for indexing the image database in which they are stored.

2.2 Oriented Matroid of Arrangements of Regions

Extracting the oriented matroid of a view is not straightforward since the re-
gions that form an image cannot be reduced to points, taking for example their
centroids, without losing essential topological information for object recognition.
Therefore, in the method presented in this paper the convex hull [6] of each re-
gion is used to represent the region itself. Then, pairs of non-overlapped convex
regions resulting from this process are considered and their convex hulls are
merged. The oriented matroid is extracted based on the spatial location of the
other convex regions of the image with respect to the two lines arising when
merging the convex hulls of two of them. Consider, for instance, the ordered
pair of convex regions (S, T ) of the view v1,1 of Fig. 3. It is easy to see that the
convex hull of these two convex planar non-overlapped polygons is a polygon
whose set of vertices is included in the union of the set of vertices of S and T .
On the contrary, the set of edges of the convex hull of S and T is not included
in the union of their set of edges. Indeed, two new “bridging edges,” e1 and e2,
appear as illustrated in Fig. 2.a. Actually, efficient algorithms for merging convex
hulls are based on finding these two edges [7]. Consider the two lines l1 and l2
that support e1 and e2. They divide the image into three regions, namely the
region RS,T on the right with respect to the pair (S, T ), the region LS,T on the
left with respect to the same pair and the region IS,T comprised between the
lines (Fig. 2.b). The shape of the latter varies according to the location of their
crossing point with respect to the image. The location of a region U with respect
to the ordered couple of regions (S, T ) of the image is encoded in the chirotope
using a rule derived from the case of planar arrangements of points

χ(S, T, U) =

⎧⎪⎨⎪⎩
+ if U ∈ LS,T ,
0 if U ∈ IS,T ,
− if U ∈ RS,T .
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e1
e2

S

T l1

l2

(a) (b) (c)

LS,T

IS,T RS,T

U

V

Z

Fig. 2. Steps of encoding of the combinatorial properties of a view of an object
into an oriented matroid

It has been implicitly assumed that U is completely contained into ei-
ther RS,T LS,T or IS,T but in general it can belong to more that one of them.
In this case, since the ratio of areas is an affine invariant, introducing an ap-
proximation, we can choose the sign based on which region contains the largest
portion of the area of U . For instance, if regions U , V and Z are located as in
Fig. 2.c we have that χ(S, T, U) = +, χ(S, T, V ) = 0 and χ(S, T, Z) = −.

2.3 Invariance of Oriented Matroids

Consider a 3D point configuration and one of its views. The combinatorial struc-
ture of the 3D point configuration and that of its 2D perspective projection are
related in the following way: if x0 represents in homogeneous coordinates the
center of the camera, p0, we have that

sign[x̄i, x̄j , x̄k] = sign[xi, xj , xk, x0] (1)

where xi, xj and xk are the homogeneous coordinates of the 3D points pi, pj
and pk, and x̄i, x̄j and x̄k are those of the corresponding points in the view,
p̄i, p̄j and p̄k. Equation (1) can be regarded as a projection equation for chiro-
tope. It is easy to see that, whereas the matrix that represents in homogeneous
coordinates the vertices of a projected set of points is coordinate-dependent, an
oriented matroid is a coordinate-free representation. Moreover, the representa-
tion of object views based on oriented matroid is a topological invariant, that
is, an invariant under homeomorphisms. Roughly speaking, this means that the
oriented matroid that represents the arrangement of points of a view of an object
does not change when the points undergo a continuous transformation that does
not change any orientation of the chirotope. This property makes this represen-
tation robust to discretization errors of the image as well as to small changes of
the point of view that does not change any orientation of the chirotope. Since
projective transformations can be regarded as special homeomorphisms, and
we can assert that the representation of the projected set of points based on
oriented matroids is projective invariant. However, since affine and Euclidean
transformations are special projective transformations, the oriented matroid of
the projected set of points of a view of an object does not change under ro-
tations, translations, and affine transformations of the planar arrangement of
points themselves. These considerations can be extended to the case in which
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R G1

G1G2

W

W
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B2

B2

N

N

Y

Fig. 3. Two views, of two objects whose combinatorial properties are indexed
in Table 4

v1,1 v1,2

oriented matroids represent arrangements of planar regions. Therefore, the hy-
pothesis generation method presented in this paper is inherently insensitive to
projective, affine and Euclidean transformations of the views.

3 Indexing Views of 3D Objects

This process of indexing a database of views of a set of objects starts with some
preliminary choices, namely the number of colors in which the hue is quantized
and the number of regions having the same color that will be taken into account.
These choices, of course, depend on the properties of the images of the database.
Then, the views are segmented according tho these choices the set of cocircuits
for each view is computed. Then, the sign combinations of the set of cocircuits
of the views of the database are merged together and used for indexing a unique
table whose entries are spatial combination of features of regions and the records
contains the views that contains that combination.

Example 2. In Fig. 3 two views, v1,1 and v1,2, of two objects are represented, in
which a color quantization with 6 colors white (W ), red (R), yellow (Y ), green
(G), blue (B) and black (N) has been applied and up to two regions with the
same color are taken into account. Let (W,R, Y,G,B,N) be the ordered tuple of
colors considered. The index of the combinatorial properties of these two views
is reported in Table 4, in which an asterisk in the first column indicates that
the regions are not completely overlapped. On the contrary, a sign + in the
same column, in correspondence with a certain ordered couple of regions (S, T ),
indicates that S completely contains T , whereas a − denotes that S is contained
in T . If they are completely overlapped the corresponding element of the set
of cocircuits cannot be computed. An asterisk in the column of the feature U
denotes the absence of a region with this feature in the corresponding view of
the database. The description of the case of partial overlapping between regions
is herein omitted due to space limitations.

3.1 Hypothesis Generation for Object Recognition

Given a database of views of a set of 3D objects and a view vi of one of them,
not necessarily contained in the database, its set of cocircuits is computed. Each
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Table 4. Index of the combinatorial properties of the two views v1,1 and v1,2
of the two objects represented in Fig. 3

Overlapping W R Y G1 G2 B1 B2 N Views

WR * 0 0 * 0 0 0 − + v1,1
WY * 0 * 0 0 * 0 0 − v1,2
WG1 − 0 * * 0 * * * * v1,1
WG1 * 0 * 0 0 * 0 0 0 v1,2
WG2 * 0 0 * 0 0 + 0 0 v1,1
WB1 * 0 0 * 0 0 0 0 0 v1,1
WB1 − 0 * * * * 0 * * v1,2
WB2 * 0 0 * + + + 0 + v1,1
WB2 + 0 * * * * * 0 * v1,2
WN * 0 0 * − − − − 0 v1,1
WN * 0 * + + * 0 0 0 v1,2
RY *

RG1 − * 0 * 0 * * * * v1,1
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

element of the set of cocircuits is used to access the table that constitutes the
index of the database. For each view j of the object k, vj,k, found at that address
of the table, the elements (i, k) of an image-object views association matrix are
increased of 1. The final result of the indexing is therefore an association matrix
in which the value of the element (i, k) indicates the strength of the hypothesis
of associating the image vi with the object k of the database. In other words,
the view vi will be associated with the object that has the maximum number
of correspondences with vi in terms of cocircuits. It is easy to see that this
method for hypothesis generation, that can be regarded as a qualitative version
of the geometric hashing technique [8], is also robust to partial occlusions of the
objects. Indeed, if a region of a view is occluded, the set of cocircuits can still be
computed and the number of correspondences with the views of the database can
still be calculated. In this case, obviously, the selectivity of the method decreases.

4 Experimental Results

To validate our method, four 3D objects composed by colored woody pieces
(Fig. 4) have been created. Then, sixteen views of each of them with angular
separation of 22.5 degrees have been taken. These images have been segmented
using the segmentation method described in [9]. Then, the index of the learning
set of eight views per object taken at the angles 0, 45, 90, 135, 180, 225, 270
and 315 have been created. In the recognition process, the set of cocircuits of
each image of the test set composed by the eight views not used in the learning
process, that is, the views taken at angles: 22.5, 67.5, 115.5, 157.5, 202.5, 247.5,
292.5 and 337.5 degrees, have been calculated. In this experiment, that should
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Object 1 Object 2 Object 3 Object 4

Fig. 4. Objects used for the experiments

be regarded as a proof of concept, since the 3D objects employed were not very
complex and the images easy to be segmented, all the 32 test views were properly
classified.

5 Conclusions

In this paper a new method for indexing views of a set of 3D objects has been
presented. It is based on oriented matroids, a combinatorial data structure that
captures the local and global topology of the regions of the views. This repre-
sentation is invariant to projective, affine and Euclidean transformation of the
views as well as, intrinsically robust to discretization errors of the image and
insensitive to small displacements of the point of view. The experimental re-
sults obtained applying this indexing technique to the hypothesis generation in
3D object recognition processes from single views encourage to apply this new
method to more complex objects.
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Abstract. This paper is a review of works about the use of the log-
polar image model for pattern recognition purposes. Particular attention
is paid to the rotation- and scale-invariant pattern recognition problem,
which is simplified by the log-polar mapping. In spite of this advantage,
ordinary translations become a complicated image transform in the log-
polar domain. Two approaches addressing the estimation of translation,
rotation and scaling are compared. One of them, developed by the au-
thors, takes advantage of the principles of the active vision paradigm.

1 Introduction

Computer vision often looks at biology for inspiration. This is the case of log-
polar images, which follows a foveal model found in some vertebrates, including
humans [19]. After these neuro-physiological findings, researchers in artificial
vision started to adopt it in their algorithms.

Two main areas where the log-polar model has been adopted are active vi-
sion [5] and pattern recognition [28], as it is summarized in the rest of this
section. The novel contribution of this paper is as a survey of works on log-
polar imagery for pattern recognition, with an emphasis paid in the comparison
between a traditional well-known technique (Fourier-Mellin Transform) and an
active-vision based approach (developed by the authors) for the problem of sim-
ilarity motion estimation. After that, rotation and scaling invariances in the
log-polar domain and some approaches using them are introduced in Section 2.
The problem of dealing with conventional (cartesian) translations in log-polar
images is also considered, and two algorithms that can cope with translations
combined with scaling and rotation are discussed and compared. Then, in Sec-
tion 3, applications using the log-polar transform and the benefits brought by it
are briefly commented. Finally, at the light of the results surveyed throughout
the paper, concluding remarks are drawn in Section 4.
� Research partly funded by Conselleria d’Educació, Cultura i Cincia, Generalitat
Valenciana, under project CTIDIB/2002/333.
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Log-polar Images and Active Vision. On the one hand, active vision [1, 2]
and foveal sensing are intimately linked to the extent that the term space-variant
active vision has been coined in the past. One of the favorable properties that
log-polar images bring to the field of active vision is a trade-off solution between
large field of view, small image size and good resolution at the point of inter-
est. Log-polar images are such that devote a high visual acuity in the center
of the field of view, so that foveated objects can be perceived with very good
quality. Because resolution decreases exponentially with eccentricity, the size of
the log-polar image is small, so that active vision algorithms can exhibit real-
time performance. The coarser resolution at the periphery can still be used to
detect potentially interesting events that deserve further attention. The topol-
ogy of log-polar images carry an implicit focus of attention that is particularly
useful in vergence control [8] or tracking algorithms [25], because background
information becomes less distracting in comparison with uniformly sampled im-
ages. Advantages of the log-polar geometry for time-to-impact computation [24],
depth estimation [23], or motion stereo [3], among others, have also been studied.

Log-polar Mapping and Pattern Recognition. On the other hand, pat-
tern recognition problems may also benefit from the log-polar representation.
This paper focuses on the use of this image model to achieve rotation- and
scale-invariant (RSI), or translation-, rotation- and scale-invariant (TRSI) ob-
ject representations. It is worth noticing an important difference that usually
arises between the log-polar images used in active vision applications and those
used in recognition tasks. In robotics, there has been a trend to design and use
true retina-like sensors (e.g. [29]), or at least, to simulate the log-polar images
by software conversion (e.g. [4, 11, 25]) while using cartesian images for the only
purpose of the transformation. In this case, we can speak of log-polar images.
However, practitioners in pattern recognition usually approach the problem from
a different perspective, in which it is more appropriate to speak of the log-polar
mapping, because the transformation is used as a tool. This distinction is fun-
damental due to its practical consequences:

Image Size. Many recognition problems do not have hard-time constraints,
so that devoting a lot of time to process large log-polar images is not really
a concern. This is not the case, however, when fast computations are a must.

Biological Motivation. Because log-polar images are obtained as a result of
a transformation, cartesian images are still available, and one can make use
of both kinds of images, exploiting the best of both worlds. This advantage
may be seen as a problem if one is interested in being biologically consistent,
or when cartesian images are simply not available.

2 Achieving Invariances

Rotation and Scaling Invariances. It is well-known the fact that rotation and
scaling become shifts with the log-polar transform. These properties derive from
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the topological nature of log-polar images. On the one hand, the polar geometry
maps angles to shifts along the angular axis of the log-polar image. On the other
hand, the logarithmic law —which governs the location of receptive fields away
from the center of fixation— maps changes of scale to shifts along the radial axis
of log-polar images.

Therefore, to estimate a rotation angle or a scale factor, one has only to
estimate two shifts: an angular shift and a radial shift, from which the scaling
and rotation angle can be derived straightforwardly using the underlying log-
polar model. It is worth noticing that some, but not all, of the existing log-polar
models actually possess these properties [25]. Therefore, the choice of a log-polar
model should take this into account if RSI is a desirable feature.

Pattern Representation and Recognition. Edge invariance (a more suitable name
to refer to the RSI of log-polar images) is the key feature exploited in [28] to
represent pattern templates. To that end, it is central the scale and rotation
normalization: rotation normalization is achieved by cyclically shifting the rows
of the image by an amount corresponding to the angle of the major axis of
the pattern. Scale normalization involves shifting the image down until there is
an edge in the bottom row. This work is an enhancement of the normalization
method first proposed in [16].

Fourier-Mellin Transform. The Fourier-Mellin Transform (FMT) is
a method for making images rotation-, scale- and translation-invariant. The
idea is to evaluate the Fourier Transform (FT), then the Log-polar Transform
(LPT), and finally another Fourier Transform [20]. This approach relies on the
shift theorem of the FT, on the edge-invariance property of the LPT, and on
their combination on the appropriate data and in the right order. Through phase
correlation, this system can not only determine whether a similar object is in
both images, but also to quantify the scaling (α), rotation (φ) and translation
(dx, dy). The overall steps needed in this process are illustrated in Fig. 1, while
for specific details, the reader is addressed to Ref. [20].

Another interesting point in [20] is that complex numbers are used to repre-
sent color information. Phase correlation performed in this way can discriminate
between the different colors of similarly shaped objects. Thus, the argument of
the displacement peak —which is complex— is an angle whose value corresponds
to the difference in color between the object in the reference image and that in
the object image. The advantage of using complex color representation is that
the color of the displaced object is calculated as part of the location procedure,
with no extra processing.

A log-polar transform on the visibility image (the magnitude of the Fourier
transform), is applied in [7], resulting in the so-called log-polar visibility. After
that, scalings and rotations correspond to shifts. The approach is illustrated in
a shift-, scale- and rotation-independent object recognition task. Even though
the phase of the Fourier transform is interesting for image representation, an
accurate description of the magnitude may also suffice to represent images. In
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Fig. 1. Fourier-Mellin Transform. The input to the algorithm are two cartesian
images I1, I2, and the output are the parameters α, φ, dx, and dy

Fig. 2. Two-stage projection-based similarity estimation. The input to the algo-
rithm are two log-polar images L1, L2, and the output are the motion estimates
(α, φ, dx, dy)

addition, by using the magnitude of the Fourier transform, the information of
the position of the object (which is associated with the phase) is lost, which is
an advantage in this particular case.

Exponential Chirp Transform. As can be appreciated, the joint use of the
Fourier and the log-polar transforms results in a powerful tool for general object
recognition tasks. The main disadvantage of the FT is that the shift invariance
does not hold when it is applied directly to a log-polar image. Thus, FMT resorts
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to cartesian images, which is not a feasible solution if only log-polar images are
available, or biologically plausible solutions are sought.

Bonmassar and Schwartz introduced the Exponential Chirp Transform [6],
which allows a Fourier-like transform be defined directly in the log-polar plane,
thus having the benefits of the space-variant architecture and avoiding the draw-
back of the lack of simple shift invariance.

Active-Vision Approach. While estimating rotation and scaling is facilitated
by the log-polar transform, the estimation of ordinary translation is more dif-
ficult in log-polar images [26]. The problem gets even more complicated when
rotations, scaling and translations are combined.

As we have seen above, the FMT approaches the problem by using both
cartesian and log-polar images. This, along with the fact that computationally
expensive Fourier transforms are used, makes the FMT an inappropriate solu-
tion in many cases. By exploiting the advantages of active vision, another much
simpler and efficient solution is proposed in [25]. The idea is that, if translation
is small, rotation and scaling can be estimated quite easily. Then, after removing
the effects of these transformations, translation can be estimated by some other
simple procedure [26]. The assumption of small translations is valid under an
active tracking scenario, where the motion of a target is compensated by dynam-
ically moving the camera. Unlike the FMT, this algorithm, outlined in Fig. 2,
makes direct and only use of log-polar images. One further interesting point in
this proposal is that all four motion components (horizontal and vertical trans-
lation, as well as rotation and change of scale) are dealt with through a uniform
approach: estimating the 1D shift between two one-dimensional signals. These
1D signals are image projections computed along different appropriate directions.

3 Log-polar Transform for Pattern Recognition

In this section, applications of the LPT are briefly commented. Besides the edge
invariance, which the first part of this paper focuses on, other advantages that
can be derived from the LPT are mentioned in the subsequent examples.

Straight lines and circles detection. Equations of straight lines and circles take
a special form in the log-polar domain [27, 30]. In [30], a point-by-point complex
product of the FFT (Fast FT) of the log-polar image with the FFT of a template
line, after being mapped back to the spatial domain, yields strong convolution
peaks for the most salient straight lines. A similar idea is used for circle de-
tection. Weiman [27] shows that the parameter space of Hough transform has
a coordinate system which is identical to the log-polar coordinate system, and
stresses the advantages implied by this fact: it simplifies the computations for
line recognition, eliminates slope quantization problems, and the so-called log-
Hough transform is efficient in line and curves detection.
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Features recognition by foveation. Lim et al.’s work [15] addresses the problem
of foveation and feature (line, circle, and ellipse) recognition. An initial open-
loop foveation generates a coarse movement (a saccade). Subsequently, a closed-
loop foveation involves more accurate movements (micro saccades). What it is
important in this work is the observation that when the foveation is accurate,
the resultant pattern in log-polar space is always a horizontal line, regardless of
the type of feature. This interesting result is used in the closed-loop foveation
stage: if the foveation is not accurate, the log-polar mapping will be a slightly
curved segment. Additionally, the deviation of this curve from the straight line
indicates the amount of error.

Neural networks-based systems. The reduction of information achieved by the
log-polar mapping is an attractive feature for researchers in neural networks
(NNs), because it allows computationally feasible implementations of NNs for
object recognition [18]. In addition, better recognition rates are reported when
the input characters are represented by log-polar images than when they are
represented by cartesian images because of the more favorable distribution of in-
formative areas [17]. For the recognition of handwritten numerals, two NNs (one
working with the input image in cartesian coordinates, and the other working
in log-polar coordinates) are adopted in [14], the latter NN making rotational
and scaling invariance possible. By using the interesting principle of segmen-
tation by recognition, segmentation plays a key role in a successful recognition
of connected cursive handwritten numerals or characters. In [12], a system for
recognizing warning and caution traffic signs is described. Two NNs were used:
one for color segmentation and the other for traffic sign invariant signature clas-
sification. The first 16 Fourier coefficients of the transformed log-polar images of
the traffic signs were used as input for the second NN. The system is reported
to achieve correct classifications in the presence of rather large noise levels.

Face detection/recognition. A system for face detection and recognition, which
uses the log-polar mapping is described in [13]. The face detector encloses the face
from the complex scene with a circular boundary and locates the position of the
nose. The log-polar mapping is basically used for feature extraction in conjuction
with PCA (Principal Component Analysis). The largest circle in the log-polar
grid is adjusted to enclose the whole object, to obtain scale normalized feature
vectors. Interestingly, the recognition rate is rather less sensitive to the log-polar
image resolution than other methods compared in [10]. This robustness of log-
polar images to variations in their resolution seems to be in accordance with the
insensitiveness of the correlation measures to different image resolutions [4].

Contextualizing features. It is a point deserving some attention that the pe-
riphery in log-polar images has been used for two different —and seemingly
contradictory— purposes. On the one hand, its coarse resolution allows that in-
formation in peripheral areas do not become too distracting, and the relevant
information at the fovea becomes “dominating”. On the other hand, even though
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the important information may reside in the high-resolved fovea, image data fur-
ther away from the fovea may play an important “discriminative” role. In other
words, it may help disambiguate the central information, by providing an eco-
nomic (coarsely resolved) “context” (the surrounding information). To benefit
from this more subtle, and less exploited capability, the LPT is found to be ideal
in [9] in training NNs for facial features (eyes, nose and mouth) location, as well
as in [21, 22], where an active face recognition system is described.

4 Final Remarks

The edge invariance property of log-polar images brings important advantages
in rotation- and scale-invariant object recognition. Ordinary translations, which
map to a complex transformation in the log-polar domain, can also be properly
dealt with by proposed algorithms. The Fourier-Mellin transform, a standard
tool to solve the more complex problem of rotation-, scale-, and translation-
invariance, has important disadvantages (high computational requirements and
the use of both cartesian and log-polar images) which may be overcome by
approaches based on the principles of active vision. Other interesting proper-
ties, such as small processing time, appropriate coordinate system for feature
detection, and inexpensive coarse-resolution context disambiguation, are also
advantageous, as demonstrated in practical applications. Finally, it is evident
that active recognition (pattern recognition under an active vision paradigm),
and the use of log-polar imagery within it, is a promising framework to solve
both old and new pattern recognition problems.
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08193 Bellaterra, Spain
{xaviv,poal,xavir,villanueva}@cvc.uab.es

http://www.cvc.uab.es

Abstract. We present an algorithm which tracks multiple objects for
video surveillance applications. This algorithm is based on a Bayesian
framework and a Particle filter. In order to use this method in practical
applications we define a statistical model of the object appearance to
build a robust likelihood function. The tracking process is only based
on image data, therefore, a previous step to learn the object shape and
their motion parameters is not necessary. Using the localization results,
we can define a prior density which is used to initialize the algorithm.
Finally, our method has been proved successfully in several sequences
and its performance is more accurate than classical filters.

1 Introduction

Nowadays, the presence of cameras in streets and buildings is habitual. Human
operators control these cameras in order to notify any incidence. However, in
most cases, a video surveillance system is composed of a great number of cameras
which can not be observed at the same time. Therefore, it is necessary a computer
vision system in order to assist humans.

Usually, an automatic video surveillance systems includes the following tasks:
locating objects, visual tracking and action recognition. The localization module
involves to detect objects into the images. Next, these objects are classified
in different categories. The visual tracking task is used to maintain the object
trajectories and to prevent localization errors. Lastly, the goal of the action
recognition module is to describe what happens in the scene.

The main difficulties of an automatic video surveillance system are the variety
of both the scenarios and the acquisition conditions. It is possible to design
systems with one or more cameras which can be static or mobile, and different
sensors such as color or infrared cameras.

In this paper, we firstly revise the previous work. Subsequently, we define a vi-
sual tracking method suitable for video surveillance applications. This method
is based on a Bayesian framework and a Particle filter. Also, we define a prior
density which allows to use this algorithm for video surveillance. Finally, we
present the results of our algorithm and we discuss the conclusions and further
work.

F.J. Perales et al. (Eds.): IbPRIA 2003, LNCS 2652, pp. 1041–1048, 2003.
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2 Background and Previous Work

There are two main approaches for object detection in automatic video surveil-
lance applications: temporal differences and background subtraction. Frame dif-
ferencing performs well in real-time[7] but it fails when a tracked object ceases
its motion. Background subtraction[10] is based on statistical models to build
the appearance model of a static scene. Both methods require the use of a static
camera.

Referring to the tracking module, there are works based on a combination
of different computer vision algorithms which performs properly in real envi-
ronments [2, 9]. However, these works are application-based and they can not
be generalized for general visual tracking applications. The main difficulty of
these visual tracking algorithms is to maintain the object trajectory when new
objects appear in the scene or occlusions occur. Therefore it is necessary a pro-
cess of data association and different application-based heuristics to perform the
tracking process.

The Bayesian model for temporal state estimation [3] includes the Kalman
filter as a particular case. This approach is used in computer vision to track
shapes [4], motion estimation [1] and discrete event recognition [5]. An advantage
of the bayesian approach is that it performs data association while doing the
prediction-estimation loop. This fact makes feasible its use to track multiple
objects[6].

3 Image-Based Tracking: iTrack

Based on the Bayesian probabilistic framework, we define an estimation algo-
rithm to track people in video surveillance applications. The basic idea is that
our method is just based on image data and it is not necessary to design any
previous human body model.

3.1 Bayesian Formulation

Let be st = (xt,ut,wt,Mt) the state vector for an object. Where xt is the
position, ut the velocity, wt the size, and Mt the appearance of the object (see
Fig. 1).

Let be It = (I1, . . . , It) a sequence of images. The posterior probability den-
sity over the parameters of the object state at time t, given a sequence of images
is expressed as:

p(st|It) =
∫

p(St|It)dSt−1 , (1)

where St is the object state history, St = (s1, . . . , st). Applying the Bayes rule
and the Markov condition we obtain:
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Fig. 1. Object state parameters

p(st|It) ∝ p(It|st)
∫

p(st|st−1)p(st−1|It−1)dst−1 , (2)

where p(It|st) is the likelihood function. The integral of (2) is referred to as the
temporal prior or the prediction, and p(st|st−1) is the motion model.

3.2 Motion Model

In order to define the motion model we assume the next independent relations
between the state parameters:

p(xt,ut,wt,Mt|xt−1,ut−1,wt−1,Mt−1) =
p(xt|xt−1,ut−1)p(ut|ut−1)p(wt|wt−1)p(Mt|Mt−1).

We use a smooth motion model for the position, velocity and size parameters:

p(xt|xt−1,ut−1) = η(xt − (xt−1 + ut−1), σx)
p(ut|ut−1) = η(ut − ut−1, σ

u)
p(wt|wt−1) = η(wt −wt−1, σ

w) ,

where η(μ, σ) denotes a Gaussian density with mean μ and standard deviation
σ. The deviations σx, σu and σw are defined empirically.

To complete the motion model, it is necessary to define the appearance evo-
lution, p(Mt|Mt−1). The brightness constant assumption used in several optical
flow algorithms is applied here. Using probabilistic terms, the density for the
appearance model is defined as:

p(Mt|Mt−1) = δ(Mt −Mt−1) , (3)

where δ(·) is a Dirac delta function. This model is also assumed by Sidenbladh
et al. in 3D tracking of humans[8].



1044 Javier Varona et al.

3.3 Appearance Model for the Likelihood Function

To compute the recursive expression of (2) we need a likelihood function, i.e.
p(It|xt,ut,wt,Mt). This function is the probability of observing the image It
given the object parameters. First, we observe that the likelihood function is
independent of the velocity parameter. The parameters xt and wt define an
image region denoted as Ip. Thus, we compare this image region with the object
appearance model, Mt, by means of an affine transform to scale both models:

R = AIp ,

where A is an affine matrix transform containing translations and scale param-
eters. Finally, the complete likelihood function is expressed as:

p(It|xt,wt,Mt) = p(R|Mt) , (4)

p(R|Mt) =
1
N

∑
i,j∈R

pij(Rij |Mij,t) , (5)

where N is the number of pixels and pij is the probability that the appearance
of the region pixel (i, j) belongs to the distribution of the appearance model:

pij(Rij |Mij,t) = η(Rij −Mij,t, σ
M ) , (6)

where η(·) is a Gaussian density whose standard deviation, σM , is used to model
the noise of the adquisition system.

This definition of the likelihood function is robust to outliers because their
presence (due to clutter and oclussions) does not penalize the probability mea-
sure.

The expression (3) means that the object appearance does not change over
time. To maintain a correct appearance model, it is necessary to adjust the model
after each estimation step. Once the new state has been estimated, p(st|It), we
adjust the appearance model using an adaptive rule for each pixel of the model:

μij,t = μij,t−1 + α(Rij,t − μij,t−1) , (7)

where Ri,j,t is the appearance value of pixel (i, j) of the region obtained with the
new state parameters. For the learning coefficient, α, we use the next temporal
adjust:

αt = e−t . (8)

This approximation is established due to the fact that the best estimations are
computed during the first frames.
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3.4 Algorithm

To make possible the multiple object tracking process by using only one estima-
tor, we need to maintain a multimodal density. Using the Condensation algo-
rithm we can implement the probabilistic model by means of a Particle filter[4].
Therefore, the conditional state density, p(st|It), is represented by a sample set:
{s(n)t }, n = 1, . . . , N . Finally, in order to identify each object, we use an aug-
mented state adding a label, l.

The complete algorithm is showed in Table 1.

Table 1. iTrack algorithm

iTrack

The posterior density at time t− 1 is represented by the sample set, {sit−1}, where i = {1, . . . , N}. Also, the
prior density p(st) for time t is assumed to be known at this stage.
Generate the ith sample of N that represents the posterior at time t as follows:

1. Predict: Generate a random number, α ∈ [0, 1) uniformly distributed,

(a) If α < r use the initilialisation prior, p(st), to generate s
i,−
t .

(b) If α ≥ r apply the motion model to the sample sit−1:

si,−t = p(st|st−1 = sit−1) ,

using the smooth motion model:

xi,−
t = xi

t−1 + u
i
t−1 + ξix ,

ui,−
t = ui

t−1 + ξiu ,

w
i,−
t = w

i
t−1 + ξ

i
w ,

2. Correct: Measure and weight the new sample, si,−t , in terms of image data, It, using the likelihood
funcion of expression (5):

πi
t = p(It|xt = xi,−

t ,wt = wi,−
t ,Mt−1) .

Once the N samples have been generated, normalize the weights to
∑

i
πi
t = 1, and build the cumulative

probabilities:
c0t = 0 ,

cit = ci−1t + πi
t ∀i = 1, . . . , N .

Use the values of the cumulative probabilities to generate by sampling the new samples that represents the
posterior at time t,{sit}.
For each object, estimate the new state computing the mean of their samples:

ŝL,t =
1

NL

∑
i,l=L

s
i
t ,

where NL is the number of samples for the object L.

Finally, use the new state to actualize the appearance model.
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Table 2. Comparison results

SAE MAE

Kalman 680.1809 5.3983

Bayesian 575.2219 4.5653

iTrack 247.2923 1.9626

4 The Prior Density

The prior density is used to initialize the tracking process at the first frame.
Subsequently, it is used to initialize new objects while appearing in the scene.
We define the prior density by using the Stauffer-Grimson background subtrac-
tion method[9] as our localization method. As a result, pixels are classified into
two categories: foreground and background. The spatial positions of the fore-
ground pixels are used to model the prior density for the parameter x in terms
of a Mixture of Gaussians:

pt(x) =
B∑
k=1

P (k)p(x|k) , (9)

where B is the number of blobs located (so P (k) = 1/B) and p(x|k) = η(bk, ΣB).
bk is the blob mean position, ΣB is constant for all the blobs, which is defined
a priori. The size parameter w is formulated similarly in terms of the size of the
blobs. Finally, the velocity parameter is initially established to zero.

5 Evaluation

First, we compare our method with two tracking approaches which requires
a previous feature extraction step: the Kalman Filter and the original Bayesian
Filter. Comparison is performed by manually annotating the object position in
a sequence. Then we compute the mean absolute error (MAE) and the sum of
absolute errors for each method. The results are shown in Table 2.

The results of the expected positions and the marginal density for the x
position for different test sequences are shown in Fig. 2.

6 Conclusions

In this paper, we have presented an algorithm which allows multiple objects
tracking for video surveillance applications. Our algorithm, called iTrack is based
on a statistical model of the object appearance and a likelihood function which
is suitable enough to handle clutter and occlusions. The algorithm uses a prior
density defined from the results of the localization module. Finally, we compare
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Fig. 2. Tracking multiple objects
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our method with classical approaches to show up that, by considering the object
appearance, the filter results are outperformed. Moreover, we should test the
algorithm in more complex scenarios in order to be evaluated. However, current
visual tracking evaluation methods are not mature enough. Therefore, further
work should be addressed to algorithm evaluation.
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Abstract. In this paper we propose a new approach based on energy-
adaptive matching pursuits to improve sinusoidal modelling of speech
and audio signals for coding and recognition purposes. To reduce the
complexity of the algorithm, an over-complete dictionary composed of
complex exponentials is used and an efficient implementation is pre-
sented. An analysis-synthesis windows scheme that avoids overlapping
is proposed, too. Experimental results show evidence of the advantages
of the proposed method for sinusoidal modelling of speech and audio
signals compared to some others proposed in the literature.

1 Introduction

The classical sinusoidal or harmonic model [1] comprises an analysis-synthesis
framework that represents a signal, x[n], as the sum of a set of K sinusoids with
time-varying frequencies, phases, and amplitudes:

x[n] ≈ x̂[n] =
K∑
k=1

Ak[n] · cos
(
ωk[n] · n+ φk[n]

)
(1)

where Ak[n], ωk[n] and φk[n] represent the amplitude, frequency and phase
of the k-th sinusoid, respectively.

In the literature, different methods have been proposed for estimating the
sinusoidal model parameters [2] [3][4][5]. Estimation of parameters is typically
accomplished by peak picking the Short-Time Fourier Transform (STFT). Anal-
ysis by synthesis is usually used in order to verify the detection of each spectral
peak. The length of the analysis frame should be signal dependent so as to
achieve an adapted multi-resolution analysis [6].

F.J. Perales et al. (Eds.): IbPRIA 2003, LNCS 2652, pp. 1049–1056, 2003.
c© Springer-Verlag Berlin Heidelberg 2003
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The classical harmonic synthesis model expressed in (1) involves a peak-
tracking process, which is usually carried out by means of linear interpolation
of the amplitudes, while cubic interpolation is used for phases [1][4]. This type
of interpolation supposes an important limitation due to the need to overlap
adjacent frames so as to track changes in the input signal.

The classical sinusoidal modelling approach only behaves well when it is ap-
plied to slow varying tonal signals. When the previous condition does not fulfil,
it is advisable the research on new sinusoidal modelling methods, that make
possible a better adaptation to the changes in the input signal. In this paper we
propose a new method for estimating the parameters of the sinusoidal model,
which is based on the matching pursuit algorithm. The method improves the
sinusoidal modelling avoiding the sinusoidal parameters interpolation. Further
improvements are achieved if windows that do not require overlapping are con-
sidered. Good results are obtained with the proposed method when rectangular
and trapezoidal windows are used in the analysis and synthesis stages, respec-
tively.

2 Matching Pursuit

The matching pursuit algorithm was introduced by Mallat and Zhang in [7]. So
as to explain the basic ideas concerning this algorithm, let’s suppose a linear
expansion approximating the analyzed signal x[n] in terms of functions gi[n]
chosen from a over-complete dictionary. Let H be a Hilbert space. We define the
over-complete dictionary as a family D = {gi; i = 0, 1, . . . , L} of vectors in H,
such as ‖gi‖ = 1.

The problem of choosing the functions gi[n] ∈ D that best approximate the
analyzed signal x[n] is computationally very complex. The matching pursuit is
a greedy iterative algorithm that offers a sub-optimal solution, where the l2 norm
is used as the approximation metric because of its mathematical convenience.
The algorithm is greedy in that at each stage the vector in the dictionary that
best matches the current signal is found and subtracted to form a residual.
The algorithm then continues on the residual signal. More specifically, in each
step of the iterative procedure the vector in set D which gives the largest inner
product with the signal (〈x[n], gi[n]〉 =

∑
n∈Z x[n]·g∗i [n]) is chosen. The iterative

procedure is repeated on the subsequent residual rm[n]:

r0[n] = x[n]
rm[n] = αi(m) · gi(m)[n] + rm+1[n] (2)

where αi(m) is the weight associated to the optimum function (or atom) gi(m)[n]
at the m-th iteration.

The orthogonality principle (〈rm+1[n], gi(m)[n]〉 = 0) allows us to compute
the weight αmi associated to each element gi[n] at the m-th iteration:

αmi =
〈rm[n], gi[n]〉
〈gi[n], gi[n]〉 =

〈rm[n], gi[n]〉
‖gi[n]‖2 (3)
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The optimal atom to choose at the m-th iteration can be expressed as:

gi(m)[n] = arg min
gi∈D

‖rm+1[n]‖2 = arg max
gi∈D

|αmi |2 (4)

The correlations updating procedure is performed as follows:

〈rm+1[n], gi[n]〉 = 〈rm[n], gi[n]〉 − αi(m) · 〈gi(m)[n], gi[n]〉 (5)

The correlations 〈gi(m)[n], gi[n]〉 can be pre-calculated and stored, once the
over-complete set D has been determined.

Two properties make this algorithm quite suitable for signal representation:

1. The procedure converges to the signal x[n] [7].
2. The signal energy is conserved:

‖x[n]‖2 =
M−1∑
m=0

|〈rm[n], gi(m)[n]〉|2 + ‖rM [n]‖2 (6)

The energy in the residual converges to zero as the number of iterations
approaches to infinity [7]. Therefore, energy-adaptive matching pursuits are used
in this paper. Although exact reconstruction is possible, the matching pursuit is
generally stopped by some desirable criterion to allow low order approximations
to the input signal. Some of the more relevant stopping criteria are: 1) after
a given number of significant sinusoidal elements are found, 2) when the residual
no longer contains components that correlate well with sinusoids, 3) when the
error becomes imperceptible to the human ear.

The matching pursuit can be efficiently used for sinusoidal modelling, because
it permits the selection of the sinusoidal components that extract most of the
energy of a given signal. Furthermore, finite length signals can be analyzed using
over-complete sets of elements of the same finite length. From now on, we focus
on sinusoidal modelling of finite length signals.

3 Sinusoidal Modelling
with Sets of Complex Exponentials

For sinusoidal modelling of finite length signals, the over-complete set D is com-
posed of windowed sinusoidal functions obtained for different values of frequency
and phase. We propose the usage of a set of windowed complex exponential func-
tions, instead of the set of windowed sinusoidal functions, in order to reduce the
computational complexity. Using windowed complex exponential sets, only the
frequency of each exponential function must be determined, which involves a sig-
nificant reduction of the dictionary size. As shown below, the projection onto
the selected complex exponential function contains the information of the phase.
Furthermore, each sinusoidal function is a linear combination of two conjugated
complex exponentials.
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The functions that belong to the considered set can be expressed as follows:

gi[n] = S · w[n] · ej 2πi
2L n, i = 0, . . . , L (7)

The constant S is selected in order to obtain unit-norm functions, w[n] is
the N -length analysis window, and L + 1 the number of frequencies within the
dictionary.

In each iteration, the new residual is calculated according to expression (8):

rm+1[n] = rm[n]− αi(m) · gi(m)[n]− α∗i(m) · g∗i(m)[n]
= rm[n]− 2 ·Re{αi(m) · gi(m)[n]} (8)

The set of weights at the m-th iteration {αmi , i = 0, 1, . . . , L} can be easily
determined applying the orthogonality conditions expressed in (9) to each atom
in D:

〈rm+1[n], gi[n]〉 = 0
〈rm+1[n], g∗i [n]〉 = 0 (9)

Solving these equations, weights {αmi } are calculated according to equation
(10):

αmi =
〈rm[n], gi[n]〉 − 〈rm[n], gi[n]〉∗〈g∗i [n], gi[n]〉

1− |〈g∗i [n], gi[n]〉|2 (10)

By using weights αmi , optimal atom gi(m)[n] to be chosen at the m-th iteration
can be computed as follows:

gi(m)[n] = arg min
gi∈D

∥∥rm+1[n]
∥∥2 (11)

gi(m)[n] = argmaxgi∈D
∣∣∣2Re{(αmi )∗ · 〈rm[n], gi[n]〉}−

−|αmi |2 · ‖gi[n]‖2 −Re{(αmi )2 · 〈gi[n], g∗i [n]〉}
∣∣∣ (12)

To update the correlations in (10), we proceed as follows:

〈rm+1, gi〉 = 〈rm, gi〉 − αi(m) · 〈gi(m), gi〉 − α∗i(m) · 〈g∗i(m), gi〉 (13)

3.1 Efficient Implementation of the Algorithm

Due to the nature of the atoms gi[n] ∈ D (complex exponential functions),
the correlations required to carry out the matching pursuit can be efficiently
computed by applying the Fast Fourier Transform (FFT). So, the correlations
between the signal x[n] and the atoms in D are calculated with expression (14):

〈x[n], gi[n]〉 = S ·
2L−1∑
n=0

z[n] · e−j 2πi
2L n = S · Z[i] (14)
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where z[n] = x[n] · w[n], Z[i] is the 2L-length DFT of z[n], and L > N in order
to assemble an over-complete dictionary.

The initial correlations in (14) can be computed by applying the FFT algo-
rithm, which implies that the signal x[n] must be zero-padded for implementing
the 2L-length FFT.

The correlations between atoms can now be expressed as:

〈gi(m)[n], gi[n]〉 = |S|2 ·∑2L−1
n=0 u[n] · e−j 2π(i−i(m))

2L n

= |S|2 · U [((i− i(m)))2L]
(15)

〈g∗i(m)[n], gi[n]〉 = |S|2 ·∑2L−1
n=0 u[n] · e−j 2π(i+i(m))

2L n

= |S|2 · U [((i+ i(m)))2L]
(16)

where u[n] = |w[n]|2 and U [i] is the 2L-length DFT of u[n].
From (15) and (16), it is deduced that the correlations between optimum

atom gi(m)[n] at the m-th iteration and remaining atoms gi[n] ∈ D can also be
calculated using the FFT (in this case, u[n] = |w[n]|2). So, this transform can
be pre-calculated and stored in order to update the correlations.

The use of a dictionary composed of complex exponential functions involves:

1. The initial correlations can be obtained by a 2L-length FFT.
2. The correlations between atoms only require a 2L-length vector in memory.

3.2 The Analysis-Synthesis Windows Scheme for Avoiding
Overlapping

In this section the proposed approach for sinusoidal modelling is extended for an-
alyzing non-stationary signals. Non stationary signals can be analyzed in a frame
by frame framework, where the signal is windowed in each frame. A sufficient
condition of the analysis window to assure the convergence to the analyzed signal
is expressed in (17): ∑

l

w[n− lP ] = 1 (17)

where P ≤ N represents the hop size. The use of triangular windows is feasible [8,
9], but this choice involves overlapping, which largely increases the number of
sinusoids per sample.

In this paper, we propose the usage of windows that complies with (17)
avoiding overlapping. So, rectangular windows are considered at analysis, which
implies the appearance of block effects (audible artifacts) at the boundaries of
adjacent frames. This drawback is solved by extending the synthesis model,
in order to synthesize samples that overlap with adjacent frames. The extended
frames are windowed using overlapping trapezoidal windows, so that at the tran-
sition region between frames the tones of the previous frame disappear and those
of the following start to appear. The main advantage of this approach is that
overlapping is avoided at the analysis stage, which is a very interesting property
for coding and recognition applications.
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Fig. 1. Variation of the RSR(%) ratio as the number of sinusoidal compo-
nents per segment is increased for the four considered methods: A (diamond), B
(triangle), C (circle), D (square)

4 Experimental Results

To assess the advantages of the proposed method for sinusoidal modelling, sev-
eral experiments have been carried out using two CD-quality one channel audio
signals with high sinusoidal content:

A. Tone extraction by spectral peak picking, and synthesis by sinusoidal pa-
rameters interpolation [1].

B. Tone extraction by matching pursuit, and synthesis by sinusoidal parameters
interpolation.

C. Tone extraction by matching pursuit, and triangular windowing in analysis
and synthesis [9].

D. Tone extraction by matching pursuit, and box windowing in analysis and
trapezoidal windowing in synthesis (the proposed method).

The result presented below have been obtained using an over-complete set of
L+ 1 = 4097 complex exponentials and 1024-length windows.

First of all, figure 1 shows the average value of the Residual to Signal Ratio,
expressed in percentage, RSR(%), when the number of extracted frequencies per
segment is increased.

It can be observed that methods C and D perform clearly better than meth-
ods A and B. So, a very important conclusion is that the usage of interpolation
reduces the performance of sinusoidal modelling.

Figure 2 represents the number of sinusoidal components to be extracted in
order to achieve a given percentage of the RSR(%) ratio for methods labelled C
and D. How the use of trapezoidal windowing in synthesis, which makes avoiding
overlapping possible, can be appreciated, yielding to the best results.
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Fig. 2. Number of sinusoidal components to be extracted in order to achieve
a fixed RSR(%) ratio for methods C (circle) and D (square)

5 Conclusions

This paper deals with a new matching pursuit-based method to improve sinu-
soidal modelling of speech and audio signals for coding and recognition tasks.
First of all, the usage of a set of complex exponential functions makes the effi-
cient implementation based on the fast Fourier transform possible. Secondly, this
method takes advantage of the possibility of avoiding both interpolation of sinu-
soidal parameters and overlapping between adjacent frames, applying rectangu-
lar and trapezoidal windowing in the analysis and synthesis stage, respectively.
The results highlight that the improvement due to the proposed sinusoidal mod-
elling method can be exploited to reduce the amount of data sent to the next
signal processing stage, which can be either a speech/audio recognition or coding
block.
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Abstract. In a previous work, a new probabilistic context-free gram-
mar (PCFG) model for natural language parsing derived from a tree
bank corpus has been introduced. The model estimates the probabili-
ties according to a generalized k-grammar scheme for trees. It allows for
faster parsing, decreases considerably the perplexity of the test samples
and tends to give more structured and refined parses. However, it suffers
from the problem of incomplete coverage. In this paper, we compare sev-
eral smoothing techniques such as backing-off or interpolation that are
used to avoid assigning zero probability to any sentence.

1 Introduction

Some previous works ([1], [2], [3]) have explored the performance of parsers based
on a probabilistic context-free grammar (PCFG) extracted from a training cor-
pus. The results show that the type of tree representation used in the corpus can
have a substantial effect in the estimated likelihood of each sentence or parse
tree. According to the conclusions weaker independence assumptions —such as
decreasing the number of nodes or increasing the number of node labels— im-
prove the efficiency of the parser. The best results were obtained with offspring
annotated labels where each node stores contextual information in the form of
the category of the node’s parent or the node’s descendents. This is in agreement
with the observation put forward by Charniak [4] that simple PCFGs, directly
obtained from a corpus, largely overgeneralize. This property suggests that, in
these models, a large probability mass is assigned to incorrect parses and, there-
fore, any procedure that concentrates the probability on the correct parses will
increase the likelihood of the samples.

In this spirit, a generalization of the classic k-gram models, widely used for
string processing [5], was introduced to the case of trees [3]. The PCFG variables
are specialized by annotating them with the subtree they generate up to a certain
level. In particular, we have studied offspring-annotated models with k = 3, that
� The authors wish to thank the Spanish CICyT for supporting this work through
project TIC2000-1599.
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is, child-annotated models, and we have compared their parsing performance to
that of unannotated PCFG –or k = 2, in our notation– and of parent-annotated
PCFG [2]. The experiments showed that:

– The parsing performance of unannotated model is worse than any annotated
model.

– The parsing performance of parent-annotated and child-annotated PCFG
are similar.

– Parsers using child-annotated grammars are much faster because the number
of possible parse trees considered is drastically reduced; this is, however, not
the case with parent-annotated models.

– Child-annotated grammars have a larger number of parameters than parent-
annotated PCFG which makes it difficult to estimate them accurately from
currently available treebanks.

– Child-annotated models tend to give very structured and refined parses in-
stead of flat parses, a tendency not so strong for parent-annotated grammars.

On the other hand, the smaller ambiguity of child-annotated model leads to
unparsable sentences and, then, smoothing is essential in the construction of an
efficient tree-k-grammar language model. A language model is a probability dis-
tribution over strings P (s) that describes the frequency with which each string s
occurs as a sentence in natural text [6].

In this work, we carry out a comparasion of three smoothing techniques.
Two of them are well known: linear interpolation and tree-level back-off. In ad-
dition, we introduce a new smoothing technique: rule-level back-off. While being
relatively simple to implement, we show that all these methods yield good perfor-
mances with tree-k-grammar language models applied to structural, syntactical
or lexical disambiguation.

The experiments were performed using the Wall Street Journal (WSJ) corpus
of the University of Pennsylvania [7] modified as described in [4] and [2].

2 The Tree-k-Grammar Model

Recall that k-gram models are stochastic models for the generation of sequences
s1, s2, ... based on conditional probabilities, that is:

1. the probability P (s1s2 . . . st|M) of a sequence in the model M is computed
as a product pM (s1)pM (s2|s1) · · · pM (st|s1s2 . . . st−1), and

2. the dependence of the probabilities pM on previous history is assumed to be
restricted to the immediate preceding context, in particular, the last k − 1
words: pM (st|s1 . . . st−1) = pM (st|st−k+1 . . . st−1).

Note that in this kind of models, the probability that the observation st is
generated at time t is computed as a function of the subsequence of length k− 1
that immediately precedes st (this is called a state). However, in the case of trees,
it is not obvious what context should be taken in to account. Indeed, there is
a natural preference when processing strings (the usual left-to-right order) but
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VP

V NP

Det N

PP

P NP

Det N
Fig. 1. A sample parse tree of depth 3

there are at least two standard ways of processing trees: ascending (or bottom-
up) analysis and descending (or top-down) analysis. Ascending tree automata
recognize a wider class of tree languages [8] and, therefore, they allow for richer
descriptions.

Therefore, our model will compute the expansion probability for a given node
as a function of the subtree of depth k−2 that the node generates i.e., every state
stores a subtree of depth k−2 ([3]). In the particular case k = 2, only the label of
the node is taken into account (this is analogous to the standard bigram model
for strings) and the model coincides with the simple rule-counting approach used
in treebank grammars. For instance, for the tree depicted in Fig. 1, the following
rules are obtained:

VP→ V NP PP
NP→ Det N
PP→ P NP

However, in the case k = 3, child-annotated model, the expansion prob-
abilities depend on states that are defined by the node label, the number of
descendents the node and the sequence of labels in the descendents (if any).
Therefore, for the same tree the following rules are obtained in this case:

VPV,NP,PP → V NPDet,N PPP,NP

NPDet,N → Det N
PPP,NP → P NPDet,N

where each state has the form XZ1,...,Zm . This is equivalent to performing a re-
labelling of the parse tree before extracting the rules.
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It is obvious that the k = 3 model incorporate contextual information that
is not present in the case k = 2 and, then, a higher number of rules for a fixed
number of categories is possible. In practice, due to the finite size of the training
corpus, the number of rules is always moderate. However, as higher values of k
lead to a huge number of possible rules, huge data sets would be necessary in
order to have a reliable estimate of the probabilities for values above k = 3.

3 Smoothing

Statistical approaches to efficient parsing offer the advantage of making the most
likely decision on the basis of available parsed text corpora.

Although the k = 3 model yields a good performance (in terms of both
parsing and speed), their rules are very specific and, then, some events (subtrees,
in our case) in the test set are not present in the training data, yielding zero
probabilities. Due to data sparseness, this happens often in reality. However,
this is not the case of the k = 2 model, with total coverage but with worse
performance. This justifies the need for smoothing methods.

In the following, three smoothing techniques are described. Two of them are
well known: linear interpolation and tree-level back-off. In addition, we introduce
a new smoothing technique: rule-level back-off.

3.1 Linear Interpolation

Smoothing through linear interpolation [9] is performed by computing the prob-
ability of events as a weighted average of the probabilities given by different
models. For instance, the smoothed probability of a k = 3 model could be com-
puted as a weighted average of the probability given by the model itself, and
that given by the k = 2 model, that is,

p(t) = λp3(t) + (1 − λ)p2(t) (1)

The mixing parameter λ ∈ [0, 1] was chosen to minimize the perplexity of
a sample.

3.2 Tree-Level Back-Off

Back-off allows one to combine information from different models. In our case,
the highest order model such that the probability of the event is greater than
zero is selected. Some care has to be taken in order to preserve normalization.

p(t) =
{

(1− λ)p3(t)ifp3(t) > 0
Λp2(t)ifp3(t) = 0 (2)

where
Λ =

λ∑
t:p3(t)=0 p2(t)

. (3)
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In our experiments, we will assume that a λ may be found such that no sentence s
in the test set having a tree with p3(t) > 0 has another tree t′ with p(t′) > p(t).
Therefore, p2’s will only be compared for trees with p3(t) = 0. This leads to
the following efficient parsing strategy: k = 2 (unannotated, slow) parsing is not
launched if the k = 3 (annotated, fast) parser returns a tree, because the k = 3
tree will win out all k = 2 trees; therefore, for parsing purposes, the actual value
of λ is irrelevant.

3.3 Rule-Level Back-Off

Our back-off model builds a new PCFG from the rules of the tree-k-grammar
models and adding new rules which allow to switch beetween those models. In
particular, the new PCFG consists of three different kinds of rules:

1. k = 3 rules with modified probability,
2. back-off rules that allow to switch to the lower model, and,
3. modified k = 2 rules to switch-back to the higher model.

This is done as follows (for the sake of simplicity, only a kind of binary rules
are shown):

1. Add the rules of the k = 3 model with probability:

p(XY,Z → α) = p3(XY,Z → α)(1 − λ(XY,Z)) (4)

2. For each non-terminal symbol, XY,Z , of the k = 3 model, add a back-off
rule XY,Z → Y Z with probability:

p(XY,Z → Y Z) =
λ(XY,Z)
Λ(XY,Z)

(5)

where

Λ(XY,Z) = 1−
∑

XY,Z→αY αZ∈{k=3}
p2(Y → αY )p2(Z → αZ) (6)

3. Add the k = 2 rules as unary rules, that is, if the rule is X → Y Z, then,
add X → XY,Z with probability:

p(X → XY,Z) = p2(X → Y Z) (7)

The grammar is normalized provided that parses of the form XY,Z → Y Z →
αY αZ are assigned a zero probability if XY,Z → αY αZ exists in the grammar.
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4 Experimental Results

4.1 General Conditions

We have performed experiments to assess the structural disambiguation per-
formance of tree-k-grammar smoothed models as compared to the ones un-
smoothed, that is, to compare their relative ability for selecting the best parse
tree. To build training corpora and test sets of parse trees, we have used English
parse trees from the Penn Treebank, release 3, with small, basically structure-
preserving modifications:

– insertion of a root node (ROOT) in all sentences, (as in Charniak [4]) to
encompass the sentence and final periods, etc.;

– removal of nonsyntactic annotations (prefixes and suffixes) from constituent
labels (for instance, NP-SBJ is reduced to NP);

– removal of empty constituents; and
– collapse of single-child nodes with the parent node when they have the same

label (to avoid rules of the form A → A which would generate an infinite
number of parse trees for some sentences).

In all experiments, the training corpus consisted of all of the trees (41,532) in
sections 02 to 22 of theWall Street Journal portion of Penn Treebank, modified
as above. This gives a total number of more than 600,000 subtrees. The test set
contained all sentences in section 23 having no more than 40 words.

4.2 Structural Disambiguation Results

All grammar models were written as standard context-free grammars, and Ear-
ley’s probabilistic extended parsing algorithm [10] was used to obtain, for each
sentence, the most likely parse that was compared to the corresponding tree in
the test set using the customary PARSEVAL evaluation metric [11, 12, p. 432]
after eliminating any parent and child annotation of nodes in the most likely
tree delivered by the parser. PARSEVAL gives partial credit to incorrect parses
by establishing these two measures:

– labeled precision (P ) is the fraction of correctly-labeled nonterminal brack-
etings (constituents) in the most likely parse which match the parse in the
treebank,

– labeled recall (R) is the fraction of brackets in the treebank parse which are
found in the most likely parse with the same label, and

As baseline, three non smoothed models were evaluated:

– A standard treebank grammar, with no annotation of node labels (k=2),
with probabilities for 15,140 rules.

– A child-annotated grammar (k=3), with probabilities for 92,830 rules.
– A parent-annotated grammar (Parent), with probabilities for 23,020 rules.



Smoothing Techniques for Tree-k-Grammar 1063

Table 1. Parsing results with different annotation models: labelled recall R,
labelled precision P , fraction of exact matches, fraction of sentences parsed, and
average time per sentence in seconds

Model R P exact parsed t

k=2 70.7% 76.1% 10.0% 100% 57
k=3 79.6% 74.3% 13.4% 94.6% 7

Parent 80.0% 81.9% 16.3% 100% 340

Table 2. Parsing results with different smoothed models

Model R P exact parsed t

M1 80.2% 78.6% 17.4% 100% 57
M2 78.9% 74.2% 17.1% 100% 9.3
M3 82.4% 81.3% 17.5% 100% 68

As expected, the number of rules obtained increases as more information
is conveyed by the node label, although this increase is not extreme. On the
other hand, as the generalization power decreases, some sentences in the test
set become unparsable, that is, they cannot be generated by the grammar. The
results in table 1, that were analyzed in detail in [3], show that the parsing per-
formance of parent-annotated and child-annotated PCFG is similar but parsers
using child-annotated grammars are much faster because the number of possible
parse trees considered is drastically reduced.

Those smoothed models were evaluated:

– A linear interpolated model, M1, as described in section 3.1 with λ = 0.7
(the value of λ selected to minimize the perplexity).

– A tree-level back-off, M2, as described in section 3.2.
– A rule-level back-off,M3, as described in section 3.3. This model has 92,830
k = 3 rules, 15,140 k = 2 rules and 10,250 back-off rules. A fixed parameter
λ (0.005) was selected to maximize labelled recall and precision).

The results in table 2 show that:

– M2 is the fastest but its performance is worse than that of M1 and M3.
– M1 and M3 parse sentences at a comparable speed but recall and precision

are better using M3.

Compared to un-smoothed models, smoothed ones:

– Cover the whole test set (k = 3 did not).
– Parsed at reasonable speed (compared to Parent).
– Achieved acceptable performance (k = 2 did not).
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5 Conclusions

We have compared several smoothing techniques for tree-k-grammar-based nat-
ural language modeling and parsing that are used to avoid assigning zero proba-
bility to any sentence. In particular, we have introduced a new smoothing tech-
nique: a rule-level back-off that builds a new PCFG from the rules of the tree-
k-grammar models and adding new rules which allow to switch beetween those
models. The new grammar cover the whole test set and improve the performance
in terms of parsing.
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Abstract. In this paper we address a moving object segmentation tech-
nique for a video monitoring system. This is approached by means of ac-
tive contours which appear to be an efficient tool for the spatio-temporal
data analysis from 2D image sequences. Particularly we make use of
a new active contour concept: the pixel-level snakes whose characteristics
allow a high control on the contour evolution and approach topological
transformations with a low computational cost. The proposal is focused
in the traffic monitoring and the incident detection systems.

1 Introduction

In recent years, applications dealing with automatic surveillance and monitoring
have become increasingly important. Traffic monitoring tasks such as detection
of anomalies (slow or heavy traffic, vehicles stopped in a crossroad, etc.), clas-
sification or counting of automobiles for statistics and forecasts on the traffic
fluidity and detection and alert of possible accidents, benefit from automatic
systems.

A complete video monitoring system should contain a low-level processing
stage in order to detect and segment the moving objects from video sequences;
a middle-level processing stage where primitives are extracted and finally a high-
level processing stage where the results are interpreted and the suitable actions
are carried out (alarm activation, semaphores managing, etc.).

In this paper we focus our attention in the low-level tasks: the moving object
detection and segmentation. These probably represent the more critical tasks
into the complete system for two reasons: on one hand their efficiency is funda-
mental to successfully approach the subsequent classification and interpretation
steps; on the other hand, this stage acts on a greater volume of data and so it
is essential to guarantee the high speed response needed in real-time systems.

The segmentation of moving objects relies on spatio-temporal information
extracted from the processing of two or more frames of an image sequence. Like
static image segmentation the different approaches can be classified in region-
based [1, 7], edge-based [11] and clustering algorithms [4]. A good review of the
strategies of video segmentation can be found in [14].

F.J. Perales et al. (Eds.): IbPRIA 2003, LNCS 2652, pp. 1074–1081, 2003.
c© Springer-Verlag Berlin Heidelberg 2003
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Active contour is a widely acknowledge technique for segmentation and track-
ing because of its ability to integrate information from different sources and its
flexibility. An active contour is an elastic curve which evolves controlled by image
features and shape constrains towards the boundaries of the objects of interest.
The assumption of the moving objects appearing slightly shifted and/or de-
formed in two consecutive frames make attractive the application of the active
contour techniques to their segmentation. However, to this end it is necessary to
give solution to some shortcomings of the active contour approaches:

1. In order to give solution to the complete problem of the location of the
desired objects into the scene it is needed to determine the image features
suitable for each particular application.

2. The active contours were initially designed as interactive models. For no-
interactive applications they must be started close to the structures of inter-
est to guarantee an efficient operation.

3. Due to their parametric nature, the classical active contour techniques can-
not split a contour or merge two of them into one. This limits their ap-
plication to problems where the number of interesting objects and their
approximate locations are known a priori.

4. All the active contour techniques require to a greater or lesser degree, a high
computational cost, which renders them inappropriate for applications need-
ing fast time response.

The two first drawbacks are mainly linked with the particular application
and must be approached into this framework. However the other two are in-
herent to the early active contour techniques which lead to new strategies to
solve one or both of two limitations. Among them are the level-set based models
which rely on the wave-front propagation with velocity depending on the cur-
vature [10]. This kind of strategies gives a smart solution to the problem of the
topological transformations among contours. However, due to their characteris-
tics of evolution they present difficulties to introduce control mechanism and to
impose geometric or topological restrictions. The variation of the geodesic ac-
tive contours clearly outperforms the former level-set based models and in some
way reduces the mentioned control limitations [3]. Moreover most of these algo-
rithms require a high computational cost. The reduction of the complexity order
lead to strong restrictions in the wave-front evolution like dynamics exclusively
compressive or expansive.

Following we propose the use of pixel-level snakes for moving object image
segmentation.

2 Pixel-Level Snakes

Pixel-level snakes (PLS) have been first introduced for the task of static im-
age segmentation [12]. PLS are represented as a pixel level discretization in
such a way all pixels of the contours evolve independently based on local in-
formation. This methodology puts together characteristics from the snake and
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level-set based approaches in both the contour evolution process and the mech-
anism for the contour guide. Like level-set based methods and particularly the
geodesic models, the contours evolve guided by local information and regular-
izing terms dependent on the curvature towars (local) minimal distance curves
based on a metric defined as a function of the features of interest. On the other
hand, like snake models the contour evolution is processed in an explicit way:
the guiding forces act directly on the curves. This provides a high flexibility and
control for the dynamics of the PLS allowing to guide the contour evolution effi-
ciently and to give solution to complex problems as is the case of the topological
transformations.

The PLS are represented as sets of connected activated pixels into a binary
image called contour image. This has the same size as the original image. The
contour evolution is based on an iterative process of activation and deactivation
of the contour image pixels according with the guiding information. This includes
an external potential, that takes lower values near the edge features and an
internal potential, which forces the smoothing of the contour shape.

In Fig. 1 an algorithm for the PLS is showed. The processing of the algorithm
is extended along the four cardinal directions. Following we will outline a brief
overview of the algorithm. Readers interested in a more detailed description are
addressed to [13]. The goal after each iteration is to obtain new thin contours
slightly shifted and/or deformed based on the guide information in order to come
closer and the final contour which defines the region under interest. The modules
involved in this task are the following:

In IPE, the internal potential is extracted from the active contours. This
is estimated by a recursive low-pass filtering acting on the contour image. The

External potential

Guiding Force Extraction Collision Point Detection Internal Potential Estimation

Directional Contour Expansion
(DCE)

(IPE)(GFE)(CPD)

Directional Contour Thinning

(DCT)

Collision Point Elimination
(CPE)

Contour Image

Fig. 1. Block diagram containing all the operations of the pixel-level snake
algorithm
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result is a real-valued array characterized by lower potential values into the cavi-
ties of the contour and higher outside. Therefore a directional gradient operation
acting on this array will originate positive internal forces which lead to reduce
the local curvature radius and then to smooth the contour shape.

In GFE, the components of the guiding forces along the direction under pro-
cessing are derived from the external and internal potential matrices by simple
directional gradient operations. Since a positive force should indicate a valid di-
rection for the contour evolution, only the sign of the guiding forces is needed.
Therefore the module of generation of guiding forces should also include a thresh-
olding operation.

In DCE, the white pixels into the contour image which are neighbors to black
pixels in the direction under processing should be activated if the component of
the guiding force for this direction is positive in those locations.

In DCT, the black pixels into the contour image will be deactivated if the
component of the guiding force for this direction is negative in those location
and this operation does not provoke a rupture in the contour continuity.

When the number of active contours does not coincide with the number
of objects into the scene the collision between different contours (or different
parts of the same contour) may occur. The pixel-level snakes can handle these
situations by foreseeing possible collision between contours and then carrying
out a controlled topological transformation.

The first operation is carried out in CPD and consists on avoiding the possible
collision between contours by the previous estimation of the locations where
a collision could occur. This action is relatively easy to approach because the
contours move as the effect of activation and deactivation of pixels in the contour
image. Thus, the contours evolve pixel to pixel, which allows to estimate the
contour location and shape in the next iteration. This operation is carried out
by taking as input the binary contour image and returning a binary image with
black pixels in those locations where a collision between contours could take
place in the next iteration. Therefore, by the projection of this binary map onto
the output of the GFE module, the operations of activation and deactivation
of pixels will be prevented on those conflictive locations and consequently the
contour collision will be avoided.

This operation generates a one-pixel wide wall between two contour pieces
that otherwise could collide. Now it is possible to take advantages of these col-
lision points in order to perform a controlled splitting of the old contours and
merging of the new ones. These operations are carried out in the CPE block
by following three simple steps (Fig. 2). First the set of collision points which
can guarantee a correct contour separation by only local operations are selected.
Then the splitting of the old contours is carried out by deactivating the neighbor-
ing pixels in the direction under processing (vertical direction in the example),
to each of those collision points selected in the previous step. Finally the gener-
ation of the new contours are made by activating the neighboring pixels in the
direction under processing (horizontal direction in the example), to the collision
points selected in the previous step.
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Contour pixel

Background pixel

Collision pixel

Selection of collision points

Merging of the new contours

Contour Image

Splitting of the old contours

Fig. 2. Example illustrating the operation in the CPE module

All the operations of the PLS algorithm can be performed using parallel local
operations extended to all pixels of the image. The internal potential estimation
and the guiding force extraction (from the external and internal potentials) are
supported by simple linear filterings. The remainder processing steps can be
implemented as simple hit and miss binary morphological operations together
with elemental binary logic operations. Thus it is possible the projection of the
algorithm onto architectures like cellular neural networks (CNN) [5]. These con-
stitute a class of recurrent locally coupled array of identical and simple processing
elements. Since the coupling between processing elements is exclusively local, the
hardware complexity does not increase with the array size. This fact has allowed
the hardware implementation of a considerable number of processing elements
into a chip [9].

The projection of the PLS-algorithm onto these CNN structures permits to
take advantage of the characteristics of massively parallel processing of this kind
of architectures. This fact guarantees a fast computation making the pixel-level
snakes a valid tool for those applications needing fast time response. We have
carried out the projection of the algorithm onto a general purpose continuous-
time CNN [8] as well as on a specific purpose discrete-time CNN [2]. Both im-
plementations have demonstrated fast-time response capabilities independent of
the number of involved active contours.

3 Tracking with PLS

The moving objects into an image sequence appear slightly shifted/deformed in
consecutive slices. Therefore, once the active contours delineate the objects of
interest in one frame, the segmentation proceeds on the next frame taking as
initial contours the resulting from the previous frame. Thus, the approach of the
external potential by local information becomes suitable. However it is needed
to provide automatically the first set of initial contours. In some applications
this can be achieved by using a rather simple initiation process. This consists
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Fig. 3. Example of contour tracking

Fig. 4. Restoration of the control zone after a topological transformation

to fix one (or several) initial contour defining the perimeter of the region to be
controlled or situate it into the trajectory of the mobile objects. Thus the moving
objects will come close to snakes, contrary to it is usual. This idea is illustrated
with an synthetic example in Fig. 3.

We have established a control zone delimited by an active contour with rect-
angular shape. A potential barrier outside of this location is imposed, so that
any object, moving outside the control zone is ignored. However when any of
these passes through the limits of the control zone, the active contour reacts
delineating it. When the object is completely inside the control zone, a topologi-
cal transformation generates two new contours from the original active contour.
One of these contours delineates the object into the control zone and the another
contour restores the control perimeter. This process of restoration, mainly due
to the influence of the internal forces, is illustrated in Fig. 4.

Finally another topological transformation occurs when the object goes out
the control zone merging again the two active contours into one.

Concerning the external potential, the contours are usually assumed to evolve
towards features (edges, motion, motion history) easily obtained by local oper-
ators [6]. Once each map is obtained, a diffusion operation (like that in the
internal energy estimation) is carried out and the result is added to a weighted
version of the edge map. The result is an external potential image guiding the
contours towards the boundaries of the moving objects.

In order to illustrate the suitability of our proposal for real applications, Fig. 5
shows an example of moving object segmentation for a control traffic system from
a real image sequence1. The external potential was derived as before from the
difference between each frame and a reference without mobile objects inside the
1 Copyright c©1998 by H.H. Nagel. Institut Für Algorithmen und Kognitive Systeme.
Fakultät für Informatik, Universität Karlsruche (TH). Postfach 6980, D-76128 Karl-
sruhe, Germany. http://i21www.ira.uka.de/.
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control zone. As it can be seen only those objects going into the control zone are
segmented and tracked.

Fig. 5. Example of video segmentation for a traffic monitoring.

4 Conclusions

Active contours seem to be suitable for the segmentation of moving objects from
image sequences. To this end it is required a high speed response and the ca-
pability of managing topological transformations when an unknown number of
objects must be tracked. Pixel-level snakes consist of pixels which can evolve
independently based on local information. This allows to guide the evolution
of multiple contours efficiently and without extra computational cost as well
as to handle their possible topological transformations. The pixel-level snake
algorithm can be directly implemented on a massively parallel processing ar-
chitecture like cellular neural networks which provides the high response speed
required to approach video segmentation tasks. Since the contour evolution is
based on local guiding information it is necessary to situate the initial contours
close to the moving objects. This operation could become as expensive as the
contour tracking itself. However for some applications into the video surveillance
framework this problem can be easily approached. An initial active contour could
delimit the control area and only deform to adapt itself to those objects going
through the control zone. In other words: the moving objects go towards the
active contours against what it is usual. The preliminary results are very en-
couraging and suggest that our proposal can bring improvements in the area of
video segmentation.
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Abstract. To remove temporal redundancy contained in a sequence of
images, motion estimation techniques have been developed. However, the
high computational complexity of the problem makes such techniques
very difficult to be applied to high-resolution applications in a real time
environment. For this reason, low complexity motion estimation algo-
rithms are viable solutions. In this paper, we present an efficient algo-
rithm based on exploiting temporally and spatially correlated motion
information that defines the search pattern and the location of search
starting point adaptively. Experiments show that the speedup improve-
ment of the proposed algorithm over Diamond Search algorithm (DS)
and HEXagon-Based Serch (HEXBS) can be up to 2 ∼ 3 times faster
and the image quality improvement can be better up to 0.1 ∼ 1(dB).

1 Introduction

Recently, great interest has been devoted to the study of different approaches in
video compressions. The high correlation between successive frames of a video
sequence makes it possible to achieve high coding efficiency by reducing the
temporal redundancy. Motion estimation (ME) and motion compensation tech-
niques are an important part of most video encoding, since it could significantly
affect the compression ratio and the output quality.

The most popular motion estimation and motion compensation method has
been the block-based motion estimation, which uses a block matching algorithm
(BMA) to find the best matched block from a reference frame. ME based on
the block matching is adopted in many existing video coding standards such as
H.261/H.263 and MPEG-1/2/4. If the performance in terms of prediction er-
ror is the only criterion for BMA, full search block matching algorithm (FS) is
the simplest BMA, guaranteeing an exact result. FS can achieve optimal per-
formance by examining all possible points in search area of the reference frame.
However, FS is very computationally intensive and it can hardly be applied to
any real time applications. Hence, it is inevitable to develop fast motion esti-
mation algorithms for real time video coding applications. Many low complexity
� corresponding author
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motion estimation algorithms such as Diamond Search (DS) [1, 2], Three Step
Search (TSS)[3], New Three Step Search (NTSS)[4], Four Step Search (FSS)[5],
Two Step Search (2SS)[6], Two-dimensional logarithmic search algorithm [7],
HEXagon-Based Serch (HEXBS) [8] and the algorithms [9, 10] based on tempo-
ral or spatial correlations of motion vectors have been proposed. Regardless of
the characteristic of the motion of a block, all these most fast block matching
algorithms (FBMAs) use a fixed search pattern and the origin of the search area
as a search starting point.

A fixed search pattern and a fixed search starting point results in the use
of many checking points to find a good motion vector (MV). To improve the
”speed-quality”, the motion estimation method we proposed in this paper uses
the temporally and spatially correlated motion vectors information to predict
a search starting point that reflects the current block’s motion trend and to
choose a search pattern adaptively. Because a properly predicted search starting
point makes the global optimum closer to the predicted starting point, it in-
creases the chance of finding the optimum or near-optimum motion vector with
less search points.

In this paper, we proposed an adaptive block matching algorithm based on
spatial and temporal correlations. In this algorithm, the motion vector mv t of
the block with the same coordinate in the reference frame and the motion vectors
mv s of neighboring blocks in the current frame are used as predictors to decide
a search starting point and a search pattern adaptively for the current block.
Specifically, the weighted sum of mv t and median(mv s) is computed to get the
search starting point and to decide the type of the search pattern.

This paper is organized as follows. Section 2 describes the existing motion
estimation algorithms. The proposed algorithm is described in Section 3. Section
4 reports the simulation results and conclusions are given in Section 5.

2 Motion Estimation Algorithms

There are many search algorithms for motion estimation. The full search (FS),
the simplest algorithm, examines every point in the search area in the refer-
ence frame to find the best match. Clearly, it is optimal in terms of finding
the best motion vector, but it is very computationally intensive. Hence, several
sub-optimal search algorithms such as DS [1,2], TSS [3], NTSS [4], FSS [5], 2SS
[6], Two-dimensional logarithmic search algorithm [7], HEXagon-Based Serch
(HEXBS) [8] have been developed. The TSS is a coarse-to-fine search algorithm.
The starting step size for search is large and the center of the search is moved in
the direction of the best match at the stage, and the step size is reduced by half.
In contrast, FSS starts with a fine step size (usually 2) and the center of the
search is moved in the direction of the best match without changing the step size,
until the best match at that stage is the center itself. The step size is then halved
to 1 to find the best match. In other words, in FSS the search process is per-
formed mostly around the original search point (0,0), or it is more center-biased.
Based on the characteristics of a center-biased motion vector distribution, NTSS
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enhanced TSS by using additional search points, which are around the search
origin (0,0) of the first step of TSS. The DS is also a center-biased algorithm by
exploiting the shape of the motion vector distribution. DS shows the best per-
formance compared to these methods in terms of both average number of search
points per motion vector and the PSNR (peak signal to noise ratio) of the pre-
dicted image. The DS method uses two diamond search patterns, depicted in
Fig. 1. the large diamond search pattern (LDSP) is used for the coarse search.
When the centered search position of LDSP show the minimum block distortion,
the small diamond search pattern (SDSP) is chosen for the fine search.
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(a) Large Diamond Search
Pattern (LDSP)
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(b) Small Diamond Search
Pattern (SDSP)

Fig. 1. Diamond Search Algorithm(DS)

3 The Proposed Algorithm

Since the time interval between successive frames is very short, there are high
temporal correlations between successive frames of a video sequence. In other
words, the motion of current block is very similar to that of the same coordinate

MV0
(dx0, dy0)

MV1
(dx1, dy1)

MV2
(dx2, dy2)

MV3

(dx3, dy3)

current
block

MV0 : the MV of the same coordinate block in the reference frame

MV1 : the MV of left block

MV2 : the MV of above block

MV0 : the MV of above-right block

Fig. 2. Blocks for Spatio-Temporal Correlation Information
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(b) second step

Fig. 3. Small Diamond Search Algorithm(SDSP)
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Fig. 4. Modify Diamond Search Algorithm(MDSP)
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block in the reference frame. And also there are high spatial correlations among
the blocks in the same frame. That is to say, the motion of current block is very
similar to those of the neighboring blocks in the current frame. If the information
of spatially and temporally correlated motion vectors is used to decide the search
starting point and the search pattern for the motion estimation, the motion
vector will be found with much less number of search points.

In this paper, the motion vector of the same coordinate block in the reference
frame and the motion vectors of the neighboring blocks in the current frame are
used as predictors to decide a better search starting point and a search pattern
adaptively for the current block. The proposed method exploiting spatially and
temporally correlated motion vectors depicted in Fig. 2, selects one of two search
patterns as illustrated in Fig. 3(a) and Fig. 4(a) adaptively.

Px = "dx0× α+median(dx1, dx2, dx3)× β# (1)

Py = "dy0× α+median(dy1, dy2, dy3)× β# (2)

And then (Px,Py) obtained from Eq. (1–2) is used as a search starting point.
(Px,Py) is the weighted sum of the temporal information and the spatial infor-
mation. In this paper, we experimented with α = 0.5 and β = 0.5. If | Px | < 3
and | Py | < 3 , small diamond search pattern (SDSP)[11] as shown in Fig. 3 is
selected. In Fig. 3(a), white circles are the initial search points and in Fig. 3(b),
black circles are search points added in the second step. Note that the center of
black circles is the position which showed the minimum block distortion in the
first step. Otherwise, modified diamond search pattern (MDSP) [12], illustrated
in Fig. 4 is selected for motion estimation. Based on the fact that about 50%(in
large motion case) ∼ 98 %(in small motion case) of motion vectors are enclosed
in a circular support, as shown in Fig. 4(a), with a radius of 2 pixels around the
search origin (0,0)[1,2], the circular support around the search origin becomes
the initial search points in MDSP as shown in Fig. 4(a). If one of ⊕ points in Fig.
4(b) shows the minimum block distortion among the search points in the first
step of Fig. 4(a), the search procedure terminates. Otherwise, the new search
points are set as shown in Fig. 4(c) or Fig. 4(d).

The block diagram of the proposed algorithm appears in Fig. 5. According
to the spatial and temporal motion vectors information, the proposed algorithm
selects a search pattern between SDSP and MDSP adaptively. If | Px | < 3 and
| Py | < 3 , SDSP is selected as a search pattern. Otherwise, MDSP is chosen.
The proposed method is summarized as follows

Step 1 If | Px | < 3 and | Py | < 3 , go to Step 2; otherwise, go to Step 3.
Step 2

I. The search origin in search area is moved to the displacement of (Px,Py).
Let’s call the moved search origin the search starting point.

II. SDSP is disposed at (Px,Py), and the 5 checking points of SDSP as seen
in Fig. 3(a) are tested. If the minimum block distortion (MBD) point
calculated is located at the center position of SDSP, then it is the final
solution of the motion vector. otherwise go to III.
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|Px| and |Py| < 3 ?

the search origin (0,0)
is moved to

the displacement of
(Px,Py)

MDSPSDSP

Motion Vector

true false

the search origin (0,0)
is moved to

the displacement of
(Px,Py)

Fig. 5. The block diagram of the proposed algorithm

III. If the MBD point calculated is not located at the center position of
SDSP, three additional checking points as shown in Fig. 3(b) are used.
The MBD point founded in the previous search step is repositioned as
the center point to form a new SDSP. If the new MSD point obtained is
located at the center position, then it is the final solution of the motion
vector. Otherwise, recursively repeated this step

Step 3
I. The search origin is moved to the displacement of (Px,Py).

II. MDSP is disposed at (Px,Py), and the 13 checking points of MDSP as
seen in Fig. 4(a) are tested. If the MBD point calculated is located at
the center position of MDSP or one of ⊕ points in Fig. 4 (b), then it is
the final solution of the motion vector. otherwise go to III.

III. If the MBD point is located at the corner of MDSP, eight additional
checking points as shown in Fig. 4(c) are used. If the MBD point is
located at the edge of MDSP, five additional checking points as shown
in Fig. 4(d) are used. And then the MBD point found in the previous
search step is repositioned as the center to from a new MDSP. If the
MBD point calculated is located at the center position of MDSP or one
of ⊕ points in Fig. 4(b), then it is the final solution of the motion vector.
Otherwise, recursively repeated this step.

4 Simulation Result

In this section, we show the experiment results for the proposed algorithm. We
compared FS, NTSS, FSS, 2SS, DS and HEXBS to the proposed method in
both of image quality and search speed. Eight QCIF test sequences are used
for the experiment: Akiyo, Claire, Carphone, Foreman, Mother and Daughter,
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Table 1. Average PSNR of the test image sequence

FS 2SS NTSS FSS DS HEXBS Proposed

Stefan 23.88 23.85 22.24 22.62 22.77 22.59 23.65

Foreman 29.54 29.24 28.19 28.22 28.66 28.01 29.06

Akiyo 34.50 34.48 34.48 34.33 34.39 34.30 34.50

Table 26.50 26.27 26.5 24.81 25.67 24.90 25.68

Carphone 30.88 30.77 30.14 30.15 30.48 30.07 30.71

Salesman 32.70 32.70 32.69 32.53 32.62 32.51 32.69

Claire 35.05 35.01 34.91 34.74 34.85 34.70 34.94

M&D 31.52 31.51 31.37 31.34 31.42 31.37 31.46

Table 2. Average number of search points per motion vector estimation

FS 2SS NTSS FSS DS HEXBS Proposed

Stefan 961 255 20.0 18.9 16.2 12.9 7.3

Foreman 961 255 19.3 18.6 15.4 11.9 6.4

Akiyo 961 255 17.0 17.0 13.0 11.0 5.0

Table 961 255 19.7 18.7 15.5 12.5 7.5

Carphone 961 255 18.6 17.8 14.4 11.7 6.6

Salesman 961 25 17.1 17.0 13 11.0 5.1

Claire 961 255 17.2 17.08 13.1 11.0 5.1

M&D 961 255 17.3 17.1 13.2 11.1 5.3

Salesman, Stefan and Table. The mean square error (MSE) is used as the block
distortion measure (BDM). The quality of the predicted image is measured by
the peak signal to noise ratio (PSNR), which is defined by

MSE =
(

1
MN

) M∑
m=1

N∑
n=1

[x(m,n)− x̂(m,n)]2 (3)

PSNR = 10 log10
2552

MSE
(4)

In Eq. (3), x(m,n) denotes the original image and x̂(m,n) denotes the motion
compensated prediction image. From Table 1 and 2, we can see that proposed
method is better than DS in terms of both the computational complexity (as
measured by the average number of search points per motion vector) and PSNR
of the predicted image. In terms of PSNR, the proposed method is about 0.1(dB)
better than HEXBS as well as DS in stationary sequences such as Akiyo, Claire,
Carphone, Mother and Daughter, Salesman and about 0.5 ∼ 1(dB) in motioned
sequences such as Stefan, Table and Foreman in Table 1. The speedup improve-
ment of the proposed method over HEXBS and DS can be up to 2 ∼ 3 times
faster. The 2SS shows the performance in PSNR very close to the proposed
method, but the proposed method requires less computation by up to more than
30 times on average as shown in Table 2.
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5 Conclusion

Based on the temporal and spatial correlation of motion vectors in the reference
and current frame, an adaptive block motion estimation method is proposed in
this paper. The proposed method chooses a search pattern and a search starting
point based on exploiting the temporally and spatially correlated motion vector
information. Experiments show that the speedup improvement of the proposed
algorithm over DS and HEXBS can be up to 2 ∼ 3 times faster. And the image
quality improvement can be better up to 0.1 ∼ 1(dB). The proposed algorithm
reduces the computational complexity compared with previously developed fast
BMAs, while maintaining better quality.
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Abstract. We have investigated a combination of statistical modelling
and expectation maximisation for a texture based approach to the seg-
mentation of mammographic images. Texture modelling is based on the
implicit incorporation of spatial information through the introduction
of a set-permutation-occurrence matrix. Statistical modelling is used for
data generalisation and noise removal purposes. Expectation maximisa-
tion modelling of the spatial information in combination with the sta-
tistical modelling is evaluated. The developed segmentation results are
used for automatic mammographic risk assessment.

1 Introduction

Texture is one of the least understood areas in computer vision and this lack
of understanding is reflected in the ad-hoc approaches taken to date for tex-
ture based segmentation techniques. Although no generic texture model has
emerged so far a number of problem specific approaches have been developed
successfully [1, 2, 3, 4]. Although the described approach is developed with one
particular application in mind, we do believe that it is generic within the field
of medical image understanding.

Since Wolfe’s [5, 6] original investigation into the correlation between mam-
mographic risk (i.e. the risk of developing breast cancer) and the perceived breast
density a number of automatic approaches have been developed [7, 8, 9, 10, 11].
Some of these methods are based on grey-level distributions whilst others in-
corporate some aspect of spatial correlation or texture measure. While all these
methods achieve some correlation with manual visual assessment in general they
are not good enough to progress to clinical trials. We have investigated a process
to separate the relevant background texture from other image structures [8, 12].
This showed that based on only background texture similar classification results
could be obtained when compared to results based on the full image informa-
tion. It is also important to note that the breast density can change over time
for a number of reasons [13].

F.J. Perales et al. (Eds.): IbPRIA 2003, LNCS 2652, pp. 1099–1107, 2003.
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It is our thesis that the relative size of segmented image regions, represent-
ing distinct anatomical tissue classes, is correlated with mammographic risk
assessment. Statistical modelling in combination with expectation maximisation
(EM) [14] is used for the segmentation of mammographic images. To our knowl-
edge, we introduce a new concept, the set-permutation-occurrence matrix, as
a texture feature vector. Realistic texture modelling is possible as spatial infor-
mation is implicitly incorporated. Statistical modelling has been used as a pre-
processing step to generalise the data whilst at the same time remove some noise
aspects. Initial results from this automatic segmentation of mammographic im-
ages are promising with a good correlation with annotated regions. We show
results for automatic mammographic risk assessment [5] and a comparison with
expert manual classification is discussed.

To achieve segmentation a number of steps are required: a) information gath-
ering, b) texture feature extraction, c) statistical modelling, d) EM clustering,
and e) image segmentation.

2 Methods

A Gaussian mixture model G with k classes is defined as

G(x|ϕ) =
k∑
i=1

wig(x|mi, vi) (1)

where x is an observation vector, ϕ is a vector with parameters wi (weight), mi

(mean) and vi (covariance) for each class, and g(x|mi, vi) is defined as

g(x|mi, vi) =
1

(
√

2π)n(
√
det(vi))

e−
(x−mi)

T v
−1
i

(x−mi)
2 (2)

where ()T indicates the transpose of a vector, v−1i indicates the inverse of vi and
det(vi) stands for the determinant of vi. The likelihood function is a function
that gives a measure of how well the probability density function defined by the
parameters fits the data. If a set of parameter maximises the likelihood, then
these parameters will be the optimum set for the given problem. The likelihood
function is defined as

L(ϕ) =
∏
xεχ

p(x|ϕ) (3)

where χ is the data set and p(x|ϕ) is the probability density function. Here the
assumption of independence for all data χ is made. Usually, the log-likelihood
function is used, mainly to use a sum instead of a product and to reduce the
magnitude of the result.

Llog(ϕ) =
∑
xεχ

log(p(x|ϕ)) (4)
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The EM algorithm [14] is a numerical method to estimate a set of parame-
ters that describe a probability distribution, based on data that belongs to this
distribution. On each iteration of the algorithm, two steps are performed: first,
the E-step evaluates a probability distribution for the data using the param-
eters of the model estimated on the previous iteration, then the M-step finds
the new parameters that maximises the likelihood function. It can be proven
mathematically that on each iteration the likelihood increases [14]. One of the
problems of the EM algorithm in application to Gaussian Mixture Models is the
initialisation [15], with the end results depending on the initial starting point. It
is common to select a random starting point of the data set χ for the centre of
each class. To make the overall classification more robust we initialise the centre
of the class with the result of the k-Means algorithm [15].

2.1 Texture Feature

In general the usage of the EM approach for image segmentation is based on the
grey-level information at a pixel level with no direct interaction between adja-
cent pixels. However, it is well known that texture based segmentation should
incorporate spatial correlation information. The modelling should not be based
on a single grey-level value but incorporates spatial information implicitly. This
is why we extract information from a set of points. The information is extracted
at several levels of a scale-space representation of the image.

Scale-Space Representation The first step in obtaining the texture features
is the generation of an image-stack which is a scale-space representation. At the
smallest scale the original grey-level values are used and to obtain the larger scale
images we have used a recursive median filter [16], denoted ⊗, and a circular
structuring element, R (the diameter of the structuring element increases with
scale σ). The resulting image-stack is a set of images⋃

σ∈Γ
{Iσ} =

⋃
σ∈Γ

{I ⊗Rσ}, (5)

where Γ is an ordered set of scales. This effectively represents a blurring of the
original data and at a particular level in the image-stack only features larger
than σ can be found. An alternative representation of the image-stack is given
by ⋃

σ∈Γ
{Iσ} =

⋃
σ∈Γ

{I ⊗Rσ−1 − I ⊗Rσ}, (6)

where Γ is a set of scales. This represents the differences between two scales
in Iσ and hence the data in the image-stack at a particular level will only contain
features at a particular scale σ.
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Sampling Points To capture the texture information over a set of scales a fea-
ture vector will need to be extracted from all levels of the image-stack. It can be
seen that small size aspects (like noise and small objects) are represented at the
top (least amount of smoothing) of the image-stack. On the other hand, large
size aspects (large and background objects) are represented at the bottom (after
smoothing at the appropriate scale) of the image-stack.

The developed method uses a model that can be seen as a generalisation of
normal co-occurrence matrices [1]. Indeed, if we just look at the co-occurrence
of grey-level values the information can be captured in matrix format, where
the rows and columns represent the grey-level values at two sample points. This
process can include a set of points Sxy. An example of the points used is shown
in Fig. 1. In the experiments described below we have used

Sxy =
⋃
ε∈D

{
(x, y + ε), (x+ ε, y)

}
(7)

where D = {−32,−16,−8,−4,−2, 0, 2, 4, 8, 16, 32}. This particular set was cho-
sen as it contains short and long range spatial, and directional information.
Depending on the level in the scale-space representation this can be used to em-
phasize small and large scale structures in the image. In the case described here
we generate the co-occurrence between all the points in the set of sample points.
This is illustrated in Fig. 2 for one particular point, but it should be noted that
the same approach is used in a round-robin way or in other words the points are
fully connected. When using {Iσ} (a similar notation can be obtained when us-
ing {Iσ}), this representation of the texture information in the form of a matrix
is given by

Ψ
σ
(x, y) =

[
ψσ
i,j

]
i,j∈Ng

(8)

and

ψσi,j = #
{
(p, p′) ∈ Sxy × Sxy | Iσ(p) = i, Iσ(p′) = j

}
(9)

where # denotes the number of elements in a set and Ng denotes the set of grey-
level values. It should be noted that this approach provides a different description
than that would be provided by using a set of co-occurrence matrices.

Instead of using the co-occurrence of the grey-level values it is possible to
use the occurrence of the grey-level difference. Again, this is using the same set
of sample points Sxy (see Figs 1 and 2) at each scale (i.e. level in the image-
stack). As we are using the occurrence of the grey-level difference values our co-
occurrence grey-level value matrix reduces to a vector. When using the difference
image-stack representation (see Eq. 6) the feature vector at a single scale is given
by

Φ
σ
(x, y) =

[
φσi

]
i∈δNg

(10)

where Ng is the set of grey-levels, σ a given scale, δNg is the set of grey-level
differences and
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Fig. 1. Sample points Sxy Fig. 2. Sample points connectivity

φσi = #
{
(p, p′) ∈ Sxy × Sxy | Iσ(p)− Iσ(p′) = i

}
(11)

where, again, # denotes the number of elements in a set.
One of the main attributes of the feature vector is that descending the orig-

inal image-stack means that the occurrences of grey-level difference values be-
comes more localised. In the extreme all grey-level values are identical and the
occurrence becomes a delta-function. The story with regard to the difference
image-stack is less straight forward. In general the information is sparse and
when a structure is present at a particular point and scale the representation
changes which is represented as a set of side-bands in the histogram. It should be
noted that for a side-band to be regarded as to be caused by an image structure
its area should be related to the scale in the image-stack else it can be regarded
as noise.

2.2 Statistical Modelling

The texture feature described above is extracted at a pixel level. Combining
all the information results in a feature vector which can be used to generate
a statistical model. In general such a model is used for noise removal and data
generalisation. In this particular case the added bonus of data generalisation is
a reduced dimensionality which speeds up the processing. Here we have used
principal component analysis [17], but other statistical methods could have been
used instead.

The principal components of a set of observation vectors {xj : j = 1..n} (in
our case the texture feature Φ

σ
or Ψ

σ
) are the characteristic vectors, P, of the

covariance matrix, C, constructed from the data set. Projecting the data into its
principal components generally results in a compact and meaningful representa-
tion in which the characteristic vectors associated with the largest characteristic
values describe the major modes of data variation. The characteristic values give
the variances associated with the principal components. An observation xj can
be approximated from the principal components using
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xj ≈ P bj +m, (12)

where m is the average vector and bj is a vector of weights. The dimensionality
of the data set can be reduced by ignoring the principal components with low
(or zero) characteristic values.

3 Results

For evaluation purposes we have used a subset of the Mammographic Images
Analysis Society (MIAS) database was used [8, 18]. These are screening xray
mammograms, and a detailed account of the database can be found in [18].

Although of interest, it is computationally impractical to base the EM mod-
elling on the original texture feature vector as this has a large number of elements
(a high dimensionality) and tends to be sparse. All the results presented in this
section are based on a PCA reduced feature vector where we typically capture
95% of the data variation.

Segmentation results for example mammograms are shown in Fig. 3. The
original mammograms are shown in Fig. 3a,b. The EM and statistical modelling
process take only the breast area into account whilst excluding the pectoral mus-
cle and the background. For the results shown in Fig. 3c-f six classes were used.
The selection of six classes is based on an information theoretic approach [19]. In
both cases the segmentation process produced plausible results which correlate
with the original image.

3.1 Risk Assessment

To evaluate the segmentation results for mammographic risk assessment all the
images were assessed by mammographic experts who provided an estimate of the
proportion of dense tissue (i.e. high intensity/non-fatty tissue, see also Fig. 3a,b)
in each mammogram. The segmentation results, based on EM and statistical
modelling using {Iσ} or {Iσ}, can also be used to obtain the relative size of the
segmented regions for each class. This feature is used as our classification space.
The correlation between the relative region size distribution and the estimated
proportion of dense tissue, when using a nearest neighbour classifier on a leave-
one-out basis, can be found in Table 1. This shows an agreement for 66% of
the mammograms when using {Iσ}. This increases to 86% when using {Iσ}.
This compares well with an inter-observer agreement of 45%. The intra-observer
agreement on the used dataset is 89%.

4 Conclusions

We have shown that a combination of EM and statistical modelling results in
a robust approach to the segmentation of mammographic images. We have in-
troduced a texture feature vector based on a set-permutation occurrence matrix
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(a) (b)

(c) (d)

(e) (f)

Fig. 3. Original fatty (a) and dense (b) mammographic images. Segmentation
results where the EM modelling is based on (c,d) {Iσ}, and (e,f) {Iσ}

which captures both spatial and local grey-level information. The use of this type
of matrix, especially the size and shape of Sxy, will need further development
to explore its limitations and full potential. We have shown that the segmen-
tation results can be used to provide valuable information in mammographic
assessment of density applications and therefor possibly such as risk assessment.
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Table 1. Comparison of the density estimate as given by an expert radiologist
and automatic segmentation. (a) {Iσ} and (b) {Iσ}. Within the tables the pro-
portion of dense tissue is represented as 1: 0%, 2: 0-10%, 3: 11-25%, 4: 26-50%,
5: 51-75% and 6: 76-100%

Expert Classification
1 2 3 4 5 6

A
u
to
m
a
ti
c

C
la
ss
ifi
ca
ti
o
n 1 0 0 0 0 0 0

2 0 0.22 0 0 0 0
3 0 0 0.08 0.08 0.06 0
4 0 0 0.03 0.19 0.11 0
5 0 0 0.06 0 0.17 0
6 0 0 0 0 0 0

(a)

Expert Classification
1 2 3 4 5 6

A
u
to
m
a
ti
c

C
la
ss
ifi
ca
ti
o
n 1 0 0 0 0 0 0

2 0 0.17 0 0 0 0
3 0 0 0.14 0.06 0 0
4 0 0.06 0.03 0.22 0 0
5 0 0 0 0 0.33 0
6 0 0 0 0 0 0

(b)
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Abstract. A semi-automatic method has been developed which seg-
ments the prostate in slices of Magnetic Resonance Imaging (MRI) data.
The developed approach exploits the characteristics of the anatomical
shape of the prostate when represented in a polar transform space. Sim-
ple techniques, such as line detection and non-maximum suppression, are
used to track the boundary of the prostate. The initial results, based on
a small set of data, indicate a good correlation with expert based manual
segmentation.

1 Introduction

Prostate cancer is now the most frequently diagnosed male malignancy, with
one in every 11 men developing the disease [1]. It is the second most common
cause of cancer deaths in men. Patients who present with organ confined disease
may be suitable for surgery - radical prostatectomy and bilateral pelvic lymph
node dissection. However, once tumour has spread beyond the gland, radical
radiotherapy is the preferred option. In advanced disease, hormone deprivation,
radiotherapy and chemotherapy all have a role in patient management. The
importance of imaging is to determine whether tumour is confined to the gland
or whether tumour has spread into the periprostatic tissues. The detection of
nodal and bone marrow spread is also important. Magnetic Resonance Imaging
(MRI) is now the staging method of choice for cases of proven prostate cancer [2].
It is the most reliable technique for the depiction of the zonal anatomy of the
prostate - 70% of tumour arising from the peripheral zone of the gland. Its
superior contrast resolution and multiplanar capabilities allow the best chance
of detecting extracapsular extension of tumour. Nevertheless, early periprostatic
spread can be subtle, with intra-observer discrepancies noted.

The main aim of the developed approach is to improve the assessment of
the spread of cancer both within and outside of the gland. MRI provides three-
dimensional anatomical information displayed as two-dimensional slices. The
overall aim of the project is to investigate the information contained within a
number of greylevel profiles which are extracted along straight lines radiating
out from the centre of the prostate. The profiles for normal prostates are charac-
teristic showing a number of transitions between anatomical features within the

F.J. Perales et al. (Eds.): IbPRIA 2003, LNCS 2652, pp. 1108–1116, 2003.
c© Springer-Verlag Berlin Heidelberg 2003
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gland. When a cancer extends out of the gland, these profiles can be radically
changed. To be able to extract these profiles the prostate needs to be segmented.
Here we present initial results based on a semi-automatic approach.

2 Data

The main data consists of 20 prostate MRI volumes. All images are obtained
on a 1.5 Tesla magnet (Signa, GE Medical Systems, Milwaukee, USA) using
a phased array pelvic coil. Field of view 24 × 24 cm, matrix 256 × 512, slice
thickness 3mm with an interslice gap of 0.5mm, TR 7800ms, TE 102ms. Fig. 1
shows two typical examples from the data set. In both cases the prostate can be
found in the centre of the image. In Fig. 1 on the left there are minor benign
hypertrophic changes in the central zone. The peripheral zone architecture is
generally preserved, with some patchy loss of the normal high T2 signal, in
keeping with some malignant infiltration. There is no extracapsular extension
present. In Fig. 1 on the right there are marked benign hypertrophic changes
within the central zone, with resultant compression of the peripheral zone to
a thin rim of tissue. However, the visible peripheral zone does return reduced
signal, suggesting that some tumour is present. Evidence of extracapsular spread
is present within the MRI volume (but not on this slice).

Fig. 1. Axial view prostate MRI examples

3 Methods

A detailed description of the methods used is given. To illustrate the effects
of the various steps involved in the segmentation of prostate MRI data typical
examples are shown which are based on the axial views shown in Fig. 1.
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Fig. 2. Polar transforms of the prostate images shown in Fig. 1

The prostate and the surrounding tissue are extracted into a polar transform
using

x = xc + r cos(θ)
y = yc + r sin(θ) (1)

where (x, y) is a position in the original image, (r, θ) represents the polar trans-
form space, and (xc, yc) represents the centre with respect to which the polar
transform is obtained. We have used bilinear interpolation to sample the orig-
inal data. Bilinear interpolation was used to be able to approximate greylevel
values at non-integer (i.e. non-pixel) positions. An example of this, based on
the prostate images shown in Fig. 1, is displayed in Fig. 2, where we used
θ ∈ [−π/4, 9π/4] and r ∈ 〈0, 128〉 to define the surrounding tissue. An ex-
tended range for θ is used at this initial stage to avoid boundary effects in
subsequent steps. In effect we are only interested in the range θ ∈ [0, 2π]. A neg-
ative greylevel transform is used, so a dark boundary in the original data is
represented as a bright ridge in the polar transform.

Because (xc, yc) is within the prostate there should only be one continuous
structure across orientations in the polar transform. This continues structure
represents the boundary between the prostate and the surrounding tissue. It is
expected that if (xc, yc) is situated close to the centre of the prostate the distance
between (xc, yc) and the boundary is more or less constant, which means that in
the polar transform representation this forms a horizontal band. To segment the
prostate from the other anatomical structures in the image we have to extract
the described representation of the boundary in the polar transform.

In the first instance we extract ridges in the polar transform for which we have
used Lindeberg’s approach [3], which is based on the usage of first and second
order directional derivatives. An example of this ridge detection can be found in
Fig. 3, which shows a large number of ridges found in the polar transform. Due
to the fact that the ridge strength measure produces a probability with values
in between zero and one all the ridges with a local high probability value are
connected by valleys with lower probability values. This connectivity needs to
be removed to extract the prostate boundary.

To achieve this we use non-maximum suppression [4] along the radial di-
rection of the polar transform and the results of this operation based on the
curvi-linear structures detected in the polar transform shown in Fig. 3 can be
found in Fig. 4. The results are only shown for the θ ∈ [0, 2π] range. This shows
a large number of curvi-linear structures which are unconnected in the vertical
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Fig. 3. Ridges detected in the polar transforms of the prostate images shown
in Fig. 1

Fig. 4. Non-maximum suppression in the radial direction for the detected ridges
in the polar transforms of the prostate images shown in Fig. 1

(the radial) direction. It should be noted that most of the curvi-linear structures
are short and only a few longer structures exist.

Subsequently we want to find the one curvi-linear structure that represents
the prostate boundary. We use the assumption made above that this is the only
structure to appear as a band across all the orientations in the polar transform.
To do this we track the curvi-linear structures across the image and select the one
with the longest length. To improve the robustness of the selection process the
tracking is done both from left to right and visa-versa. The tracking is achieved
by considering all radial positions at a zero degree orientation and propagation
to the next orientation only occurs if at that orientation there are non-maximum
suppression values at the same or plus/minus one radial position. The results
of this process for our example polar transform can be found in Fig. 5. Again,
the results are only shown for the θ ∈ [0, 2π] range in the polar transform space.
It should be clear that for the left-hand case a curvi-linear structure was found
which covers the full [0, 2π] range for θ. However, this is not the case for the right-
hand side which clearly shows a large gap between two parts of a curvi-linear
structure.

Fig. 5. Selection of the longest curvi-linear structure after non-maximum sup-
pression in the radial direction for the detected ridges in the polar transforms of
the prostate images shown in Fig. 1
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Fig. 6. Segmentation of the prostate in axial MRI views

An inverse polar transform has been used to project the prostate boundary
representation from the polar transform back into the original prostate MRI
data. The results of this can be found in Fig. 6. It should be clear from these
results that only in the left-hand view the prostate is segmented completely. For
the right-hand view, only the top half of the prostate has been detected. The
non-segmentation of the bottom-half of the prostate is caused by the spread from
the central into the peripheral zone.

It should be mentioned that there is a very simplistic approach to obtain an
approximation of a complete segmentation if the boundary can not be tracked
over the whole range θ ∈ [0, 2π]. In the polar transform the end-points of the
parts of the tracked curvi-linear structure can be connected by a straight line.
This makes the assumption that the prostate is locally spherical. However, here
we have used a slightly more elaborate approach to obtain a boundary over the
whole range θ ∈ [0, 2π]. If a complete segmentation is not supported by a single
linear structure in the polar transform the non-maximum-suppressed and orig-
inal greylevel information can be used to obtain a most likely approximation
in between the end-points. Within this stage there is a preference to track an-
other linear structure in the non-maximum-suppressed image, but if that is not
supported the original greylevel values are used to follow the boundary (using
a steepest assent approach). Results of this approach, for the example slices, can
be found in Fig. 8.

4 Results

Two aspects of the developed segmentation technique are evaluated. In the first
instance we consider the robustness with respect to the central position (xc, yc),
which is the position that needs to be manually selected. Subsequently, we pro-
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Fig. 7. Segmentation resulting for seventeen different starting positions within
the prostate, where (x, y) are pixel positions

vide a comparison of the semi-automatic approach with manual segmentation of
the prostate.

4.1 Central Position (xc, yc)

To evaluate the robustness of the automatic approach to variation in the posi-
tion (xc, yc) the segmentation was obtained for different values of (xc, yc). The
segmentation resulting from seventeen different (xc, yc) positions can be found
in Fig. 7 (the (xc, yc) positions used for the two graphs are also indicated). The
segmentation resulting from the various values of (xc, yc) are all similar, with
the difference between segmentations limited to a few pixels at maximum and
no difference at some positions of the segmentation. As a result, the centre of
gravity of the segmentations is also stable with the variation in position limited
by a few pixels in both directions. The consistency in the segmentation is better
for the set of positions closer to the centre of the prostate. However, even for the
results where the positions of (xc, yc) are close to the boundary of the prostate
the segmentation results are consistent although the differences between the seg-
mentations can be several pixels. If a point (xc, yc) is chosen even closer to the
boundary of the prostate the segmentation will fail. It should be noted that the
resulting segmentations are realistic and almost independent of (xc, yc).

4.2 Comparison with Manual Segmentation

Manual segmentation of the prostate was provided by an expert radiologist. For
both axial examples these anatomical boundary annotations can be found in
Fig. 8 where they are indicated by a dashed line. For comparison we have in-
cluded the resulting boundaries based on our semi-automatic approach. A num-
ber of aspects should be noted. Firstly, it should be clear that the general shape
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Fig. 8. Comparison between manual (dashed lines) and semi-automatic (con-
tinuous lines) segmentation, where (x, y) are pixel positions

of the automatic and manual segmentations are similar. However, it seems that
the automatic segmentation approach under-estimates the extent of the prostate.
The amount of under-estimation is not consistent along the boundary of the
prostate and seems less pronounced at the top-half of the prostate.

In Fig. 9 the comparison of the manual and semi-automatic segmentations are
summarised. For all the slices from two volumes (slice number 13 of each volume
can be found in Fig. 1) we have determined a measure of overlap between the
annotated and automatically segmented regions. The overlap measure Ω is given
by [5]

Ω =
TP

TP + FP + FN
, (2)

where TP stands for the area correctly classified as the prostate, FP for the area
incorrectly classified as the prostate and FN for the area incorrectly classified
as background. For Ω = 1 there is perfect overlap and for Ω = 0 there is no
overlap between the annotated and automatically segmented region. The graphs
show that the automatic segmentation is closest to the annotations for the most
central slices and degrades when moving away from the central slices.

5 Discussion and Conclusions

To date most if the prostate segmentation considers ultrasound [6, 7] and CT [8]
as the imaging modality. Only recently has this been extended to include MR
imaging [2]. Cootes et al. used prostate segmentation as an examplar in some
of their early publications [9]. To our knowledge, no other attempts have been
published covering the (semi-) automatic segmentation of prostate MRI data.
A direct comparison between these various modalities is currently not possible.
Recently there has been some work on the registration of prostate MRI data [10,
11].
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Fig. 9. The overlap, Eq. 2, between the annotated and segmented regions for
each MR slice

The next step towards the classification of the prostate (as discussed in Sec. 1)
is to use the segmentation as a guide to extract greylevel profiles. It is our thesis
that these profiles, in combination with statistical modelling, can be used to
classify the prostate and provide a semi-automatic staging tool.

In summary, we have discussed the semi-automatic segmentation of the
prostate. The developed approach is based on the usage of simple computer
vision techniques in the polar transform of the original MRI data. The extracted
boundary can be projected back into the original prostate images. A direct
comparison with manual segmentation shows a good correlation, but the semi-
automatic approach seems to underestimate the size of the prostate. Although
this is a semi-automatic technique, the only parameter that needs to be selected
is the position of the centre of the polar transform. It has been shown that the
developed technique is robust with respect to variations in this parameters.
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Abstract. Is “useful diversity” a myth? Many experiments and the lit-
tle available theory on diversity in classifier ensembles are either incon-
clusive, too heavily assumption-bound or openly non-supportive of the
intuition that diverse classifiers fare better than non-divers ones. Al-
though a rough general tendency was confirmed in our previous studies,
no prominent link appeared between diversity of the ensemble and its ac-
curacy. Diversity alone is a poor predictor of the ensemble accuracy. But
there is no agreed definition of diversity to start with! Can we borrow
a concept of diversity from biology? How can diversity, as far as we can
define and measure it, be used to improve the ensemble? Here we argue
that even without a clear-cut definition and theory behind it, studying
diversity may prompt viable heuristic solutions. We look into some ways
in which diversity can be used in analyzing, selecting or training the
ensemble.

1 Introduction

Classifier outputs are combined in an attempt to reach a more accurate deci-
sion than that of a carefully designed individual classifier. It is curious that the
experts in the field hold diametrically opposite views about our current level of
understanding of combining classifiers. In his invited lecture at the 3rd Interna-
tional Workshop on Multiple Classifier Systems, 2002, Ghosh proposes that [5]

“... our current understanding of ensemble-type multiclassifier systems
is now quite mature...”

In an invited book chapter, the same year, Ho states that [8]

“Many of the above questions are there because we do not yet have
a scientific understanding of the classifier combination mechanisms.”

Ho proceeds to nominate the stochastic discrimination theory by Klein-
berg [9] as the only consistent and theoretically sound explanation of the suc-
cess of classifier ensembles, criticizing other theories as being incomplete and
assumption-dependent. However, as the usual practice invariably shows, inge-
nious heuristic developments are the heart, the soul and the engine in many
branches of science and research.

F.J. Perales et al. (Eds.): IbPRIA 2003, LNCS 2652, pp. 1126–1138, 2003.
c© Springer-Verlag Berlin Heidelberg 2003
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This study advocates one such idea: that of measuring diversity and incor-
porating it into the process of building of the ensemble. We draw upon the
somewhat futile efforts hitherto to define, measure and use diversity (our own
research in this number!). We are cautious to note that no strong claims are
made based on the small experimentation study reported here. The message of
this paper is that there is still much room for heuristic in classifier combination,
and diversity might be one of the lines for further exploration.

The paper is organized as follows. Section 2 explains diversity and its rein-
carnations. Section 3 looks into some ways in which diversity has been used in
classifier ensembles. In Section 4, an ensemble building version of AdaBoost is
proposed, which involves diversity and Section 5 concludes the paper.

2 Diversity

Classifiers in an ensemble should be different from each other, otherwise there
is no gain in combining them. Quantifying this difference, named also diversity,
orthogonality, complementarity, has been identified as an important research di-
rection by many authors [2, 11, 20, 14, 15]. Measures of the connection between
two classifier outputs can be derived from the statistical literature (e.g., [23]).
There is less clarity on the subject when three or more classifiers are concerned.
There is no strict definition of what is intuitively perceived as diversity. At least
not in the vocabulary of machine learning, pattern recognition and computer
science in general. Biologists and ecologists have axiomatized their idea of di-
versity several decades ago. For example, suppose that we are interested in the
height of adult gorillas in a certain region of Africa. Consider a population π
with a probability measure P associated with it. The measure P defines the
distribution of heights for the population. A comprehensive study on diversity
in life sciences by Rao [18] gives the following axiomatic definition of a diversity
measure.

Let (X ,B) be a measurable space, and let P be a convex set of probability
measures defined on it.1 A function H(.) mapping P onto the real line is said to
be a measure of diversity if it satisfies the following conditions

C1: H(P ) ≥ 0, for any P ∈ P and H(P ) = 0 iff P is degenerate.
C2: H is a concave function of P . 2

The concavity condition ensures that any mixture of two populations has a higher
diversity than the average of the two individual diversities.H(Pi) is the diversity
within a population πi characterized by the probability measure Pi. Rao defines
1 Convexity means that for any P1, P2 ∈ P , and for any t ∈ [0, 1], tP1+(1− t)P2 ∈ P .
2 The concavity here means that for any P1, P2 ∈ P , and for any t ∈ [0, 1], H(tP1 +
(1− t)P2) ≥ tH(P1) + (1− t)H(P2).
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H(Pi) to be the averaged difference (ζ(X2, X2)) between two randomly picked
individuals in the population πi according to the probability measure Pi

H(Pi) =
∫

ζ(X1, X2)Pi(∂X1)Pi(∂X2). (1)

If the two individuals are drawn from two different populations πi and πj ,
then the total diversity will be

H(Pi, Pj) =
∫

ζ(X1, X2)Pi(∂X1)Pj(∂X2). (2)

The dissimilarity between the two populations πi and πj is then

Dij = H(Pi, Pj)− 1
2
(H(Pi) +H(Pj)). (3)

The concavity of H guarantees that Dij will be positive for any two popu-
lations and their probability measures. This dissimilarity is based on taking out
the diversity coming from each population and leaving only the “pure” diversity
due to mixing the two populations.

The distance ζ could be any function that satisfies the axioms for distance
(nonnegativity, symmetry and a version of the triangle inequality). We can use
the Euclidean distance for quantitative variables and a “matching” type of func-
tion for qualitative variables, i.e., ζ(X1, X2) = 1 if the two variables have different
values and 0, otherwise.

The most useful ideas often drift across sciences and branches thereof. How
otherwise would neural networks and evolutionary computation become the pow-
erful algorithmic tools they currently are? Many more algorithms have come
about as a mathematical allegory for the underlying biological or physical pro-
cesses. The question is how can we translate the notion of diversity used success-
fully in biology, ecology, economics, etc., into the mathematical concept needed
in our classifier combining niche?

Our problem can be approached from two different angles as shown in Fig-
ure 1, depending on what we decide to be our “gorillas”. The variable of interest
here is the class label taking values in the set Ω = {ω1, . . . , ωc}. We suppose
we have a data set Z = {z1, . . . , zN} on which the L classifiers in the ensemble,
D = {D1, . . . , DL}, are tested. Each classifier suggests a class label for every
data point zj . Thus a population will be a collection of objects (classifiers or
data points?) with the respective values of the class label.

We can regard the classifier outputs for a given data point zj as a popula-
tion. The diversity within the population will be the diversity of the ensemble
with respect to the particular point in the feature space. The within-population
diversity H(P ) can be measured by the entropy of the distribution of class la-
bels among the classifiers or by the Gini index. Let Pk be the probability that
a randomly chosen member of the population outputs label ωk (

∑c
k=1 Pk = 1).

Then the Gini diversity within a population of L classifiers is

H(P ) = G = 1−
c∑

k=1

P 2
k . (4)
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Fig. 1. Two perspectives on diversity in classifier ensembles

This concept underlies the variance component of the error suggested by Kohavi
and Wolpert [10] and is also suggested as a measure of diversity within population
by Rao [18]. The data set consists of N such populations, one for each data point.
Therefore, the average diversity across the whole feature space is calculated as
the average G over the data set Z.

The alternative view is to consider the data points as the elements of the
population and the classifier as the environment responsible for the distribution
of the class labels. In this case, the within-population diversity is not of much use
to us; we are interested in the diversity between populations, i.e., between clas-
sifiers. Most often we calculate some pairwise measure of diversity and average
it across all pairs to get a value for the whole ensemble.

An immediate equivalent of the total diversity H(Pi, Pj), assuming that πi
and πj are two populations produced by classifiers Di and Dj is the measure
of disagreement Dis [13, 7, 22]. We consider the oracle type of outputs from
classifiers Di and Dj , i.e., for every object in the data set, the classifier is either
correct (output 1) or wrong (output 0). Then the populations of interest consist
of 0’s and 1’s. We do not assume that the new distribution is simply a mixture of
the two distributions. Instead we consider a new space with 4 elements: 00, 01, 10,
and 11. Denote the probabilities for these joint outputs of D1 (first bit) and D2

(second bit) as follows Pr(11) = a;Pr(10) = b;Pr(01) = c and Pr(00) = d. The
typical choice for the distance as mentioned before is ζ(m,n) = 1, iff m �= n,
and 0, otherwise. Then

H(Pi, Pj) = ζ(1, 1)×a+ ζ(1, 0)× b+ ζ(0, 1)× c+ ζ(0, 0)×d = b+ c = Dis. (5)
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This is the expectation of the disagreement between classifiers Di and Dj in the
space of their joint oracle outputs.

However, the disagreement measure does not take out the individual diver-
sities of πi and πj as does Dij in (3). An analogue (in spirit) of the dissimilarity
measure would be the kappa statistic, κ. It measures the agreement between
two categorical variables while correcting for chance [4]. For c class labels, κ is
defined on the c× c coincidence matrix M of the two classifiers. The entry mk,s

of M is the proportion of the data set (used currently for testing of both Di

and Dj) which Di labels as ωk and Dj labels as ωs. The agreement between Di

and Dj is given by

κ =
∑

kmkk − ABC
1− ABC

, (6)

where
∑

kmkk is the observed agreement between the classifiers and ‘ABC’ is
“agreement-by-chance”

ABC =
∑
k

(∑
s

mk,s

)(∑
s

ms,k

)
. (7)

Low values of κ signify higher disagreement and hence higher diversity. If calcu-
lated on the 2× 2 joined oracle output space,

κ =
2(ac− bd)

(a+ b)(c+ d) + (a+ c)(b + d)
, (8)

The bad news is that despite the large number of proposed measures and
formalizations, there is no consensus on what diversity of a classifier ensemble
is, which approach should be used to measure it (gorillas = classifiers or gorillas =
data points) and what is a good measure of diversity. We will leave this question
unanswered here, just acknowledging the “diversity of diversity”, and will abstain
from strongly advocating one measure or definition over another. In our previous
studies we sightly favored the Q statistic (for oracle outputs) [13] because of its:
(a) potential sensitivity to small disagreements; (b) value 0 indicating statistical
independence; and (c) the relatively small effect of the individual accuracies on
the possible range of values of Q. In the rest of this study we draw upon the
existing literature and in particular kappa-error plots proposed by Margineantu
and Dietterich [16], hence out choice of κ.

3 Using Diversity

The general anticipation is that diversity measures will be helpful in design-
ing the individual classifiers, the ensemble, and the combination method. For
this to be possible, there should be a relationship between diversity and the
ensemble performance. However, the results from our experiments so far have
been disheartening, to say the least [21, 13]. We did not find the desired strong
and consistent relationship to guide us into building better ensembles. Although



That Elusive Diversity in Classifier Ensembles 1131

the suspected relationship appears on a large scale, i.e., when diversity spans
(uniformly) the whole range of possible values, in practice we are faced with
a different picture. Usually the candidates for the ensemble are not very dif-
ferent from one another. This leads to small variations of diversity and also
small variations of the accuracy of the ensemble about the individual accuracies.
Unfortunately, none of the various diversity measures that we investigated previ-
ously (10 measures: 4 pairwise and 6 non-pairwise [13]) appeared to be sensitive
enough to detect the changes in the accuracy. This phenomenon is illustrated in
Figure 2 showing a typical graph of “accuracy” versus “diversity”. A scatterplot
of this type was obtained when we simulated classifier outputs with preassigned
accuracy (approximately equal for all ensemble members) and preassigned di-
versity (approximately equal diversity for all pairs). The relationship can easily
be spotted on the plot. However, when diversity only varies in a small range,
this relationship is blurred (the gray dot and the cloud of classifiers in it).

If we do not enforce diversity, the ensemble is most likely to appear as a dot
towards the right side of the graph. For these ensembles, the improvement on
the individually best accuracy is usually negligible.

Note that the neat relationship in Figure 2 was obtained under quite artificial
circumstances. When the members of the ensemble have different accuracies
and different pairwise diversities, such a relationship has not been found. Then
is measuring and studying diversity a wasted journey? Several studies which
explicitly use diversity to help analyze or build the ensemble offer answers to
this skeptical and provocative question.

Fig. 2. A typical accuracy-diversity scatterplot. Each point corresponds to an
ensemble. The gray dot shows a hypothetical area where ensembles appear most
often in real problems



1132 Ludmila I. Kuncheva

3.1 Diversity for Finding Bounds and Theoretical Relationships

Assume that classifier outputs are estimates of the posterior probabilities,
P̂i(ωs|x), s = 1, . . . , c, so that the estimate P̂i(ωs|x) satisfies

P̂i(ωs|x) = P (ωs|x) + ηis(x), (9)

where ηis(x) is the error for class ωs made by classifier Di. The outputs for
each class are combined by averaging, or by an order statistic such as minimum,
maximum or median. Tumer and Ghosh [24] derive an expression about the
added classification error (i.e., the error above the Bayes error) of the team
under a set of assumptions

Eave
add = Eadd

(
1 + δ(L− 1)

L

)
, (10)

where Eadd is the added error of the individual classifiers (all have the same
error), and δ is a correlation coefficient (the measure of diversity of the ensem-
ble)3.

Breiman [1] derives an upper bound on the generalization error of random
forests (ensembles of decision trees built according to a simple randomization
technology, one possible variant of which is bootstrap sampling) using the aver-
aged pairwise correlation between the ensemble members. The classifiers produce
class labels and majority vote is assumed as the combination method. The bound
is given by

Pr( generalization error of the ensemble ) ≤ ρ̄(1− s2)s2, (11)

where ρ̄ is the averaged pairwise correlation (our diversity measure)4, and s is
the “strength” of the ensemble. The strength is a measure of accuracy based on
the concept of margin. Admittedly the bound is not very tight as it is based on
the Chebyshev’s inequality but nonetheless it shows the tendency: the higher
the diversity (small r̄ho), the lower the error.

Both results can be viewed as pieces of that yet missing more general theory
of diversity.

3.2 Diversity for Visualization

Diversity measures have been used to find out what is happening in the ensemble.
Pȩkalska and coauthors [17] look at a two-dimensional plot derived from the
matrix of pairwise diversity. Each classifier is plotted as a dot in the 2-d space
3 Averaged pairwise correlations between Pi(ωs|x) and Pj(ωs|x), i, j = 1, . . . , L are
calculated for every s, then weighted by the prior probabilities P̂ (ωs) and summed.

4 Since the classifier outputs are labels, therefore categorical, the correlation is cal-
culated between the two oracle outputs. For every data point zj ∈ Z, the output
of Di is taken to be 1 if the suggested label for zj matches the true one, and −1,
otherwise.
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Fig. 3. Kappa-error plot, the convex hull, and the Pareto optimal set of pairs
of classifiers

found by Sammon mapping which preserves the “distances” (diversities in our
case). The ensemble is a classifier itself and can also be plotted. Any method
of combination of the individual outputs can also be mapped. Even more, the
oracle classifier (all objects correctly recognized) can be plotted as a point to
complete the picture.

Margineantu and Dietterich suggest the kappa-error plots as shown in Fig-
ure 3 [16]. Every pair of classifiers is plotted as a dot in a two-dimensional space.
The pairwise measure kappa (6) is used as the x-coordinate of the point and the
average of the individual training errors of the two classifiers is used as the y-
coordinate. Thus there are L(L− 1)/2 points in the scatterplot. The best pairs
are situated in the left bottom part of the plot: they have low error and low
kappa (low agreement = high diversity).

The cloud of points shows the pairwise diversity in one ensemble.
Margineantu and Dietterich use it to verify that AdaBoost generates more di-
verse classifiers than Bagging. The example in the figure corresponds to an en-
semble of 50 classifiers for the glass data set from UCI Machine Repository
Database 5. The shape of the cloud indicates that there is a certain trade-off
between the accuracy of the pair and its κ-diversity.

The disagreement measure mentioned before, Dis = b + c, was used by
Skalak [22] to characterize the diversity between a base classifier and a com-
plementary classifier, and then by Ho [7] for measuring diversity in decision
forests.
5 http://www.ics.uci.edu/∼mlearn/MLRepository.html
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3.3 Overproduce and Select

Several studies try the method of producing a pool of classifiers, usually by
bagging (taking bootstrap samples from the data sets and building a classifier
on each sample) or boosting (modifying the training set for every new member of
the ensemble by putting more “emphasis” on the hard objects). Then a selection
procedure is suggested to pick the members of the team which are most diverse
or most diverse and accurate.

Giacinto and Roli [6] use the double fault measure (probability of both clas-
sifiers being incorrect, DF = d) and also the Q statistics [19], to form a pairwise
diversity matrix for a classifier pool and subsequently to select classifiers that
are least related. The selection is carried out using a search method through the
set of all pairs of classifiers until the desired number of ensemble members is
reached.

Margineantu and Dietterich [16, 3] use kappa to select the ensemble out of
the set of classifiers produced by AdaBoost. They call this “ensemble pruning”.
One proposed technique matches the work by Giacinto and Roli. The pairwise
κ’s are calculated for the whole ensemble. The pruned ensemble is created by
progressively selecting pairs with lowest kappas (highest diversity) until the de-
sired number of classifiers is reached. Since both studies apply greedy algorithms,
optimality of the selected ensemble is not guaranteed.

Another interesting strategy of selection is to use the kappa-error plots. As
the most desirable pairs of classifiers are situated toward the lower left corner
of the plot, Margineantu and Dietterich use the convex hull [16], called kappa-
error convex hull pruning. The convex hull of points is depicted in Figure 3 with
a thick line.

It might happen that the convex hull contains only a few classifiers on the
frontier. Small variations of the estimates of κ and e1+e2

2 might change the whole
frontier, making convex-hull pruning overly sensitive to noise. The number of
classifiers in the pruned ensemble cannot be specified in advance. This lack of
control on the ensemble size is seen as a defect of the method [16].

Therefore we may look at Pareto optimality as an alternative to the con-
vex hull approach. Let A = {a1, . . . , am} be a set of alternatives (pairs in our
case) characterized by a set of criteria C = {C1, . . . , CM} (low kappa and low
error in our case), The Pareto-optimal set S∗ ⊆ S contains all non-dominated
alternatives. An alternative ai is non-dominated iff there is no other alterna-
tive aj ∈ S, j �= i, so that aj is better than ai on all criteria. For the two criteria
in our example, the Pareto optimal set will be a superset of the convex hull. The
concept is illustrated in Figure 4.

The Pareto-optimal set for the glass data example is depicted in Figure 3 by
a thin line joining the circled points in the set.

4 Diversity for Building the Ensemble

Here we only sketch a possible use of diversity during the process of building of
the ensemble. The motivation is that diversity should step out of the passive role



That Elusive Diversity in Classifier Ensembles 1135

Fig. 4. Illustration of Pareto optimality

of being only a tool for monitoring and should help actively at the design stage.
The overproduce-and-select approach discussed earlier is a step in this direction.
However, we need to overproduce first. An alternative approach would be to
stop the growing of the ensemble when diversity and accuracy satisfy a certain
condition.

We take as the starting point the kappa-error diagram and run AdaBoost6.
The first and the second classifier (D1 and D2) will define one single point on
the diagram. This point will be the convex hull and the Pareto optimal set of
itself. The third classifier, D3,will place two more points: one for (D1, D3) and
another for (D2, D3). At this step we recalculate the Pareto optimal set. If the
points by new classifier have not changed the previous Pareto optimal set, then
this classifier is not accepted. Another training set is generated with the same
distribution and a new classifier is attempted on it. We run the acceptance check
again, and proceed in this manner. A pre-specified parameter T defines the limit
number of attempts from the same distribution. When T attempts have been
made and a classifier has not been accepted, the procedure stops and the classifier
pairs in the last Pareto optimal set are declared to be the ensemble.

Next we give some experimental results with the proposed ensemble con-
struction method. Four data sets were used, three from the UCI and one called
“cone-torus”7. The characteristics of the data sets are summarized in Table 1.

Table 1. Characteristics of the data sets used

Name Objects Classes Features Availability

glass 214 6 9 UCI5

cone-torus 800 3 2 see footnote 7

liver 345 2 6 UCI5

pima 768 2 8 UCI5

6 We use AdaBoost in its resampling version: the likelihood of data poins to be selected
is modified.

7 Available at http://www.bangor.ac.uk/∼mas00a/Z.txt and Zts.txt, [12].
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Table 2. Testing error in % (and ensemble size L), average from 20 splits into
90/10 training/testing

Data set Classical Select from 50 Incorporate Incorporate
AdaBoost (Pareto) diversity, T = 5 diversity, T = 10

glass 23.18 (50) 25.00 (28.55) 22.95 (24.85) 24.09 (34.95)
cone-torus 12.38 (50) 12.56 (33.70) 12.81 (37.00) 12.25 (41.50)
liver 30.29 (50) 32.14 (16.45) 32.71 (7.8) 28.43 (9.10)
pima 26.43 (50) 28.05 (16.40) 29.09 (6.30) 28.64 (8.85)

Table 2 shows the errors (in %) and the number of classifiers in the ensembles
for the standard AdaBoost (run up to 50 classifiers), the kappa-error selection
from the final ensemble of 50 using Pareto optimality, and the proposed diversity-
incorporation method (T = 5 and T = 10). All the results are the testing
averages from 20 runs. At each run we split randomly the data set into 90%
training and 10% testing. The same 20 splits were used with each method. The
“winner” (smallest error) for each data set is marked in boldface.

As we all know, miracles rarely happen in pattern recognition. If our results
appear dramatically better than everybody else’s then better double check the
code! The results here show that we can sometimes achieve better performance
than standard AdaBoost with smaller number of ensemble members. In any case,
this part of the paper was not intended as a consistently examined new ensemble
building technology. It is instead an illustration of the potential of diversity as
an ensemble building aid.

5 Conclusions

This talk looks into diversity again, asking the same old awkward question: do
we need to measure and exploit diversity at all? We try to relate the notion of
diversity, which appears well channeled in biological and ecological studies, to
diversity in combining classifiers. Unfortunately, a straightforward translation
is not apparent at this stage, so some analogues from the field of combining
classifiers are presented.

Subsequently, the usage of diversity is summarized into four main bullets:
for theoretical relationships and limits, for monitoring, for selection from a given
pool of classifiers, and for direct use in building the ensemble. The fourth di-
rection seems to be the least researched. The lack of effort can be explained
by the discouraging results trying to link unequivocally diversity with the en-
semble error for practical purposes. If there is no proven link, then why bother
incorporating diversity into the building of the ensemble? For regression and
approximation such a link exists, and there are increasing amount of studies on
training the members of the ensemble by enforcing negative correlation between
the classifier outputs.

However, as argued at the beginning, heuristics sometime produce a surpris-
ing escape from what seems to be a dead end. Even without an agreed upon
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definition, based upon intuition only, diversity can be put to work. Once suc-
cessful, there should be explanations and maybe a theory that will tell us when,
where and how we can make the best of diversity. Will the quest for diversity,
now a marginal streak in the research on classifier combination, resurface one
day as a major theory for new ensemble creating methods?

Let us return to the experts’ disagreement about where we are. My personal
view is that we have accumulated quite a lot of unstructured insight on clas-
sifier combination. We have a good critical mass of experimental studies and
some patchy but exciting theory on different ensemble building and combination
methods. So, yes, we know a lot and, no, we don’t have the all-explaining theory.
This makes our field of research what it is – challenging and entertaining.
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Guerrero, José J. . . . . . . . . . .297, 346
Guillamet, David . . . . . . . . . 308, 317

Han, Su-Young . . . . . . . . . . . . . . . . 326
Hayik, Bashir . . . . . . . . . . . . . . . . . . 598
Helmers, Muriel . . . . . . . . . . . . . . . 336
Hernández, Mario . . . . . . . . . 176, 212
Herrero, Elias . . . . . . . . . . . . . . . . . .346

Igelmo, A. . . . . . . . . . . . . . . . . . . . . . 733
Ila, Viorela . . . . . . . . . . . . . . . . . . . . 255
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